Applying Hierarchical and Role-Based
Access Control to XML Documents

Jason Crampton

Information Security Group, Royal Holloway, University of London, United Kingdom

jason.crampton@rhul.ac.uk

ABSTRACT

W3C Recommendations XML Encryption and XML-Digital
Signature can be used to protect the confidentiality of and
provide assurances about the integrity of XML documents
transmitted over an insecure medium. The focus of this pa-
per is how to control access to XML documents, once they
have been received. This is particularly important for ser-
vices where updates are sent to subscribers. We describe
how certain access control policies for restricting access to
XML documents can be enforced by encrypting specified re-
gions of the document. These regions are specified using
XPath filters and the policies are based on the hierarchical
structure of XML documents. We also describe how tech-
niques for assigning keys to a security lattice can be adapted
to minimize the number of keys that are distributed to users
and compare our approach with two other access control
frameworks. Finally we consider how role-based access con-
trol can be used to enforce more complex access control poli-
cies.

Categories and Subject Descriptors

H.2.7 [Database Management]: Database Admin-
istration—Security, integrity, and protection; K.6.5
[Management of Computing and Information

Systems]: Security and Protection

General Terms
Security, Theory

Keywords

XML, encryption, hierarchical access control, role-based ac-
cess control

1. INTRODUCTION

XML is fast becoming the de facto format for document-
based information exchange. This is particularly evident

Permission to make digital or hard copies of all or part of thknfor
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage aatidbpies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguiees prior specific
permission and/or a fee.

ACM Workshop on Secure Web Services, October 29, 2004, Fairfax VA,

USA.
Copyright 2004 ACM 1-58113-973-X/04/001085.00.

in emerging standards supporting security features for Web
services such as SAML, XACML and WS-*, which are all
based on XML.

XML is a markup language like HTML. Unlike HTML,
which describes both the content and presentation of doc-
uments, XML describes the content and structure of docu-
ments. A well-formed XML document is based on an XML
schema or a document type definition (DTD), which define
elements, inter-element relationships and attributes of the
data contained in the document.

We use an imaginary ACM catalogue as a running ex-
ample. The catalogue is sent in encrypted form to ACM
subscribers. The recipients of the catalogue will be given
only the encryption keys that can decrypt elements in the
document that they are entitled to read.

Figure 1 illustrates the skeleton of an XML document
containing information about the ACM catalogue. (The
schema on which this document is based can be found at
www.isg.rhul.ac.uk/~jason/Pubs/acm_schema.xml.) Ele-
ments typically contain data, while attributes contain infor-
mation that will be useful for any subsequent processing of
the XML document. The acm-catalog element includes the
issue-date attribute, for example.

The explicit structure of an XML document means that
it is easy to identify distinct aspects of the document’s con-
tent. Hence it becomes possible to specify restrictions to
particular information contained within an XML document.
In short, when data is stored in XML format, we can con-
sider more fine-grained access control than has previously
been possible.

There has been considerable interest in controlling access
to stored or broadcast XML data, both in academia [3, 4,
8, 10] and from standards bodies [14]. Most authorization
frameworks for controlling access to XML data [3, 4, 8, 14]
are essentially extensions of the protection matrix model [7].
Recall that the protection matrix essentially encodes autho-
rizations as access triples of the form (s, 0,a), where s is a
subject, o is an object and a is an access right.

Damiani et al, for example, define an “access authoriza-
tion” to be a tuple (s, 0,a,p,t), where p determines whether
it is a positive or negative authorization and ¢ determines the
type of authorization [4]. The type determines the scope of
the authorization and its precedence in resolving authoriza-
tion conflicts. For instance the scope may either be local to
the XML element or recursive and apply to all sub-elements.
The default order of precedence is that authorizations de-
fined on an instance of a schema override any authorizations
at the schema level. However, the type can be used to mod-

<acm-catalog issue-date=" " issue-number=" ">
<journal>
<name>. ..</name>
<date>...</date>
<volume>...</volume>
<number>. . .</number>
<table-of-contents>
<item>
<toc-entry>...</toc-entry>
<page-number>. . .</page-number>
</item>

</table-of-contents>

<paper>
<title>...</title>
<pages>...</pages>
<author>...</author>
<abstract>...</abstract>
<body>...</body>
<references>...</references>
<bibtex-entry>...</bibtex-entry>

</paper>

</journal>

<proceedings>
<conference>
<name>. . .</name>
<year>...</year>
<location>...</location>
</conference>
<table-of-contents>...</table-of-contents>
<paper>...</paper>

</proceedings>

</acm-catalog>

Figure 1: A skeleton of an XML document repre-
senting the ACM catalogue

ify this behaviour.

The Author-X framework, developed by Bertino et al, fol-
lows a broadly similar approach. It defines an “access con-
trol policy” to be a tuple (¢, s, 0, a,p), where ¢ is a temporal
restriction on the use of the authorization and p determines
the propagation options for the authorization.

We would argue that these approaches are unlikely to scale
well and incorporate all the problems of scalability and ad-
ministrative burden associated with access control matrices.
Moreover, authorizations for XML data have a natural or-
dering, which can be used to organize authorizations into a
hierarchy.

This paper makes use of ideas from role-based access con-
trol. In particular, the fact that XML documents have a
hierarchical structure is used to form a hierarchy of permis-
sions, which are grouped to form roles. Our work is also
based on the trivial observation that granting access to an
XML element and all its sub-elements can be implemented
by encrypting that data with a key and supplying an au-
thorized user with that key. Moreover, if we wish to deny
access to some of the sub-elements, we can simply further
encrypt those elements with a different key. This means that
many useful access control policies can be effectively imple-
mented by selectively encrypting parts of an XML document
and distributing appropriate decryption keys to authorized
users. In our framework a role becomes synonymous with a

set of encryption keys.

There exist several schemes for associating keys with ele-
ments in a hierarchy in such a way that a user with k(x) can
derive k(y) for any y < z [1, 6, 9, 16, 17]. Bertino et al have
employed one such scheme to good effect [2]. However, the
fact that the hierarchy they use is the powerset of authoriza-
tions, which is exponential in the number of authorizations,
means that their approach is unlikely to scale well.

Our approach has some similarities to that of Miklau and
Suciu [10], who model an XML document as a tree and
specify the keys that are required to “unlock” each element
of the tree. However, their approach results in users having
to manage several different keys. For large and complex
documents, this may prove to be a limiting factor on user
acceptance and scalability. Nevertheless, their approach can
be used to implement rather more complicated access control
policies than are currently possible within our framework.

In the next section, we provide an overview and motiva-
tion for our approach. In Section 3 we describe how to use
encryption to enforce a class of access control policies for
broadcast XML documents and how the Akl-Taylor scheme
can be used to minimize the number of keys required by re-
cipients of encrypted documents. Section 4 describes related
work [2, 10] and illustrates how our approach complements
these frameworks. In the following section, we describe how
the techniques of Akl and Taylor can be modified to pro-
vide a method for assigning priorities to XML document
elements. These priorities can then be used to generate dif-
ferent views for different users. In Section 6, we briefly out-
line why our approach in Section 3 is unlikely to be suitable
for complex access control policies and sketch a method for
enforcing such policies. Finally, we conclude with some ideas
for future work.

2. AN OVERVIEW

As in classical access control, we define a protection object
(or simply object) to be data for which an access control pol-
icy is defined. However, we make one restriction: namely,
an object can only be a sub-tree rooted at an element of
the document. In fact, this is not as limiting as would first
appear, because we may also deny access to any such object,
and hence by granting access to an element (and the asso-
ciated sub-tree) but denying access to other sub-elements,
we can provide fine-grained access control. For example, we
could grant a user u access to the journal element but deny
access to the paper element. Hence, v would only be able
to access elements such as name and table-of-contents.

2.1 The XPath transform

The XPath transform forms part of the XML digital spec-
ification [22, Section 6.6.3] and is used to specify those parts
of an XML document that are to be signed [20]. For this
reason, XPath expressions have often been used to specify
regions of a document to which access is restricted [3, 4].

XML documents have a hierarchical structure, deter-
mined by the nesting of elements within the document.
XPath expressions describe the nodes that satisfy a cer-
tain path in this hierarchy. For example, the expres-
sion /acm-catalog/journal selects all journal elements
within the acm-catalog element. (An expression of this
form is similar to an SQL SELECT statement.) XPath
expressions can also conditionally select particular nodes
satisfying a particular path. For example, the ex-

pression /acm-catalog/journal [name="TISSEC"] selects all
journal elements containing information about TISSEC.
(An expression of this form is similar to an SQL statement
of the form SELECT ... WHERE.)

An important abbreviation in XPath syntax is //, which
selects descendant elements at any depth in the document.
Hence, //paper would select all papers in either ACM jour-
nals or proceedings. The wildcard character * can also
be used: for example, /acm-catalog/* selects all child el-
ements of the catalog element. The XPath expression
/journal [name="TISSEC"]/paper identifies all nodes corre-
sponding to papers appearing in Transactions on Informa-
tion and System Security (TISSEC). Damiani et al provide
an accessible and authoritative introduction to XPath ex-
pressions and their use in specifying authorizations [4].

2.2 XML-Signature XPath Filter 2.0

Unlike previous researchers, we will define objects using
the XPath Filter transform [23]. The XML-Signature XPath
Filter specification describes a new signature filter transform
that, like the XPath transform, provides a method for com-
puting a portion of a document to be signed.

XPath Filter was developed to improve the efficiency of
digital signature implementations. XPath expressions are
used to select the roots of document sub-trees, which are
then combined using set intersection, subtraction and union.
The fact that XPath filters use document sub-trees and set
operations makes it ideal for our purposes.

An input document contains all the nodes available to pro-
cessing by the transform. The filter node set is computed by
evaluating a sequence of XPath expressions and combining
their results. The sub-tree expansion of a node set is defined
to be the set of subtrees rooted at any node in the node set.
Initially, the filter node node set comprises the entire input
document. In sequence, each XPath expression is then eval-
uated, sub-tree expanded, and then used to transform the
filter node set using one of the three set operations. After
all XPaths have been applied, the resulting node-set is used
to filter the input document.

For example, if we wished to specify the region consisting
of all journal information except the bodies of papers, we
specify the XPath filter

<dsig-xpath:XPath Filter="intersect">
//journal

</dsig-xpath:XPath>

<dsig-xpath:XPath Filter="subtract">
//journal//body

</dsig-xpath:XPath>

In the remainder of this paper we will use the terms object
and XPath filter interchangeably. However, we will gener-
ally prefer to use a single letter to denote an object, rather
than cluttering the paper with the corresponding XPath fil-
ters. Where necessary, we will specify an XPath filter as a
pair (op,x), where op is a set operation and z is an XPath
expression, rather than using the more cumbersome XML
syntax. The subtract operation is denoted by —.

2.3 Containment

Wadler [18] provides a semantics for patterns, on which
the syntax of XPath expressions is based. Part of the seman-
tics identifies the set of nodes in an XML document selected
by an XPath expression. Given an XML document D and

an XPath filter =, we write (D) for the set of nodes in D
selected by x. Given a schema S and XPath expressions x
and y, we will write x <s y iff for all documents D that
conform to schema S, z(D) C y(D).

The containment problem, determining whether x <s v,
has been extensively studied in recent years [11, 12, 19]. In
general the containment problem is undecidable, but there
are known to be several fragments of XPath for which it is
tractable. Space does not permit a more detailed analysis of
these issues. Henceforth, S will be clear from context and
we will simply write x < y to denote that the set of nodes
selected by z is a subset of those selected by y.

2.4 Key-based access control

Role-based access control is beginning to establish itself
as the most promising access control paradigm for modern
computing systems [5]. The central notion is that of a role to
which both users and permissions are assigned. The role pro-
vides a “bridge” between users and permissions and, since
the number of roles is typically orders of magnitude smaller
than either the set of users or permissions, the administra-
tive burden is significantly reduced. The central components
of role-based access control are: a set of users U, a partially
ordered set of roles R, a set of permissions P, a user-role
assignment relation UA C U x R and a permission-role as-
signment relation PA C P x R.

An XML access control policy (XACP) will specify a set
of objects O and how to encrypt them in order to prevent
unauthorized access. In a simple XACP two objects in O are
either disjoint or one is completely contained in the other. A
compler XACP permits different objects to overlap. In this
paper we will focus on simple XACPs and briefly discuss
how complex XACPs can be implemented.

Our aim in this paper, is to show how the use of a par-
tial ordering on the set of objects coupled with role-based
access control can simplify the expression of access control
policies for XML documents. Generally, a permission is an
object-access pair. However, we need only consider read ac-
cess in this paper, so a permission is synonymous with an
object. Objects are ordered using containment of their re-
spective XPath expressions. Objects of an XML document
are encrypted with a number of different keys based on the
relative seniority of objects. A user is supplied with a mas-
ter key enabling him to decrypt those objects for which he
is authorized. The master key is synonymous with a role.
Note that encryption can be used to explicitly deny access
to certain objects — if a user doesn’t have the relevant key,
he cannot access those objects.

3. SIMPLE XACPS

Given an XML schema S, we first identify the objects of
instances of S that are to be subject to access restrictions.
These objects are specified using XPath filters and form a
partial order under XPath expression containment. If z and
q are two XPath filters in a simple XACP, then for any
document D that conforms to S, (D) N q(D) = 0.

3.1 An example policy

We now consider an example for the ACM catalogue.
It is assumed that subscribers pay a subscription fee that
provides them with commensurate access to the catalogue.
There are four distinct classes of subscription: full pro-
vides access to all parts of the ACM catalogue; journal

provides access to all parts of all journals in the ACM cata-
logue; restricted provides access to all parts of each jour-
nal and proceedings except for the bodies of papers; and
proceedings provides access to all the contents of ACM
proceedings. Figure 2 is a schematic representation of the
areas of an ACM catalogue that need to be encrypted. Ob-
ject A represents the whole catalogue; B < A represents all
journals; C' < B represents all journal papers; D < B rep-
resents all tables of contents in journals; F < A represents
all conference proceedings; and F' < F represents all confer-
ence papers. Hence, restricted subscribers, for example,
would be given access to object B, but not objects C' and
F'. Table 1 summarizes the access control policy.

Figure 2: A schematic representation of an en-
crypted ACM catalogue

Subscriber | Access permitted | Access forbidden
full A B,C,D,E, F

restricted | A,B,D,FE C,F

journal A, B,C,D E, F

proceedings | A, E, F B,C,D

Table 1: Objects associated with different subscriber
classes

3.2 Policy specification

Let (O, <) denote the partially ordered set of objects. We
associate a height with each object o, denoted h(o), using
the following algorithm, which is essentially a simple modi-
fication of a breadth-first search.

e For all minimal elements, set the height to be zero

e For all other elements, set the height to be one greater
than the height of its highest children

The height of an object simply measures how deeply it is
nested within the set of restricted areas of the document.
Given a set of objects O, an access control policy is defined
by a function § : O — Z, such that 0 < §(0) < h(o0). 6(0)
denotes the depth of encryption of o. Alternatively, we can

view an access control policy as a set of policy statements
(0,d), where d < h(o) is the depth of the encryption.

The depth of encryption for an object indicates how many
keys will be used to encrypt that object. Clearly the depth of
encryption need not exceed the level of nesting of an object.
However, it may be that the depth of encryption of an object
may be less than that of the object in which it is contained.
For example, the ACM may decide to make the table of
contents of each of its journals freely available, leading to a
policy statement (D, 0). Alternatively, the ACM may wish
to provide a free sample copy of TISSEC to all subscribers
to the ACM catalogue. In this case, the policy statement
will be

(//journal [name="TISSEC" and volume="6" and number="3"],1)

3.3 Policy enforcement

We can implement this policy by first encrypting elements
C, D and F with keys k(C), k(D) and k(F'), respectively.
We then encrypt elements B and E (including sub-elements
C, D and F) with keys k(B) and k(E), respectively. Fi-
nally, we encrypt the whole catalogue with k(A). Users
with a restricted subscription to the catalogue service will
be given keys k(A), k(B), k(D) and k(FE), which enables
them to recover information about abstracts, authors, etc.,
but not to decrypt the body of any paper. Conversely, full
subscribers to the service will be given all the keys. The
important question is: How do we choose the encryption
keys?

A naive approach to broadcasting this document (while
enforcing the XACP) would be to generate six keys
k(A),...,k(F) and give each recipient the keys required to
decrypt those portions of the document he or she is autho-
rized to read. However, in complex XML documents, this
will likely lead to users having to manage a large number of
keys. Ideally, we would like to give each recipient a single
key that can be used to decrypt appropriate elements in the
document. We now describe how this can be achieved by
defining a key hierarchy and the concept of a master key.

Given a set of policy statements P, we define a partial
ordering on P’ C P in the following way. We first omit any
policy statements of the form (o,d) from P if there exists
another policy statement of the form (o,d’) € P with o < o
and d < d'.' Let (0,d),(0',d") € P'. Then (o,d) < (¢/,d)
ifd<d and 0o < 0.

In our example, we define

0(A)=1,0(B) =0(F)=2,6(C)=06(D)=46(F)=3.
(Note that in this case d(0) = h(0) for all 0.)

3.3.1 Key hierarchies

Let k(o) denote the key associated with a given policy
statement (o,d) in the hierarchy. Moreover, we can define
master keys in the policy hierarchy. In other words, if we
have a set of keys {ki,...,kn}, we can create a master key
k in the hierarchy by specifying that & > k;; 1 < i< n. A
master key k has the property that it can be used to derive
every subordinate key in the hierarchy. Essentially a master
key is a role, granting access to a set of permissions.

IThe rationale is that since o is contained in o’ and the depth
of encryption is the same, it can be ignored for the purposes
of policy enforcement. This will become clearer when we
explain how a policy is enforced.

Figure 3 shows the policy hierarchy and key hierarchy de-
rived from the encrypted document shown in Figure 2. We
have included two master keys k and k’: k will be used to
derive keys k(A), k(B) k(C) and k(D), while k" can be used
to derive all other keys. The intuition is that we will give key
k' to full subscribers to the ACM catalogue, k to journal
subscribers and other keys to less privileged subscribers.
(For clarity, we have not included a key for restricted sub-
scribers in the figure, which would be a master key greater
than both k(D) and k(E), giving access to objects A, B, D
and E.)

(F,3)
(C,3) (D, 3)
(E,2)
(B,2)
(4, 1)
(a) Policy hierarchy
k/
k
k(F)
k(C)
k(E)
k(B)
k(A)

(b) Key hierarchy

Figure 3: Policy and key hierarchies for the en-
crypted ACM catalogue in Figure 2; k and k' are
master keys

3.3.2 Hierarchical access control

Akl and Taylor developed a method for assigning sym-
metric encryption keys to a hierarchy of security labels [1,
9]. Their scheme had the property that if a user u was as-
signed to security label | then he could decrypt any object
with security label I’ < 1.

The advantage of the key hierarchy is that we can now
apply such established methods for generating keys to en-
crypt an XML document. Keys k(A),...,k(F) will be used

to encrypt the document and each user will be given a sin-
gle key from the set {k(A),...,kF), k,k'} with which he
can either directly decrypt the document or use it to derive
appropriate keys.

Let X denote the key hierarchy. To initialize the scheme,
the document owner performs the following steps:

) Choose large primes p and ¢ and publish n = pq
) Choose k € [2,n — 1] such that (k,n) =1
3) For each z € X, choose a distinct prime p(x)
) For each z € X, define and publish 7(z) =[], ., p(v)

(5) For each z € X, compute secret key k(z) = ™
mod n

Figure 4 illustrates how values p and 7 are associated with
each element of the hierarchy. Hence k' is defined to be ,
ks k2117 ete.

Given key k(z) in the hierarchy, it is possible to derive
key k(y), where k(y) < k(z), by computing

k(x)ﬁ(y)/ﬂ(z) _ (Rﬂ(z))ﬂ(y)/ﬁ(z) — W — k(y).

Note that mw(y) is public information and =7(y) is divisible
by m(z) whenever k(y) < k(z) by construction. Note also
that it is not feasible to derive a key k(z), where k(z) >
k(z), because this would entail computing integral roots of
x mod n [15]. The scheme is also secure against a set of
users pooling information in an attempt to derive keys for
which they are not authorized [1].

4. RELATED WORK

In this section we briefly describe work on two other
frameworks that use cryptography to limit access to pub-
lished XML documents. We also illustrate how our meth-
ods can be applied to examples from the literature, in one
case leading to smaller keys and a simpler implementation
of the encryption and in the other reducing the number of
keys required to each user to a single one. This suggests that
our methods could be combined with the more sophisticated
features in the other frameworks to provide a more powerful
overall mechanism.

4.1 Author-X

Author-X is an access control framework designed for
XML documents by Bertino et al [3]. A policy base is a
set of authorizations of the form (¢,s,0,a,p), where s is a
subject, o is an object (specified as an XPath expression), a
is an access mode, p is a propagation flag and t specifies the
time period for which the authorization is valid.

Bertino et al describe a distribution strategy for XML
data, in which a restricted set of data is “pushed” to sub-
scribers. They describe a method for enforcing a policy base,
which encrypts portions of the XML document with differ-
ent keys in such a way that a subscriber can only decrypt
the information she is permitted to access [2].

The scheme is based on a method of Tzeng, which asso-
ciates an encryption key with each element in a partially or-
dered set [17]. Tzeng’s method is based on Harn and Lin’s
method for assigning keys to elements in a hierarchy [6],
which is itself based on the Akl-Taylor scheme. The main
difference between the Harn-Lin and Akl-Taylor schemes is

2
3
11
5
17
13
19
(a) p(z)
1
2.11.17
2.3.5.7.13
2.3.11.13.17
2.3.5.11.13.17
2.3.5.7.11.17

2.3.5.7.11.13.17

(b) m(z)

Figure 4: Initializing the Akl-Taylor scheme for the
key hierarchy in Figure 3

that the former uses asymmetric cryptographic techniques
in an effort to reduce the size of the keys associated with
minimal elements in the hierarchy.

The main contribution of Tzeng’s scheme is that it can
be used to give keys a limited lifetime. Clearly, this is rel-
evant to Author-X because it explicitly includes temporal
constraints on authorizations.

Bertino et al consider all possible subsets of the set of
authorizations and label each node of the XML document
with the set of authorizations that applies to the node. Nat-
urally, the powerset of authorizations is a partial order and
Tzeng’s scheme can be employed.

However, there are several problems with this approach.
Firstly, the powerset of authorizations grows exponentially
with the number of authorizations, so the number of nodes
in the hierarchy to which Tzeng’s scheme is applied is likely

to be very large. This is turn means that it will be ex-
pensive to derive encryption keys as the public information
associated with each element is the product of primes and
may include as many as 2" primes, where n is the number
of authorizations. Secondly, Tzeng’s scheme is not secure
against collaborative attacks, in which two or more users
combine their key information to deduce keys higher in the
hierarchy [25]. Finally, each user receives a key for each au-
thorization that applies to them. This means that users may
have to use and manage a large number of keys in order to
decrypt a document.

The example concerns a simple access control policy de-
signed to protect the contents of an electronic newspaper
published weekly and distributed in XML format. The news-
paper is encrypted and sent to subscribers who are supplied
with keys enabling them to decrypt those portions of the
newspaper to which they have access. Figure 5(a) shows
the access control policy.

The first element of each tuple indicates the temporal re-
strictions that are to be applied to the authorization. In each
case, the restrictions apply to days of the week in the year
2002. The last two elements of each tuple indicate whether
the authorization provides normal read access (NO_PROP) or
recursive read access (CASCADE). Note that CASCADE is the
default behaviour in our approach.

We assume that users will be supplied with keys
based on their subscription status. We modify our pol-
icy hierarchy so that the temporal constraints are mod-
elled as filters of the newspaper content. In practice,
these filters can be represented using XPath expressions:
(wednesdays, N, /Newspaper), for example, can be modelled
using the expression (N, /Newspaper [@day="wednesday"])
(assuming that we modify the schema so that the Newspaper
element has a day attribute). In fact this is a very simple
policy and gives rise to the policy hierarchy shown in Fig-
ure 5(b).

° p w |k

(*, /Newspaper//*) 2 1 s
(weekends, /Newspaper//*) 3 2.5.7 | k257
(*,//Front-page) 5| 23511 | k2871
(wednesdays, //Fin-supp//*) | 7| 23.7.11 | g**>!1113
(sundays, //Lit-supp//*) | 11| 23.5.7 | x>32712
(weekends, //Front-page) 13 | 2.3.5.7.11 | g2:3:5-7-1

Table 2: Assigning encryption keys to the hierarchy
in Figure 5

We encrypt portions of the newspaper with the appropri-
ate key. We then distribute the key « to all full subscribers,
the key %227 to all weekend subscribers, etc. The complex-
ity of the keys in Table 2 compares very favourably with the
keys derived by Bertino et al in their scheme, in which the
exponent was the product of as many as 16 large primes [2,
Table 3).2

4.2 The work of Miklau and Suciu

Miklau and Suciu developed a comprehensive framework

2«Large” in this context means suitable for use with asym-
metric cryptosystems. This is a feature of Tzeng’s scheme.

2002, A11-days), //Subscriber/type="full", /Newspaper, VIEW, CASCADE)
2002, Weekend), //Subscriber/type="week-end", /Newspaper, VIEW, CASCADE)

2002, Sunday), //Subscriber/type="sunday", //Literary-supplement, VIEW, CASCADE)

((
((
((2002, Wednesday), //Subscriber/type="wednesday",//Financial-supplement, VIEW, CASCADE)
((
((

2002, A11-days), //Subscriber/type="1light", //Front-page, VIEW, NO_PROP)

(a) Policy base

(*,N, /Neuspaper)

(weekends, N, /Newspaper)

(sundays, N, //Lit-supp)

ont-page)

(wednesdays, N, //Fin-supp)

(weekends, N, //Front-page)

(b) Policy hierarchy

Figure 5: The policy base and policy hierarchy for the newspaper example

for controlling access to published XML documents [10].
Their framework includes policy specification, policy trans-
lation to primitive access control rules, the derivation of a
protection scheme from those rules and cryptographic tech-
niques for enforcing the protection scheme. They are able
to specify more complex policies than have been considered
in this work.

We focus here on the enforcement of a protection scheme.
A protection scheme P [10, Section 3] is a function from the
set of nodes in an XML document to a set of guard formulae
defined over a set of keys K. A guard formula o satisfies the
following grammar

o:=true|false |k |oAcd' |o Vo

where k£ € K. An example of a schematic XML document
and the associated guard formulae [10, Figure 3a] is shown
in Figure 6. The necessity formula of an element e is de-
fined to be the conjunction of the guards of all e’s ancestors
in the XML tree. The necessity formula of element 4 in the
figure, for example, is k1 A ((k1 A k3) V ka) A ks. Miklau
and Suciu enforce the protection scheme by first normaliz-
ing the XML document [10, Section 3.2] so that each ele-
ment in the new document is associated with a single atomic
guard formula. The normalized document is encrypted us-
ing a recursive traversal of the normalized document tree,
the (unique) key associated with each element and the W3C
Recommendation for encrypting XML documents [24].

We suggest the following alternative approach. For each
combination of keys C C K, compute the set of nodes that
can be accessed using those keys. Intuitively, a node can
be accessed using a set of keys C' if its necessity formula is
satisfied, with the convention that a “propositional variable”
k evaluates to true if k& € C and false otherwise. Informally,
we convert those sets into abstract roles and associate a
new key with each role thus identified. Space precludes a

Element | Guard formula
1 k1

(lﬁ A ks) V k4

true

ks

ka

k2

DO W N

Figure 6: An example of a Miklau-Suciu protection
scheme

formal treatment of this approach; instead we illustrate the
techniques involved by re-working the example in Figure 6.

Figure 7(a) indicates which subsets of {k1, k2, k3, ka} give
rise to distinct access capabilities. For example, the set of
keys {ki,ks} enables a user to “unlock” elements 1, 2, 3
and 4. In contrast, the key k2 on its own, does not permit
any access to the document. Note that this table essentially
enumerates an instance of the function accp defined by Mik-
lau and Suciu [10, Section 3.1]. This function is used in the
derivation of a protection scheme from a set of primitive
rules [10, Definition 5.1].

We treat these sets of keys as roles, defining new roles
where necessary, and define a new key for each role. Fig-
ure 7(b) illustrates how this is done. Notice that r; provides
access to elements {1,2,3}, which is not a set of elements
that appears in Figure 7(a). It is unlikely that anyone will
be given the key k5, but it is necessary to encrypt element
2 with this key in order to enforce the protection scheme.

Finally, in Figure 7(c), we illustrate the role hierar-
chy. Roles are ordered by set inclusion on the associated
sets of elements. Hence r; < r2, for example, because
{1,3} € {1,2,3}. The numbers in brackets indicate the
primes numbers associated with each element in the hier-
archy. These are used to derive the Akl-Taylor key values
shown in Figure 7(b).

Encryption of the document can be performed directly
using the keys in Figure 7(b) and the same techniques used
by Miklau and Suciu. Element 4, for example, is encrypted
first with k%, then with k5 and finally with ki. Note that
no normalization is required. We also note that the normal-
ized document has an additional 6 elements and requires 4
additional keys.

5. VIEWS USING AKL-TAYLOR

In this paper we have examined how to associate keys with
different regions of an XML document. This approach was
inspired by the work of Bertino et al on “push” models for
distributing XML documents to subscribers. We note that
there is an alternative way of implementing this distribution
model that is likely to be far simpler for end users as it relies
on little or no encryption.

Many document formats, such as HTML, contain informa-
tion that determines both content and presentation. In con-
trast, XML documents determine only the logical structure
of the information within the document and the information
itself. Transformations can be applied to an XML document
in order to render the information in different formats de-
termined by the requirements of the end user. Therefore,
having assigned a public value to each of the nodes in the
permission hierarchy, instead of generating encryption keys,
we generate a view of the XML document using an XSLT
transformation [21].

The new document is identical to the original, except that
every element in the transformed document includes a pri-
ority attribute. This attribute is assigned the value of the
public information associated with that element if it appears
in the permission hierarchy (and 0 otherwise). Indeed, we
can modify the underlying XML schema so that the every el-
ement has a required priority attribute, which, by default
is 0.

For each value ¢ in the set of public information, an XSLT
transform [21] parameterized by ¢ can then generate sepa-
rate views of the “prioritized” document, only including an
element in the view if the value of the priority attribute of
the element is divisible by ¢. (Note that 0 is divisible by
for all 4. Hence priority 0 elements, which are not subject to
any access restrictions, are included in every view.) These
views are then distributed to the appropriate subscribers.
Of course such views may be encrypted and digitally signed
to prevent eavesdroppers from viewing the content and to
ensure the integrity of the view received by the user.

We note that this implies that the number of views is
equal to the number of keys, which in turn equals the num-
ber of nodes in the permission hierarchy. Given that end

Keys Elements
{k1} {1,3}
{k1,ks} {1,2,3,4}
{k1,ka} {1,2,3,5}
{k1,k2} {1,2,3,4,6}
{ki1, ks, ka} {1,2,3,4,5}
{k17k27k37k4} {1727374»576}

(a) The access provided by different sets of keys

Role | Elements Key
ri | {1,3} k| = 23571113
rg | {1,2,3} Kl = k235711
rs | {1,2,3,4} Kl = k23511
re | {1,2,3,5} ki = ;2357
rs | {1,2,3,4,6} kL = k2511
re | {1,2,3,4,5} ki = w23
re {1,2,3,4,5,6} | Ky =&

(b) A hierarchical set of keys

(2)

T5

(5)

T3

(11)

(17)

(c¢) The role hierarchy

Figure 7: The Miklau-Suciu example using hierar-
chical and role-based access control

users are likely to prefer a plaintext version of precisely the
information they subscribe to, it seems preferable to adopt
this approach to distribution.

Broadcasting encrypted information to subscribers is not
necessarily the only way in which users need to access XML
documents. Damiani et al have developed a fine-grained ac-
cess control framework for controlling access to stored XML
documents [4]. This framework is based on the more tradi-
tional “pull” model, associated with operating systems and
database management systems, in which subjects request ac-

cess to objects. The request is evaluated by an access control
mechanism and the legitimacy of the request is determined
by the authorizations that apply to the user. The mecha-
nism returns a view of the XML document corresponding
to those regions of the document that the user is entitled to
view.

We observe that this alternative use of Akl-Taylor pub-
lic information to derive a view of an XML document can
be used equally well for pull distribution models. When a
requester has been identified and authenticated he can be
associated with a member of the policy hierarchy. The pub-
lic information of this policy is then used as input to an
XSLT transformation to derive an appropriate view to be
returned to the requester. We believe that this approach
is likely to scale better than the approach of Damiani et al
because it is based on role-based concepts rather than the
protection matrix model.

6. COMPLEX XACPS
6.1 Using encryption

We now consider the case where 0,0’ € O such that o
and o' partially overlap. Again, policies of this sort occur
very frequently. Consider a new type of subscription sigsac,
which allows the user full access to all publications related
to security (such as TISSEC and the proceedings of CCS
and SACMAT).> While o(sigsac), the regions associated
with the sigsac subscription, are contained within o(full),
o(sigsac) partially overlaps o(restricted). In particular,
if we encrypt o(sigsac) with some key, then restricted
subscribers will not be able to view those parts of TISSEC
that they are authorized to view.

In general, the resolution of such conflicts will be depen-
dent on the wider context. However, in all cases, we must
consider the intersection of the overlapping regions and de-
cide what the depth of encryption should be for that in-
tersection. Let o and o’ be two overlapping regions and
consider the object o N o’. There are two possibilities: the
first is to make the regions disjoint (in other words, remove
the intersection from one or other of the regions) and the
second is to define the intersection of the two regions as a
separate object with its own encryption depth. In the case
of our example, consider the following possibilities:

e §(o(sigsac) No(restricted)) = §(o(restricted))

In this case, we have removed part of the sigsac object
and sigsac subscribers would need to be given the
key for restricted subscribers. This is likely to be
the solution that would be adopted in the case of this
example. Subscription services are usually “layered”,
with subscribers adding more features to their profile.
In this scenario, all users pay for the restricted service
and then add subscriptions to special interest groups
and other additional features.

e §(o(sigsac) No(restricted) = §(o(sigsac))
In this case, we have removed part of the restricted
object and assuming that restricted subscribers will

not be given the key to decrypt all SIGSAC publica-
tions, restricted subscribers will no longer be able to

3SIGSAC is the ACM special interest group on security,
audit and control.

access summary details for journals such as TISSEC.
It is unlikely that this will be a satisfactory solution in
our example.

e §(o(sigsac) No(restricted) >

max{d(o(sigsac)),d(o(restricted))}

In this case, restricted subscribers and sigsac sub-
scribers will need to derive an additional key to de-
crypt summary details for security-related publica-
tions. Again, this seems to be inappropriate in our
particular example, but this method does provide a
general resolution strategy and is the one that should
be adopted where the application context means that
either of the above solutions are not appropriate. Note
that we saw a trivial example of this type of approach
in Section 4.1, when it was necessary to create a sep-
arate object (weekends, //Front-page).

In general, it would appear that using cryptography to
implement complex access control policies will be problem-
atic, although resolving some of these problems lies in careful
policy specification and policy design. In the next section
we consider how a direct application of role-based access
control could provide a solution for complex access control
requirements.

6.2 Using a role-based approach and views

For more complex policies, we believe that role-based ac-
cess control can provide a solution. Instead of encrypting
documents, we will associate regions of the document with
roles and generate different views of the document for dif-
ferent roles.

We define a permission to be an XPath filter. We associate
each permission with a role and assign users to roles based on
identification, authentication and credential discovery (us-
ing SAML assertions, for example [13]). The sigsac role
could be assigned the permissions

(N, //journal [name="TISSEC"]),
(U, //proceedings [name="CCS"]),
(U, //proceedings [name="SACMAT"]),

whereas the restricted role is assigned the permissions

(N, //journal),
(—,//journal//body),

(U, //proceedings),
(—,//proceedings//body).

Views of the catalogue are generated for each role. One
simple way of implementing this scheme is to encrypt the
region with a key associated with the role and to encrypt
the remainder of the document with some other key. Space
does not permit a detailed examination of this approach,
which will be the subject of our future work.

7. CONCLUDING REMARKS

We have described a new approach to access control poli-
cies for XML documents. Our approach exploits the in-
herent hierarchical nature of XML documents and employs
role-based ideas to derive keys or views for different users.
We believe that our approach offers a scalable and natural
approach to access control for XML documents, and which
also inter-operates well with existing frameworks.

Nevertheless, a considerable amount of research needs to
be done. Of immediate interest is a more thorough in-
vestigation and formal treatment of the interplay between
our framework and that of Miklau and Suciu. We believe
that the expressive policy specification and transformation
framework of Miklau and Suciu combined with our tech-
niques from role-based and hierarchical access control could
prove to be a powerful mechanism for protecting access to
published XML documents.

We must also address some of the more complex policies
envisaged by researchers. For example, we need to inves-
tigate how to implement policies in which objects overlap.
We believe that encrypting documents in such situations
will lead to a proliferation of keys. We anticipate that the
technique of assigning a priority or role identifier to each
element of the document (as described in Section 6) is likely
to prove more successful.

Damiani et al, amongst others, have considered policies in
which authorization information conflicts. We have not yet
addressed these types of policies. We believe that their ap-
proach of labelling the document prior to generating a user
view could be merged with our technique for assigning pri-
orities to produce a comprehensive, scalable access control
mechanism with conflict resolution capabilities.

Finally, I would like to thank the anonymous referees for
their helpful comments and particularly for drawing my at-
tention to the work of Miklau and Suciu.

8. REFERENCES

[1] AKL, S., AND TAYLOR, P. Cryptographic solution to a
problem of access control in a hierarchy. ACM
Transactions on Computer Systems 1, 3 (1983),
239-248.

[2] BERTINO, E., CARMINATI, B., AND FERRARI, E. A
temporal key management scheme for secure
broadcasting of XML documents. In Proceedings of the
8th ACM Conference on Computer and
Communications Security (2002), pp. 31-40.

[3] BERTINO, E., CASTANO, S., AND FERRARI, E.
Author-X: A comprehensive system for securing XML
documents. IEEE Internet Computing 5, 3 (2001),
21-31.

[4] DamiaNg, E., DE CAPITANI DI VIMERCATI, S.,
PARABOSCHI, S., AND SAMARATI, P. A fine-grained
access control system for XML documents. ACM
Transactions on Information and System Security 5, 2
(2002), 169-202.

[5] FERRAIOLO, D., KUHN, D., AND CHANDRAMOULI, S.
Role-Based Access Control. Artech House, Boston,
Massachussetts, 2003.

[6] HARN, L., AND LIN, H. A cryptographic key
generation scheme for multilevel data security.
Computers and Security 9, 6 (1990), 539-546.

[7] HARRISON, M., Ruzzo, W., AND ULLMAN, J.
Protection in operating systems. Communications of
the ACM 19, 8 (1976), 461-471.

[8] Kupo, M., AND HADA, S. XML document security
based on provisional authorization. In Proceedings of
the 7th ACM conference on Computer and
communications security (2000), pp. 87-96.

[9] MACKINNON, S., TAYLOR, P., MEIJER, H., AND AKL,
S. An optimal algorithm for assigning cryptographic

(11]

(12]

(14]

(15]

(16]

20]

21]

(22]

23]

(24]

keys to control access in a hierarchy. IEEE
Transactions on Computers C-34, 9 (1985), 797-802.
MikLAu, G., AND Suctu, D. Controlling access to
published data using cryptography. In Proceedings of
29th International Conference on Very Large Data
Bases (VLDB 2003) (2003), pp. 898-909.

MikLAU, G., AND Suctu, D. Containment and
equivalence for a fragment of XPath. Journal of the
ACM 51,1 (2004), 2—45.

NEVEN, F., AND SCHWENTICK, T. XPath containment
in the presence of disjunction, DTDs, and variables. In
Proceedings of 9th International Conference on
Database Theory (ICDT 2003) (2003), pp. 315-329.
OASIS. Assertions and Protocols for the OASIS
Security Assertion Markup Language, 2003. OASIS
Committee Specification: E. Maler, P. Mishra and R.
Philpott (editors).

OASIS. eXtensible Access Control Markup Language
(XACML) Version 1.1, 2003. OASIS Committee
Specification: S. Godik and T. Moses (editors).
RABIN, M. Digitalized signatures and public-key
functions as intractable as factorization. Tech. Rep.
TR-212, Laboratory for Computer Science,
Massachusetts Institute of Technology, Cambridge,
Massachusetts, 1979.

RAy, I., Ray, I., AND NARASIMHAMURTHI, N. A
cryptographic solution to implement access control in
a hierarchy and more. In Proceedings of the Seventh
ACM Symposium on Access Control Models and
Technologies (2002), pp. 65-73.

TZENG, W.-G. A time-bound cryptographic key
assignment scheme for access control in a hierarchy.
IEEFE Transactions on Knowledge and Data
Engineering 14, 1 (2002), 182-188.

WADLER, P. A formal semantics of patterns in XSLT
and XPath. Markup Languages: Theory and Practice
2, 2 (2000), 183-202.

WoobD, P. Containment for XPath fragments under
DTD constraints. In Proceedings of 9th International
Conference on Database Theory (ICDT 2008) (2003),
pp- 300-314.

WOoRLD WIDE WEB CONSORTIUM. XML Path
Language (XPath) Version 1.0, 1999. J. Clark and S.
DeRose (editors).

WORLD WIDE WEB CONSORTIUM. XSL
Transformations (XSLT) Version 1.0, 1999. J. Clark
(editor).

WoRLD WIDE WEB CONSORTIUM. XML-Signature
Syntax and Processing, 2002. W3C Recommendation,
D. Eastlake, J. Reagle and D. Solo (authors).
WoRLD WIDE WEB CONSORTIUM. XML-Signature
XPath Filter 2.0, 2002. W3C Recommendation, J.
Boyer, M. Hughes and J. Reagle (authors).

WORLD WIDE WEB CONSORTIUM. XML Encryption
Syntax and Processing, 2003. W3C Recommendation,
D. Eastlake and J. Reagle (editors).

Y1, X., AND YE, Y. Security of Tzeng’s time-bound
key assignment scheme for access control in a
hierarchy. IEEE Transactions on Knowledge and Data
Engineering 15, 4 (2003), 1054-1055.

