
Role-Based Cascaded Delegation∗

Roberto Tamassia
Computer Science

Department
Brown University

Providence, RI 02912

rt@cs.brown.edu

Danfeng Yao
Computer Science

Department
Brown University

Providence, RI 02912

dyao@cs.brown.edu

William H. Winsborough
Center for Secure Information

Systems
George Mason University
Fairfax, VA 22030-4444

wwinsbor@gmu.edu

ABSTRACT
We propose role-based cascaded delegation, a model for del-
egation of authority in decentralized trust management sys-
tems. We show that role-based cascaded delegation com-
bines the advantages of role-based trust management with
those of cascaded delegation. We also present an efficient
and scalable implementation of role-based cascaded delega-
tion using Hierarchical Certificate-Based Encryption, where
the authentication information for an arbitrarily long role-
based delegation chain is captured by one short signature
of constant size. This implementation also provides strong
privacy protection for delegation participants.

Categories and Subject Descriptors
D.4.6 [Operating System]: Security and Protection—Ac-
cess Controls; K.6.5 [Management of Computing and
Information Systems]: Security and Protection—Authen-
tication

General Terms
Security

Keywords
Access Control, RBAC, Delegation, Trust Management

1. INTRODUCTION
Trust management (TM) is an approach to access control

in environments where entities that are not in the same se-
curity domain need to share resources. Several TM systems
have been proposed in recent years, e.g., PolicyMaker [4],
KeyNote [3], SPKI/SDSI [9], and the RT framework [20].

The notion of delegation is essential in transferring trust
and authorization in TM systems. Delegation chains trace

∗Work supported in part by NSF grants IIS–0324846 and
CCR–0325951, and by a research gift from Sun Microsys-
tems, Inc.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’04, June 2–4, 2004, Yorktown Heights, New York, USA.
Copyright 2004 ACM 1-58113-872-5/04/0006 ...$5.00.

sequences of entities, starting from the resource owner and
including entities authorized by (though possibly unknown
to) the owner. These entities play a central part in decen-
tralized authorization by providing the credentials that rep-
resent their own delegation acts, which enable the delegation
chain to be verified. Collecting and verifying these creden-
tials incurs communication and computation costs, as does
checking that together the credentials provide proof that a
given user or software agent is authorized. In this paper, we
present techniques that can be used to significantly reduce
these costs, which we expand upon in the next two sections.
This introduction then illustrates our model of delegation,
outlines our approach to providing an efficient implemen-
tation of that model, states the current contributions, and
presents the organization of the remainder of the paper.

1.1 Credential accumulation
Most prior work that addresses the problem of determin-

ing whether credentials prove an entity’s resource request
is authorized [3, 4, 9] assumes that all potentially relevant
credentials are available in one central storage. There are
some exceptions. QCM [18] and SD3 [19] are two trust-
management systems that consider distributed storage of
credentials. A limitation of the approach in QCM and SD3 is
assuming that issuers initially store all the credentials, which
may be impractical for some applications. This limitation
was addressed by Li et al. [21], who presented goal-directed
credential chain discovery algorithms that support a more
flexible distributed storage scheme in which credentials may
be stored by their issuer, their recipient (also called their
“subject”), or both. The algorithms dynamically search for
relevant credentials from remote servers to build a proof of
authorization.

While storing credentials with their issuers or recipients
supports flexible delegation models such as those captured in
the RT framework, in many cases such flexibility is unneces-
sarily costly. Moreover, distributed credential discovery al-
gorithms also have the following two potentially problematic
characteristics. First, they require credential issuers or their
responders (credential servers) to be available and partici-
pate in the computation. Second, those issuers must make
available a potentially large number of their own credentials,
which may contain sensitive information that should not be
made public, and many of which are likely to be irrelevant
to any given authorization decision. For these reasons, stor-
ing credentials with their issuers or recipients may often be
inappropriate.

In many contexts, it is more practical to require creden-

Bob

ConsultantConsultant

Consultant

Professor of biology

Guest

P P

H
H

P

U

Professor of biology

A B

1
2

Guest

Consultant

Figure 1: A schematic drawing of the delegation
relationships described in Section 1.1. Arrows rep-
resent the direction of the delegation action.

tials to be accumulated by the entities whose authorization
they prove. Those entities can then present the accumu-
lated credentials to service providers so as to prove their
own authorization. They can also provide accumulated cre-
dentials, along with delegation credentials they themselves
issue, to recipients of such delegations. This accumulation
approach to credential collection offers significant reduction
in communication costs compared with traditional creden-
tial collection techniques.

Consider the following example that is illustrated in Fig-
ure 1. Bob occupies the role professor of biology at univer-
sity U , and has a role credential issued by U that documents
this. The role professor of biology at U is delegated the role
consultant by two pharmaceutical companies PA and PB ,
respectively, which means biology professors are eligible to
act as consultants. To achieve this, each company issues
the university U a delegation credential, which is kept on
U ’s credential server. The role consultant of company PA

is delegated the role guest by the hospital H1. Similarly,
consultant of company PB is delegated role guest by hospi-
tal H2. Companies PA and PB keep the delegation creden-
tials on their credential servers, respectively.

In order for Bob to use his delegated role guest of H1,
credentials that prove his membership in that role must be
collected. If credential storage is distributed, this can be
costly. For example, in Li’s forward search algorithm [21],
two messages are exchanged for each edge of the graph in
Figure 1, one for requesting credentials and the other for
returning credentials. Thus, the number of messages ex-
changed to discover a single delegation path is proportional
to the number of edges of the entire graph. The potentially
high communication cost incurred in discovering delegation
chains is also reported by Aura [1]. We will apply the accu-
mulation approach for credential collection to this example
in Section 1.3 when we introduce our role-based cascaded
delegation model.

The definition of delegation chain in our model is slightly
different from the delegation chain in some role-based dele-
gation systems [9, 21]. Namely, in our model, a delegation
chain represents the path on which a delegated privilege
(role or permission) is transferred among roles and entities.

1.2 Delegation chain verification
The verification of a role-based delegation chain such as

the one pictured in Figure 1 may be quite expensive if the
chain is represented in a typical trust management-system
implementation. Members of a role may delegate the role
to others. The delegation credential is issued and signed by
an individual. This requires the verification of not only the
delegation credentials, but also the role credentials of inter-
mediate delegators on the delegation chain for ensuring that
the delegators have the required roles to make delegations.
Therefore, even if an entity is neither the requester nor the
verifier, it has to participate in the verification process and
prove its role membership. In the accumulation approach,
an intermediate delegator passes down its role credential to
the delegated entity to avoid participation in the chain veri-
fication. However, the delegator may consider the signature
on his role credential sensitive and not want to disclose it
to the delegatee. This sensitive signature issue is solved in
our implementation of role-based cascaded delegation us-
ing Hierarchical Certificate-based Encryption [15] scheme in
Section 5.

1.3 Role-based cascaded delegation
We propose an alternative model for the delegation of au-

thority in role-based decentralized trust management sys-
tems, called role-based cascaded delegation. This model com-
bines the advantages of role-based trust management [20]
with those of cascaded delegation in distributed systems
[24, 29]. The distributed cascaded delegation problem is
essentially to design a delegation mechanism that efficiently
verifies a hierarchical delegation chain. In the cascaded del-
egation model, a delegation recipient E may further extend
the delegated privilege to another entity E′, and the dele-
gation credentials of E are passed to entity E′ along with
the delegation certificate signed by E as the issuer. There-
fore, the delegation chain is stored in delegation credentials
and does not have to be discovered. However, previous cas-
caded delegation protocols do not support the use of roles
in the delegation, and therefore do not have the benefits of
the scalability and efficiency provided by role-based access
control [14, 28].

Our role-based cascaded delegation assumes that creden-
tials are collected by authorized agents through the accumu-
lation scheme discussed in Section 1.1, which eliminates the
need for distributed delegation chain discovery. Delegations
can be issued to roles of different administrative domains,
and a delegator can issue delegations to a role without know-
ing the members of that role. A role r is delegated a privilege
by receiving a delegation credential C that explicitly assigns
the privilege to role r. Members of the role r are allowed to
further delegate the privilege to another role r′ as follows. A
member D of the role r uses the delegation credential C to
generate a delegation credential C ′. C′ comprises multiple
component credentials, which include the credential of the
current delegation transaction, the credential C from the
preceding delegation, and the role membership credential
of the delegator D. The verifier can make the authoriza-
tion decision based on delegation credential C ′ and the role
membership credential of the requester.

For example, hospital H delegates its role guest to the role
consultant at company P in credential C. This delegation
means that a member of consultant at company P is also a
member of guest at hospital H and can access resources of H

that are associated with the role guest . John is a member of
the role consultant at company P and has the corresponding
role credential R. John may further delegate the role guest
at H to the role professor at university U in credential C ′.
This delegation means that a member of professor at univer-
sity U is also a member of guest at hospital H. Credentials
C, R, and C′ constitute the delegation credential for the role
professor at U . The role credential R proves that John is
indeed a member of consultant at company P and therefore
is entitled to issue delegations.

A schematic drawing of the components in the delegation
credential issued to professor at U in the role-based cascaded
delegation model is shown in Figure 2.

H Consultant at PGuest at H C

Professor at UJohn Guest at H

P
Consultant

John

C’

R

Figure 2: A schematic drawing of the components
of the delegation credential for the role professor at
university U in the role-based cascaded delegation
model.

Our role-based cascaded delegation model can be used to
facilitate large-scale dynamic sharing of resources in decen-
tralized, pervasive collaborative environments. It is suitable
for collaborative tasks where roles from administratively in-
dependent domains are dynamically joined according to the
needs of the tasks.

1.4 Efficient implementation
A main concern motivating the design of our role-based

cascaded delegation is the size and number of credentials an
entity has to store or transmit for delegation and verification
purposes. In existing cascaded delegation protocols, delega-
tion credentials are lengthy because verification of a delega-
tion chain requires checking a number of signatures linear in
the length of the chain, where the length is defined as the
number of delegations on the chain. Conventional signature
schemes, such as RSA [27] and DSA [12], produce relatively
long signatures compared to the security they provide. For a
1024-bit modulus (security level), RSA signatures are 1024
bits long and standard DSA signatures are 320 bits long.
The number of signatures required to authenticate a role-
based delegation chain of length n is about 2n, because in
addition to verifying each of the delegation transactions, one
must verify arbitrarily large proofs that the intermediate
delegators are members of the required roles. Among the
signatures associated with a delegation chain, the signature
on a role credential is generated by the administrator of that
role independently from the rest of the signatures.

Unfortunately, how to aggregate individually generated
signatures from different signers on different messages is not
known in conventional cryptosystems, such as RSA [7, 23].
This means that the entire set of signatures has to be stored
by delegated entities, and transmitted across networks at
each delegation and verification. Because intermediate del-
egators in our model may be entities who have limited com-
putational power and communication bandwidth, the im-

plementation of role-based cascaded delegation using con-
ventional credentials is inefficient. Another potential issue
in implementing role-based cascaded delegation is privacy.
The protocol should handle the case where the delegator
considers signatures on credentials sensitive and does not
want to disclose them to the delegatee. Traditional creden-
tial systems cannot provide this privacy protection.

We overcome these problems by implementing the role-
based cascaded delegation using the Hierarchical Certificate-
based Encryption (HCBE) [15] scheme. Using HCBE al-
lows the authentication information of the entire role-based
delegation chain to be captured by one short signature of
constant size (about 170 bits), which makes the role-based
cascaded delegation practical and efficient. This is possible
by the underlying short signature [8] and aggregate signa-
ture [6] techniques. Sensitive signatures are also protected in
this implementation, because an individual signature, once
aggregated, can be verified without being disclosed.

1.5 Contributions
In this paper, we formalize the role-based cascaded dele-

gation model, which combines role-based trust management
with a cascaded delegation mechanism. This model sup-
ports flexible and scalable decentralized role-based delega-
tions, which may be issued without the participation of the
administrator of an organization. Cascaded delegation uses
the accumulation approach to credential collection, which
reduces communication and computation costs in compari-
son to collection based on retrieval from distributed storage.
User privacy is protected in this model, because no unnec-
essary delegation credentials are revealed.

We also present an efficient implementation of role-based
cascaded delegation using the Hierarchical Certificate-based
Encryption (HCBE) scheme [15]. In this implementation,
the authentication information for an entire role-based del-
egation chain is captured by one short signature of constant
size. This implementation also offers further privacy protec-
tion because individual signatures can be verified without
being disclosed.

1.6 Organization of the paper
The rest of this paper is organized as follows. Our model

for roles and their delegation scope is given in Section 2. Pre-
liminary definitions and our language model are provided in
Section 3. In Section 4, an example of cascaded delegation
is presented. The role-based cascaded delegation protocol
and its implementation based on HCBE are described in
Section 5. In Section 6, we address the issues of revocation,
privacy, security, scalability, and efficiency for our model
and implementation. A comparison of role-based cascaded
delegation with existing decentralized trust management ap-
proaches is given in Section 7. Section 8 contains the con-
clusions and the future work. An overview of the HCBE
scheme is provided in Appendix A.

2. ROLES AND THEIR SCOPES
In our model, we define the administrator of a role as

the organization that creates and manages the role. If a
role credential of an entity D is signed and issued by the
administrator of the role, that role is said to be an affiliated
role of D. (This type of role is usually obtained through the
affiliation with an organization, and thus the name.) If a
role credential of D is instead issued through delegation and

signed by entities other than the administrator of the role,
that role is called a delegated role of D.

The following example illustrates the difference between
affiliated and delegated roles. Bob has a credential signed by
university U for the role professor at U , denoted U.professor .
Thus, role U.professor is an affiliated role of Bob. Alice is
delegated the role U.professor by Bob. However, Alice does
not have a credential signed by U for U.professor . Thus,
U.professor is a delegated role of Alice.

An affiliated role and a delegated role have different access
scopes. Delegations to a role r of an organization only apply
to those entities who have r as an affiliated role. In the above
example, if a privilege is delegated to role U.professor , then
Bob is entitled to this privilege, whereas Alice is not. The
delegated role U.professor of Alice only allows her to access
resources controlled by U .

Our delegation model for roles is different from conven-
tional delegation models, where delegations to a role au-
tomatically propagate to all the entities that are delegated
the role. For example, if hospital H delegates the right of
reading a patient’s medical record to the role U.professor ,
Alice would be entitled to this privilege in conventional del-
egation models, but not in our model. For sensitive data
such as medical records, the automatic propagation of dele-
gations to unknown roles may not always be desired by the
resource owner. In comparison, our delegation model allows
easy management of delegations for resource owners.

To support flexible decentralized delegation, we give to
both role types (affiliated and delegated) the capability of
delegating the role to other roles. Thus, in the above exam-
ple, both Bob and Alice are able to delegate role U.professor
to other roles.

3. PRELIMINARIES
In this section, we define our terminology and language

model, and give a brief overview of the HCBE scheme [15].

3.1 Terminology
As in the RT framework [21], we define an entity to be

either an organization or an individual. An entity may issue
credentials and make requests. Also, an entity may have
one or more affiliated roles or delegated roles, which are au-
thenticated by role credentials. An affiliated role credential
is the credential for an affiliated role, and is signed by the
administrator of the role. Similarly, a delegated role creden-
tial is the credential for proving a delegated role. A privilege
can be a role assignment or an action on a resource.

An extension credential is generated and signed by a dele-
gator on delegation transaction information, such as identi-
ties of the delegator and delegatee, and the delegated privi-
lege. An extension signature is the signature on an extension
credential. A role signature of an entity is the signature on
an affiliated role credential of the entity. The identity signa-
ture of an entity is a signature computed by the entity using
her private key. A complete delegation credential includes
the identity signature of the requester, extension signatures,
and role signatures. A partial delegation credential is a del-
egation credential issued to a role. It cannot be used by an
individual for proving authorization, as it lacks the identity
and role signatures of the requester.

3.2 Language model
A role r administered by entity A is denoted as A.r. En-

tity A is the administrator of role A.r. A role defines a
group of entities who are members of this role. If an entity
D has an affiliated role A.r, her role credential is denoted

by A
A.r
−−→ D, which indicates that D is assigned role A.r

by the role administrator A. Entity D can delegate role
A.r to a role B.s (administered by B) by issuing an exten-

sion credential, which is denoted by D
A.r
−−→ B.s. In turn,

any member entity E of role B.s can further delegate role
A.r to a role C.t (administered by C). The corresponding

extension credential is denoted by E
A.r
−−→ C.t.

3.3 HCBE
The Hierarchical Certificate-based Encryption (HCBE)

scheme [15] is a public key cryptosystem, where messages
are encrypted with public keys and decrypted with corre-
sponding private keys. What is unique about HCBE is that
it makes the decryption ability of a keyholder contingent
on that keyholder’s acquisition of a hierarchy of signatures
from certificate authorities. To decrypt a message, a key-
holder needs both his private key and the public key cer-
tificates (signatures) that are respectively signed by a chain
of CAs. The CA hierarchy consists of a root CA and lower-
level CAs. Higher-level CA certifies the public key of the
next-level CAs, and the CAs at the bottom (leaf positions)
of the hierarchy certify the public keys of individual users.

HCBE is based on the aggregate signature scheme [6, 8],
which supports aggregation of multiple signatures on dis-
tinct messages from distinct users into one short signature.
The HCBE scheme [15] has six algorithms, Setup, Cer-
tification of CA, Certification of Bob, Aggregation,
Encryption, and Decryption. The second and the third
algorithms are essentially the same, one for certifying the
public keys of CAs, and the other for an individual. A de-
scription of these algorithms is given in Appendix A.

4. EXAMPLE SCENARIO
In this section, we describe a delegation example for the

role-based cascaded delegation model. Suppose a collabora-
tion project is established between a hospital H and a med-
ical school M . To facilitate the collaboration, the hospital
initiates a delegation chain and delegates its role H.guest to
the affiliated role M.professor at the medical school. Hos-
pital H is the administrator of the role H.guest . The dele-
gation is expressed in the partial delegation credential (1),
using the notation described in Section 3.2.

H
H.guest
−−−−−−→ M.professor (1)

In credential (1), hospital H is the original issuer, H.guest
is the delegated privilege, and M.professor is the role that
receives the delegation.

The hospital H allows members of the role M.professor
to further delegate H.guest role to whomever they deem
necessary to accomplish the project. Bob is a professor at
M and has an affiliated role credential (2).

M
M.professor
−−−−−−−−−→ Bob (2)

For a task in the collaboration project, Bob works with a
lab L. Lab L is independent of the school M and is unknown
to the hospital H. Lab L defines a research assistant role
L.assistant . In order for members of the role L.assistant

to work on the task and utilize the resources of the hospi-
tal H, Bob delegates the role H.guest to the affiliated role
L.assistant . In the cascaded delegation model, Bob issues a
partial delegation credential (3) by extending the delegation
credential (1) to role L.assistant .

(H
H.guest
−−−−−−→ M.professor), (M

M.professor
−−−−−−−−−→ Bob),

(Bob
H.guest
−−−−−−→ L.assistant) (3)

Credential (3) also includes Bob’s role credential (2) for
proving that he is allowed to delegate H.guest . (3) is a
partial delegation credential for role L.assistant .

Alice is a research assistant in lab L, and has an affili-
ated role credential (4) issued by lab L to prove this role
membership.

L
L.assistant
−−−−−−−−→ Alice (4)

To prove that she has the hospital’s delegated guest role,
Alice obtains the delegation credential (3) for role L.assistant
from a credential server, and aggregates it with her affiliated
role credential (4). This gives credential (5).

(H
H.guest
−−−−−−→ M.professor), (M

M.professor
−−−−−−−−−→ Bob),

(Bob
H.guest
−−−−−−→ L.assistant), (L

L.assistant
−−−−−−−−→ Alice) (5)

Credential (5) and the identity signature of Alice yield a
complete delegation credential for Alice. The hospital H
makes the authorization decision by verifying each of the
components of credential (5) and Alice’s identity signature.
Our implementation using HCBE scheme described in Sec-
tion 5.2 allows the credentials to have just one signature, as
opposed to the linear number of signatures in the length of
the chain.

5. ROLE-BASED CASCADED DELEGATION
In this section, we first describe the role-based cascaded

delegation protocol and then show an efficient implementa-
tion of this protocol using the HCBE scheme [15]. In what
follows, a role r represents an affiliated role.

5.1 Protocol
The role-based cascaded delegation protocol defines four

operations: initiate, extend, prove, and verify.

• initiate(PD0
, sD0

, D0.priv, A1.r1, PA1
): This oper-

ation is run by the administrator D0 of a privilege
D0.priv to delegate D0.priv to an affiliated role A1.r1.
This operation initiates a delegation chain for privi-
lege D0.priv. Inputs are the public key PD0

of entity
D0, the corresponding private key sD0

, the delegated
privilege D0.priv, the role name A1.r1, and the pub-
lic key PA1

of role administrator A1. The output is
a partial delegation credential C1 for the role A1.r1,
represented as

D0

D0.priv
−−−−−→ A1.r1.

The statement of C1 includes the public key PD0
, the

privilege D0.priv, and information about the role A1.r1

such as the role name and the public key of the admin-
istrator A1. The certificate is signed using the private
key sD0

. If the last argument is the public key of an in-
dividual, this operation can also be used for generating
role certificates.

• extend (sDn
, D0.priv, Cn, RDn

, An+1.rn+1, PAn+1
):

This operation is run by an intermediate delegator Dn,
who is a member of an affiliated role An.rn, to ex-
tend the delegation of privilege D0.priv to the role
An+1.rn+1. The inputs are the private key sDn

of the
delegator Dn, the delegated privilege D0.priv, the par-
tial delegation credential Cn that delegates the privi-
lege D0.priv to the role An.rn, the role credential RDn

of the delegator Dn, the role name An+1.rn+1, and the
public key PAn+1

of role administrator An+1. Creden-
tial Cn is retrieved from a credential server. The par-
tial delegation credential Cn is a function of preceding
extension and role credentials, which are denoted as:

(D0

D0.priv
−−−−−→ A1.r1),

(A1

A1.r1−−−−→ D1), (D1

D0.priv
−−−−−→ A2.r2),

. . .

(An−1

An−1.rn−1
−−−−−−−→ Dn−1), (Dn−1

D0.priv
−−−−−→ An.rn)

where D0 represents the resource owner, and Ai.ri is
the role that is delegated the privilege D0.priv by an
entity Di−1 who has the affiliated role Ai−1.ri−1, for
i ∈ [1, n].

An extension credential Dn
D0.priv
−−−−−→ An+1.rn+1 is

generated as an intermediate product of the operation
extend. Its statement contains information about the
delegated privilege D0.priv and the role An+1.rn+1. It
is signed with the private key sDn

. The final output of
this operation is a partial delegation credential Cn+1,
which is a function of the credential Cn, the role cre-

dential RDn
denoted by An

An.rn−−−−→ Dn, and the exten-
sion credential described above.

Credential Cn+1 may simply be delegation credential
Cn together with two individual credentials. Alterna-
tively, Dn can compute a delegation credential for the
role An+1.rn+1 as in existing cascaded delegation pro-
tocols [11, 26], and also passes down his role credential
to members of the role An+1.rn+1. In comparison, our
implementation using HCBE [15] scheme provides a
more efficient approach.

• prove(sDn
, D0.priv, RDn

, Cn):

This operation is performed by the requester Dn who
wants to exercise privilege D0.priv. Dn is a member
of the affiliated role An.rn. The requester Dn uses
the partial delegation credential Cn and Dn’s affili-

ated role credential RDn
, denoted by An

An.rn−−−−→ Dn,
to prove that he is authorized the privilege D0.priv.
The inputs are the private key sDn

of the requester
Dn, the privilege D0.priv, the affiliated role credential
RDn

of the requester, and the delegation credential
Cn. Credential Cn is retrieved by the requester from a
credential server. The operation produces a proof F ,
which contains delegation statements and correspond-
ing signatures for verification. The private key sDn

is
for proving the authenticity of the public key PDn

that
appears on the role credential RDn

of the requester.

• verify(F):

This operation is performed by the resource owner D0

to verify that the proof F produced by the requester

Dn correctly authenticates the delegation chain of priv-
ilege D0.priv. Dn is a member of the role An.rn.
The input is a proof F that is computed by the re-
quester Dn. F contains signatures and a string tuple
[D0.priv, PD0

, A1.r1, PA1
, PD1

, . . . , PDn−1
, An.rn, PAn

,
PDn

] that consists of the components of a delegation
chain for requester Dn. In the string tuple, D0.priv
is the delegated privilege, for i ∈ [1, n] PDi−1

is the
public key for the delegator Di−1 whose affiliated role
is Ai−1.ri−1, Ai.ri is the role that receives the dele-
gation from Di−1, PAi

is the public key of role ad-
ministrator Ai, and PDn

is the public key of the re-
quester. The verifier checks whether the signatures in
F correctly authenticates the delegation chain. This
includes authentication of each delegation extension

Di−1

D0.priv
−−−−−→ Ai.ri, and entity Di’s affiliated role

membership Ai
Ai.ri−−−→ Di, for all i ∈ [1, n]. F also con-

tains the proof of possession of private key sDn
that

corresponds to public key PDn
. Dn is granted D0.priv

if the verification is successful, and denied if otherwise.

Affiliated role credentials can be issued using initiate op-
eration by the administrator of a role. extend operation
is used to issue delegated role credentials. The delegation
chain of a privilege grows at each delegation extension. The
verifier may perform revocation checking at the verify op-
eration. Delegation revocation is discussed in Section 6.

5.2 Implementation
Role-based cascaded delegation can be implemented in a

straightforward manner using the RSA signature scheme [27].
At each delegation, the delegator D computes an RSA signa-
ture on the delegation statement, and issues it to delegatees
along with D’s role signature (also an RSA signature). The
delegation chain verification consists of verifying each of the
above signatures.

We present a more efficient implementation of role-based
cascaded delegation using the Hierarchical Certificate-based
Encryption (HCBE) [15] scheme. In HCBE, each entity has
a public/private key pair generated on his own. A member
of an affiliated role has an affiliated role credential, which
contains a signature signed by the administrator of the role.
The delegation credential in this protocol consists of an ag-
gregate signature and a string tuple.

Our implementation role-based cascaded delegation pro-
tocol has five operations, which make use of the algorithms
in the HCBE scheme [15] defined in Appendix A.

setup: This operation outputs the system parameters, pub-
lic/private keys, and role credentials that will be used in the
system.

• The root of the system calls the Setup algorithm of
HCBE and obtains a set of public parameters denoted
as params. Among other parameters in params, there
are two collision-resistant hash functions H and H ′, a
special constant π, and a bilinear map ê [5].

• Each entity (organization or individual) D chooses a
secret sD as his private key, and computes the product
sDπ as its public key PD.

• An organization A with the private key sA certifies
entities who have A.r as an affiliated role. For each

entity D who has the affiliated role A.r and the pub-
lic key PD, organization A computes a role signature
RD by running Certification of CA(sA, PD‖A.r) of
HCBE, where ‖ denotes string concatenation. The

output signature, representing the role assignment A
A.r
−−→

D, is given to entity D for proving the affiliated role
membership.

initiate: Resource owner D0 delegates the privilege D0.priv
to members of an affiliated role A1.r1. The private key sD0

corresponds to the public key PD0
of entity D0. Entity D0

does the following.

• Set the string info1 = PD0
‖D0.priv‖A1.r1‖PA1

, where
PA1

is the public key of the role administrator A1. Run
Certification of CA(sD0

, info1) in HCBE, which out-
puts an extension signature X1. Define a string tu-
ple chain1 as [D0.priv, PD0

, A1.r1, PA1
]. Set the

partial delegation credential C1 for the role A1.r1 as
(X1, chain1). Credential C1 is put on a credential
server.

extend: An entity Di, whose role is Ai.ri, further delegates
D0.priv to role Ai+1.ri+1. Di uses his private key sDi

, his
role signature RDi

, and the delegation credential Ci of the
role Ai.ri to compute a partial delegation credential Ci+1.
Entity Di does the following.

• Parse the credential Ci as (SAgg , chaini), where SAgg

is the aggregate signature of credential Ci and chaini

is the corresponding string tuple. Signature SAgg is
a function of preceding extension and role signatures
on the delegation chain. String tuple chain i contains
the components of the delegation chain. Set the string
infoi+1 = PD0

‖D0.priv‖Ai+1.ri+1‖PAi+1
, where PD0

is the public key of the resource owner and PAi+1
is

the public key of the role administrator Ai+1. Run
Aggregation(sDi

, infoi+1, RDi
, SAgg) in HCBE, which

outputs an aggregate signature S′

Agg.

• Define the string tuple chain i+1 of credential Ci+1 as
the string tuple chain i appended with public key PDi

,
the role name Ai+1.ri+1, and the public key PAi+1

.
Set credential Ci+1 as (S′

Agg, chaini+1). The partial
delegation credential Ci+1 for the role Ai+1.ri+1 is put
on a credential server.

prove: The requester Dn with the role signature RDn
and

delegation credential Cn wants to use the delegated privilege
D0.priv. Dn is given a random message T by the verifier
D0. The message T contains some random information to
prevent a replay attack. Dn does the following.

• Parse the credential Cn as (SAgg, chainn), where SAgg

is the aggregate signature of Cn and chainn is the
string tuple. Run Aggregation(sDn

, T, RDn
, SAgg)

in HCBE, where sDn
is the private key of Dn. This

algorithm outputs an aggregate signature S′

Agg. Set
the string tuple chain ′

n to be chainn appended with
the public key PDn

of Dn. Set the proof F to be
(S′

Agg, chain ′

n, T), which is sent to the verifier D0.

verify: The verifier D0 verifies the proof F submitted by
the requester Dn as follows.

• Parse F as (S′

Agg, chain ′

n, T), where S′

Agg is an aggre-
gate signature, chain ′

n is a string tuple, and T is a
message. Parse the string tuple chain ′

n as [D0.priv,
PD0

, A1.r1, PA1
, . . ., An.rn, PAn

, PDn
], where for

i ∈ [0, n − 1] PDi
is the public key of delegator Di

whose affiliated role is Ai.ri, Ai+1.ri+1 is the role re-
ceiving the delegation from Di, PAi+1

is the public key
of role administrator Ai+1, and PDn

is the public key
of the requester.

• Encrypt a message M as follows. Choose a random
number r. Set the ciphertext Ciphertext = [rπ, V],
where π is one of the public parameters, V = M ⊕
H ′(gr), where g = g1g2g3 is a product of the following:
g1 = ê(PDn

, H(T)), g2 = Πn
i=1ê(PAi

, H(PDi
‖Ai.ri)),

g3 = Πn−1

i=0 ê(PDi
, H(PD0

‖D0.priv‖Ai+1.ri+1‖PAi+1
)).

The value g is the product of multiple bilinear map
functions [5] whose inputs are the public key of a signer
and the hash digest of the signed message. H and H ′

are the two hash functions in the system parameters
params. ⊕ denotes bit-wise XOR operation. T is the
message that Dn signs in prove.

• Run Decryption(Ciphertext, S′

Agg) in HCBE to de-
crypt ciphertext Ciphertext using S′

Agg. Compare the
output M ′ of the decryption with the original mes-
sage M . The request is granted if M = M ′, denied if
otherwise.

A delegation to intersection of roles [20], for example A1.r1∩
A2.r2, may be realized by extending one delegation to a
string that represents an intersection of roles, rather than
one role. To extend or prove such a delegation, an entity
needs to aggregate two, rather than one, role signatures
into a delegation credential. Additional fields can be added
by the delegator to a delegation credential to increase the
expressiveness, one of them being the expiration date of a
delegation.

6. DISCUSSION
In this section, we discuss the main features of role-based

cascaded delegation.

6.1 Privacy and security
In the role-based cascaded delegation model, only the cre-

dentials that are necessary for the verification of delegation
chain are revealed. Unrelated credentials are not discov-
ered or touched. This is a significant improvement, in terms
of privacy protection, over other delegation models that re-
quire extensive credential chain discovery as discussed in
Section 1.

Our implementation provides strong protection of sensi-
tive signatures because individual signatures can be verified
without being disclosed. This is not achievable in conven-
tional signature schemes, such as RSA [7]. Also, the se-
curity of HCBE guarantees that an attacker cannot forge
a valid aggregate signature consisting of n individual sig-
natures, even if he possesses n − 1 of the required private
keys [6].

6.2 Scalability
The abstraction of roles in role-based cascaded delegation

greatly reduces the potential for a large number of delega-
tion credentials, and makes the model scalable. Because the

partial delegation credentials issued by the delegators can-
not be directly used for accessing resources, they may be
stored at credential servers so that members of a role can
query the server to retrieve the partial credential. Thus, our
implementation scales up to a large number of credential re-
ceivers. Also, the delegation is decentralized. Individuals,
who have qualified roles, can make delegations of the roles
without the assistance of administrators. In collaboration
environments where coalitions are formed dynamically, this
feature greatly facilitates resource sharing.

An entity in the system is not required to store all pos-
sible delegation chains in the proof graph that connect the
original issuer with him. Indeed, for a given privilege, only
one delegation credential is sufficient.

6.3 Efficiency
We compare our HCBE-based implementation with the

implementation using the RSA signature scheme [27] de-
scribed at the beginning of Section 5.2. We consider a 1024-
bit modulus RSA scheme, in which the size of the public key
is slightly larger than 1024 bits and the size of a signature
is 1024 bits long.

For the same level of security as 1024-bit modulus RSA,
the signature and public key in our implementation can be
as short as 170-bit long [8]. Observe that at each delegation
extension of RBCD, the following information needs to be
added to the delegation credential: the public key of the
delegator, the role name of recipients, the public key of the
role administrator, the signature on the role credential of the
delegator, and the extension signature generated by the is-
suer. The analysis also applies to the aggregate operation
performed by the requester. Therefore, to authenticate a
delegation chain of length n (i.e. having n delegations), the
information required by the verifier includes the delegated
privilege, the public keys of n delegators and n role adminis-
trators, n role names, the public key of the requester, along
with 2n + 1 digital signatures.

Suppose the length of a role name is 100 bits and the
delegated privilege has the same size as a role name. The
total size of the credential in our implementation is 170 +
170(2n + 1) + 100(n + 1) = 440n + 440 bits. For the RSA
signature scheme, such a delegation credential contains 2n
additional signatures, and the total size is at least 1024(2n+
1) + 1024(2n + 1) + 100(n + 1) = 4196n + 2148 bits.

For example, consider a delegation chain of length 20.
The size of the delegation credential in RSA is more than
86 Kbits, while in our implementation it is about 9.2 Kbits.
Smart cards with a microprocessor typically have 32 KBytes
(256 Kbits) EEPROM storage. Thus, our approach has a
clear advantage in terms of the number of credentials that
can be stored by smart cards and similar devices.For small
mobile devices with limited communication bandwidth, the
saving in the credential size in our implementation allows
the credentials to be transmitted faster. The above analysis
also applies to the extend operation.

For a 20 Kbits per second connection and a delegation
chain of length 20, the time for transmitting the entire RSA
credentials to the verifier in the prove operation takes (4196×
20 + 2148)/20000 = 4.30 seconds. The time in our imple-
mentation takes (440 × 20 + 440)/20000 = 0.46 seconds.

In addition, generating a signature in our implementation
requires only 3.57 ms to compute on a 1 GHz Pentium III,
and is faster than generating a signature in the RSA scheme,

which requires 7.90 ms for a 1007-bit private key on the same
machine [2].

The running time for verifying an aggregate signature as-
sociated with a delegation chain is linear in the number of
single signatures aggregated, i.e., the length of the chain.
The verification of a signature in the HCBE scheme is slow
(about 50 ms on a 1 GHz Pentium III) compared to RSA
signature verification (0.40 ms on the same machine for a
1007 bits private key) [2]. Nevertheless, in our implementa-
tion only the servers of resource owners, which are typically
powerful, have to performs delegation chain verifications.

6.4 Delegation renewal and revocation
At each delegation extension, the issuer can set an expira-

tion date for the delegation, which may be earlier than the
expiration dates of preceding delegations on the chain. For
a delegation credential to be considered valid, none of the
expiration dates has passed. Intermediate delegators may
issue delegations with a short validity period, and then pe-
riodically renew them. Delegation renewal can be done in
a hierarchical fashion as follows. To renew a delegation, a
delegator E puts the renewed partial delegation credential
on credential servers. Intermediate delegators that succeed
to E may retrieve the renewed credential and update the
corresponding delegations that are issued by them.

Delegation revocation before expiration can be handled
by maintaining a revocation service, which can be efficiently
achieved using the authenticated dictionary technique [10,
16, 17, 25]. The authenticated dictionary is a system for
distributing data and supporting authenticated responses
to queries about the data. The data originates at a secure
central site (the repository) and is distributed to servers
scattered around the network (responders). The responders
answer queries about the data made by clients on behalf of
the repository.

The roles or public keys whose delegated privileges are
revoked are put on the repository of the revocation service
by the resource owner. Before verifying the credential sig-
natures in the verify operation, the resource owner queries
the revocation service to ensure that no public key whose
delegated privileges are revoked appears on the delegation
credential. Similarly, the revocation of affiliated role mem-
berships can also be supported using a revocation service,
which the verifier queries in the verify operation to ensure
the validity of the affiliated role memberships of intermedi-
ate delegators.

7. RELATED WORK
In Table 1, several properties of our delegation model and

existing delegation models are compared. Hier. Token rep-
resents the hierarchical delegation protocol given in [11]. We
denote with n the number of entities on a delegation chain.
Third-party means whether the delegation chain verification
algorithms require the participation of intermediate entities.
Cred. pass-down refers to whether the delegation or role cre-
dential of the delegator has to be passed down to the del-
egatee. Num of sig. means the number of signatures to be
verified for a delegation credential chain. Privacy represents
the degree of user privacy protection offered. Cryptographic
op. is the cryptographic operation in the delegation and ver-
ification algorithms.

The RT framework is a family of Role-based Trust man-
agement languages for representing policies and credentials

in decentralized authorization [20]. We have already com-
pared our design with the credential chain discovery algo-
rithms in the RT framework. The PolicyMaker [4] and
KeyNote [3] trust management systems authorize decentral-
ized access by checking a proof of compliance. SPKI/SDSI
(Simple Public Key Infrastructure/Simple Distributed Se-
curity Infrastructure) is a public-key infrastructure empha-
sizing decentralized name space and flexible authorization
[9, 13]. As noted earlier, KeyNote and SPKI/SDSI do not
define explicit role abstractions and assume that all the cer-
tificates are available to the discovery algorithms.

There are several cascaded delegation [29] schemes for the
proxy authentication and authorization, including nested
signature schemes [30], delegation keys [26], and a combined
approach [11]. These schemes do not support delegations
to roles, and the delegation credentials are not as compact
as ours. The security framework for Java-based comput-
ing environment in [29] uses roles in chained delegations to
simplify the management of privileges. However, their dele-
gations are made to individuals rather than to roles. Their
term cascaded delegation has different meanings from ours,
and refers to delegations where all the privileges of preceding
entities on the chain are inherited by the delegatee.

8. CONCLUSIONS AND FUTURE WORK
We have proposed a role-based cascaded delegation model,

which combines role-based decentralized trust management
with cascaded delegation. The role-based cascaded delega-
tion mechanism eliminates the need for distributed delega-
tion chain discovery and its associated issues, because cre-
dentials are passed down to the delegatee at each delegation.
The model provides a simple alternative for decentralized
delegation.

We have also presented an implementation of role-based
cascaded delegation using the Hierarchical Certificate-Based
Encryption (HCBE) scheme. The use of HCBE in imple-
menting role-based cascaded delegation achieves properties
that cannot be realized in conventional credential systems.
In particular, the use of HCBE scheme allows the authen-
tication information of an arbitrarily long delegation chain
to be captured by one short signature of constant size. The
implementation also provides strong privacy protection for
delegation participants. Issues such as the efficiency, scala-
bility, security, privacy, and revocation have been discussed.
We conclude that the role-based cascaded delegation proto-
col implemented by the HCBE scheme eliminates the dele-
gation chain discovery problem and provides simple verifi-
cation of delegation chains, without significant increase in
the size of delegation credentials.

We are currently building an RBCD prototype in Java us-
ing the OASIS standard Extensible Access Control Markup
Language (XACML) [31] as the policy language. XACML
is a flexible XML specification for expressing access control
policies. An implementation of XACML in Java [22, 31]
has been released by Sun Microsystems. We also plan to
investigate how our role-based cascaded delegation can be
combined with existing role-based delegation mechanisms.
It would be interesting to study how the distributed creden-
tial chain discovery algorithms in the RT framework [20]
can be modified in order to work with role-based cascaded
credentials.

Properties Ours RT framework [21] KeyNote [3] SPKI [9] Hier. Token [11]

Cascaded Yes No No No Yes
Storage Distributed Distributed Centralized Centralized Distributed

Chain discovery Not required Required Required Required Not required
Role-based Yes Yes No No No

Cred. pass-down Not required N/A N/A N/A Required
Third-party Not required Required N/A N/A Not required
Num of sig. O(1) O(n) O(n) O(n) O(n)

Privacy Strong Weak Weak Weak Weak
Cryptographic op. Pairing [2] N/A N/A N/A Exponentiation

Table 1: Comparisons of parameters in delegation systems that address the delegation chain issue.

9. ACKNOWLEDGEMENT
We would like to thank Seth Proctor at Sun Microsystems

Lab for helpful discussions on XACML and its implementa-
tion.

10. REFERENCES
[1] T. Aura. Comparison of graph-search algorithms for

authorization verification in delegation networks. In
2nd Nordic Workshop on Secure Computer Systems
NORDSEC’97, November 1997.

[2] P. S. Barreto, H. Y. Kim, B. Lynn, and M. Scott.
Efficient algorithms for pairing-based cryptosystems.
In Proceedings of Crypto 2002, volume 2442 of
Lectures in Computer Science, pages 354–368.
Springer-Verlag, 2002.

[3] M. Blaze, J. Feigenbaum, and A. D. Keromytis.
KeyNote: Trust management for public-key
infrastructures. In Proceedings of Security Protocols
International Workshop, 1998.

[4] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized
trust management. In Proceedings of the 1996 IEEE
Symposium on Security and Privacy, pages 164–173.
IEEE Computer Society Press, May 1996.

[5] D. Boneh and M. K. Franklin. Identity-based
encryption from the Weil pairing. In Advances in
Cryptology – CRYPTO 2001, volume 2139 of Lecture
Notes in Computer Science, pages 213–229. Springer,
2001.

[6] D. Boneh, C. Gentry, B. Lynn, and H. Shacham.
Aggregate and verifiably encrypted signatures from
bilinear maps. In EUROCRYPT 2003, pages 416–432,
2003.

[7] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. A
survey of two signature aggregation techniques.
CryptoBytes, 6(2), 2003.

[8] D. Boneh, B. Lynn, and H. Shacham. Short signatures
from the Weil pairing. In Proceedings of Asiacrypt
2001, volume 2248 of Lectures in Computer Science,
pages 514–532. Springer-Verlag, 2001.

[9] D. Clarke, J.-E. Elien, C. Ellison, M. Fredette,
A. Morcos, and R. L. Rivest. Certificate chain
discovery in SPKI/SDSI. Journal of Computer
Security, 9(4):285–322, 2001.

[10] P. Devanbu, M. Gertz, C. Martel, and S. Stubblebine.
Authentic third-party data publication. In Fourteenth
IFIP 11.3 Conference on Database Security, 2000.

[11] Y. Ding, P. Horster, and H. Petersen. A new approach
for delegation using hierarchical delegation tokens. In

2nd Int. Conference on Computer and
Communications Security, pages 128 – 143. Chapman
and Hall, 1996.

[12] FIPS 186-2 Digital signature standard, 2000.

[13] C. Ellison, B. Frantz, B. Lampson, R. Rivest,
B. Thomas, and T. Yloenen. Simple public key
certificate. http://www.ietf.org/rfc/rfc2693.txt.

[14] D. Ferraiolo and R. Kuhn. Role-based access control.
In Proceedings of the 15th National Computer Security
Conference, 1992.

[15] C. Gentry. Certificate-based encryption and the
certificate revocation problem. In EUROCRYPT 2003,
pages 272–293, 2003.

[16] M. T. Goodrich, M. Shin, R. Tamassia, and W. H.
Winsborough. Authenticated dictionaries for fresh
attribute credentials. In Proc. Trust Management
Conference, volume 2692 of LNCS, pages 332–347.
Springer, 2003.

[17] M. T. Goodrich, R. Tamassia, N. Triandopoulos, and
R. Cohen. Authenticated data structures for graph
and geometric searching. In Proc. RSA
Conference—Cryptographers’Track, pages 295–313.
Springer, LNCS 2612, 2003.

[18] C. A. Gunter and T. Jim. Policy-directed certificate
retrieval. Software: Practice and Experience,
30:1609–1640, September 2000.

[19] T. Jim. SD3: A trust management system with
certified evaluation. In Proceedings of the 2001 IEEE
Symposium on Security and Privacy, pages 106–115.
IEEE Computer Society Press, May 2001.

[20] N. Li, J. C. Mitchell, and W. H. Winsborough. Design
of a role-based trust-management framework. In
Proceedings of IEEE Symposium on Security and
Privacy, pages 114–130, 2002.

[21] N. Li, W. H. Winsborough, and J. C. Mitchell.
Distributed credential chain discovery in trust
management. Journal of Computer Security,
11(1):35–86, February 2003.

[22] M. Lorch, S. Proctor, R. Lepro, D. Kafura, and
S. Shahi. First experiences using XACML for access
control in distributed systems. In Proceedings of the
ACM Workshop on XML Security 2003, pages 25–37,
October 2003.

[23] A. Lysyanskaya, S. Micali, L. Reyzin, and
H. Shacham. Sequential aggregate signatures from
trapdoor permutations. In Advances in Cryptology –
Eurocrypt ’04. Available at
http://eprint.iacr.org/2003/091/.

[24] N. Nagaratnam and D. Lea. Secure delegation for
distributed object environments. In Proceedings of the
4th USENIX Conference on Object-Oriented
Technologies and Systems (COOTS), April 1998.

[25] M. Naor and K. Nissim. Certificate revocation and
certificate update. In Proceedings of the 7th USENIX
Security Symposium, pages 217–228, 1998.

[26] B. C. Neuman. Proxy-based authentication and
accounting for distributed systems. In International
Conference on Distributed Computing Systems, pages
283–291, 1993.

[27] R. Rivest, A. Shamir, and L. Adleman. A method for
obtaining digital signatures and public key
cryptosystems. Commun. ACM, 21:120–126, 1978.

[28] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-based access control models. IEEE
Computer, 29, Number 2:38–47, 1996.

[29] K. R. Sollins. Cascaded authentication. In Proceedings
of 1988 IEEE Symposium on Security and Privacy,
pages 156–163, April 1988.

[30] V. Varadharajan, P. Allen, and S. Black. An analysis
of the proxy problem in distributed systems. In
Proceedings of 1991 IEEE Symposium on Security and
Privacy, pages 255–275, 1991.

[31] XACML.
http://www.oasis-open.org/committees/xacml/

and http://sunxacml.sourceforge.net/.

APPENDIX

A. HIERARCHICAL CERTIFICATE-BASED
ENCRYPTION

The Hierarchical Certificate-based Encryption (HCBE)
scheme by Gentry [15] has six algorithms, Setup, Cer-
tification of CA, Certification of Bob, Aggregation,
Encryption, and Decryption.

Setup(): A set of system parameters params is generated,
and will be used in all the operations of the scheme. Among
other parameters, params contain two cryptographic hash
functions H and H ′, a bilinear map ê, and a constant π
with certain properties. A bilinear map [5] is a mapping
function ê(x, y) that takes two inputs x and y, and outputs
a value.

An entity D chooses his private key sD, which is a pos-
itive integer. Entity D computes and publishes his public
key sDπ by multiplying sD with the parameter π. In what
follows, public key is expressed in the form of a product.
The key pair may be used for signing and secure email pur-
poses. In the following, we suppose Bob is at level n, that
his public key is snπ and private key is sn, and that the
CAs above him have public keys siπ and private keys si for
1 ≤ i ≤ n − 1.

Certification of CA(si, infoi+1): CA at i-th level runs
this algorithm to certify the public key of the CA at level i+1
by computing a signature. The first input is the private key
of CAi, and the second input is a string infoi+1 that contains
the public key siπ of the signer and the public key si+1π of
CAi+1. The string infoi+1 may also include information such
as the expiration date, etc. CAi first computes a hash digest
H(infoi+1), and then multiplies the digest with his private
key si. Recall H is one of the hash function in the system

parameters params. The output signature siH(infoi+1) is
given to CAi+1.

Certification of Bob(sn−1, infon): CAn−1 runs this algo-
rithm to certify the public key of Bob. The first input is
the private key of CAn−1, and the second input is a string
infon that contains the public key sn−1π of the signer and
the public key snπ of Bob. CAn−1 computes the signature
as sn−1H(infon), which is the multiplication of CAn−1’s pri-
vate key sn−1 with the hash digest of the string infon. The
output signature is given to Bob.

Aggregation(sn, info′, sig2, . . . , sign): This algorithm is run
by Bob, who uses his private key sn and the public key cer-
tificates on his chain to compute an aggregate signature,
which will be used as his decryption key. The inputs to this
algorithm are Bob’s private key sn, the string info′ that con-
tains the information of Bob, and a number of signatures 1

that contains the public key certificate signatures associated
with his chain. Recall that the public key certificate signa-
ture sigi for the entity at level i is of the form si−1H(infoi),
for 2 ≤ i ≤ n. Bob first computes a signature snH(info′)
on the string info′. He then aggregates this signature with
all the input signatures simply by adding them together,
SAgg = snH(info′) +

Pn

i=2
sigi. The output SAgg is Bob’s

decryption key.

Encryption(M, info1, . . . , infon, info′): Alice computes the
ciphertext to send to Bob. The inputs are a message M ,
string infoi of the certification at level i on Bob’s chain for
1 ≤ i ≤ n, and string info′ that Bob signs in Aggregation
algorithm. Alice encrypts a message M using the public keys
and a random number r. The ciphertext C consists of two
values, C = [rπ, V]. The first component is the product of
the random number r and public parameter π. The second
component is computed as V = M ⊕ H ′(gr), where g =
ê(snπ, H(info′))Πn−1

i=1 ê(siπ,H(infoi+1)), ⊕ denotes bit-wise
XOR operation, H ′ is the other cryptographic hash function
in the system parameters params, and ê is the bilinear map
in params. g is the product of n bilinear map computations,
whose inputs are a public key and a hash digest. The output
ciphertext C is sent to Bob.

Decryption(C, SAgg): Bob decrypts the ciphertext C to re-
trieve the message using his aggregate signature SAgg. Bob
first parses the ciphertext C as two values (U,V). He then
computes the message M = V ⊕ H ′(ê(U, SAgg)). The bilin-
ear map ê takes two inputs: one is the first component U of
the ciphertext C, and the other is Bob’s aggregate signature
SAgg. The output is a message M .

1The Aggregation algorithm can take any number of sig-
natures.

