
User-Behavior Based Detection of Infection Onset∗

Kui Xu
Department of Computer Science

Virginia Tech
xmenxk@cs.vt.edu

Danfeng (Daphne) Yao
Department of Computer Science

Virginia Tech
danfeng@cs.vt.edu

Qiang Ma
Department of Computer Science

Rutgers University
qma@cs.rutgers.edu

Alexander Crowell
Department of Computer Science

Rutgers University
acrowell@eden.rutgers.edu

Abstract A major vector of computer infection is
through exploiting software or design flaws in net-
worked applications such as the browser. Malicious
code can be fetched and executed on a victim’s ma-
chine without the user’s permission, as in drive-by
download (DBD) attacks. In this paper, we describe
a new tool called DeWare for detecting the onset of
infection delivered through vulnerable applications.
DeWare explores and enforces causal relationships be-
tween computer-related human behaviors and system
properties, such as file-system access and process ex-
ecution. Our tool can be used to provide real time
protection of a personal computer, as well as for diag-
nosing and evaluating untrusted websites for forensic
purposes.

Besides the concrete DBD detection solution, we
also formally define causal relationships between user
actions and system events on a host. Identifying and
enforcing correct causal relationships have important
applications in realizing advanced and secure oper-
ating systems. We perform extensive experimental
evaluation, including a user study with 21 partici-
pants, thousands of legitimate websites (for testing
false alarms), as well as 84 malicious websites in the
wild. Our results show that DeWare is able to cor-
rectly distinguish legitimate download events from
unauthorized system events with a low false positive
rate (< 1%).

Keywords: Malware, drive-by-download, user in-
puts, integrity, file system.

∗This work has been supported in part by NSF grant CA-
REER CNS-0953638 and CNS-0831186.

1 Introduction

Malicious software (malware) stealthily downloaded
from the Internet has been the leading infection vec-
tor, accounting for 53% of all incidents in 2008 [4].
Malware may be delivered stealthily through a net-
worked application such as a browser, a peer-to-peer
file sharing client, or a chat application. For example,
spyware may be bundled with files shared through
P2P networks. Web browser is the most common
vehicle for a host to contract malware. 10% of the
websites were found to contain drive-by-download ex-
ploits [23]. Drive-by-download (DBD) attacks ex-
ploit software or design vulnerabilities in a browser
or its external components, and stealthily fetch exe-
cutables from remote malware-hosting server without
the user permission. Botnets often use DBD as the
initial infection vector, e.g., Torpig [36]. Other net-
worked applications besides the browser may be vul-
nerable to drive-by-download attacks. For example, a
proof-of-concept Quicktime-based drive-by-download
attack has been demonstrated in Second Life [24].

Conventional signature-based techniques may not
be effective against zero-day exploits or code with
sophisticate obfuscation. In comparison, host-based
detection approaches are much more feasible against
drive-by download attacks and the onset of infection
in general. In this paper, we demonstrate the fea-
sibility and quality of such a host-based monitoring
framework. We aim to provide a tool that guards
a personal computer by detecting signs of malware
infection, specifically at the onset of infection. Our
solution can be used to detect any type of drive-by
downloads, including the browser-based exploits.

We present DeWare – a host-based security tool for

1

detecting the onset of malware infection at real time.
Deware is application independent, thus it is capa-
ble of performing host-wide monitoring beyond the
browser. DeWare’s detection is based on observing
stealthy download-and-execution pattern, which is a
behavior many active malware exhibits at its onset,
including the recent Hydraq malware [2]. Specifically,
DeWare collects and analyzes file-system events and
process properties (namely system calls related to file
creation and process creation) in the kernel space.

There are several nontrivial technical challenges
that we address in order to realize our goal. One
is how to distinguish drive-by downloads from legiti-
mate downloads. Our key observation is that legit-
imate file creation is mostly triggered by the user.
Our solution is to strategically monitor file-system
events and correlate them with observed user actions.
We aim to identify the causal relationship between
system events (e.g., file or process creation) and user
activities. We collect information regarding the user’s
mouse actions at the kernel level. Our knowledge
about user behaviors may be further refined with ad-
ditional application-specific information.

We note that the problem of finding the causal re-
lationship between two or more sets of natural events
is difficult in general [9] – the correlation of two ob-
served data sets may not indicate a causal relation-
ship between them, as there may be other factors.
In the context of operating system, however, system
events are artificially created in response to user ac-
tions and are not natural events. Thus, identifying
causal relationship between user actions and system
events on a computer can be achieved, because of the
obvious underlying connections between them.

Another technical issue we address is how to ef-
ficiently handle the voluminous application-triggered
benign downloads, which are not directed caused by
user actions. We refer to these downloads as in-
directly caused by the user’s action. For example,
when a user types www.cnn.com in the address bar,
the browser fetches the main page index.html as
well as any objects embedded in that page, including
JavaScript files, images and flashes. It automatically
creates temporary files without explicit user requests.

Our approach is two-fold: i) to minimize false
alarms due to application-triggered downloads, and
ii) to prevent malware from hiding its executables in
these temporary storage places. Realizing both goals
are necessary for the integrity of the host. We are
able to realize both requirements through two sepa-
rate mechanisms as follows. We design a policy-based

monitoring framework that controls applications’ ac-
cess to specified folders, accessible area. For example,
as a result the browser process cannot create files in
certain system directories at run time, but can down-
load to temporary folders at will. In addition, to re-
alize ii) we design an execution monitor that reports
and halts any new process creation in accessible areas,
as that area is typically for storing temporary read-
only files (extensively validated by our experiments in
Section 5). As a result, malware is unable to start any
executables downloaded in the accessible area. These
mechanisms enable us to largely reduce our scope for
file-system monitoring scope, reduce false alarms, and
provide comprehensive surveillance across the host.

Our contributions We summarize our technical
contributions as follows.
• We give new definitions for direct and indirect

causal relationships among user actions and sys-
tem events in the context of host security. Identi-
fying and enforcing causal relationships are use-
ful in detecting the onset of infection. We point
out the associated technical challenges and us-
ability requirements. We believe that the inte-
gration of human behaviors can greatly improve
the design and effectiveness of cyber security so-
lutions.

• We present our design and implementation of
a tool called DeWare that detects the onset of
infection including drive-by downloads, through
the efficient and comprehensive system monitor-
ing and data analysis. DeWare is easy to de-
ploy. It identifies the infection onset by detect-
ing download-and-execute patterns that most
stealthy malware exhibits.

• We perform extensive experiments including a
user study with 21 participants to evaluate De-
Ware’s ability to detect DBD exploits both in
a lab setting and 84 malicious websites in the
wild; the ability to accurately identify legitimate
user-triggered downloads with low false positives
(<1%). In addition, DeWare triggers no false
alarms when being automatically tested on 2000
legitimate websites.

One main advantage of our (basic) DeWare design
is its application-independence – there is no need to
modify the application, or understand how it works.
Our inspection is external to applications and treats
them as a black box. This feature differentiates our
solution from others (such as download managers of
browsers and some academic solutions [17, 29]).

Organization of the paper The rest of the pa-

2

per is organized as follows. We give our definitions for
causal relationships as well as our security model in
Section 2. An overview of our design of DeWare is in
Section 3. Our DeWare implementation in Windows
operating system is presented in Section 4. Extensive
experimental evaluation is described in Section 5. Re-
lated work is compared in Section 6, and conclusions
and future work are described in Section 7. Some
experimental results and pseudo-code of our analysis
algorithm are in the Appendix.

2 Definitions For Causal Rela-
tionships and Security Mod-
els

Intuitively, DeWare detects the onset of infection by
detecting anomalies on a host. Given a system event
e, we aim to infer the provenance of the event by con-
structing a causal-relationship map that identifies an-
other event that directly or indirectly triggers e. In
our model, we broadly define two types of events:
user action and system event. User actions include
keyboard inputs and mouse clicks. There are two ap-
proaches to observe user events – one is at the kernel
level through the placement of hooks and listeners,
and one is at the application level through interfacing
with the application that consumes the user actions.
For example, at the kernel level the information re-
lated to a user’s mouse click may include coordinates
of the click, ID of the process receiving the inputs.
In comparison, semantic information associated with
the user actions has to be obtained at the applica-
tion level, such as the URLs of the links that the user
clicks on.

System events include any kernel-level transactions
such as file system events, network events (outbound
and incoming), process events. Each user event or
system event e has a timestamp Te. In this paper,
for detecting drive-by download we focus on two sys-
tem events, namely file creation and process creation.
System events are triggered either by user actions or
other system events. We define direct causal rela-
tionship and indirect causal relationship as follows
and give some examples.

Definition 2.1 Direct causal relationship is between
two events e and e′, where Te < Te′ and the event e
directly triggers or causes the event e′.

We refer to the event e as trigger event, and e′ as
effect event. We denote the direct causal relationship
between them by e → e′. Trigger event can be either

a user action or a system event. The effect event is
usually a system event. A user may react to a system
event, e.g., the email inbox receives a new message,
then the user clicks on the inbox to view it. Thus,
the effect event can be a user action as well.

Definition 2.2 Indirect causal relationship is be-
tween two events ei and ej (j > i) and
Tei < Tej , where there exists an event sequence
ei, ei+1, ei+2, . . . , ej such that ei → ei+1, ei+1 →
ei+2, . . ., and ej−1 → ej.

That is, event ej is indirectly triggered by event ei,
which directly triggers ei+1, and ei+1 directly causes
ei+2, and so on. We denote the indirect causal rela-
tionship between events ei and ej by ei ej .

For example, a user’s mouse click may directly
cause a browser to send some packets or download
files from remote sites, or directly cause an appli-
cation to start (i.e., creating a new process). For
an indirect causal relationship between a mouse click
and a file creation, consider the following scenario.
Images embedded in index.html page are automat-
ically fetched by the browser. Thus, the user’s click
on index.html indirectly causes the creation of im-
age files in the temporary folder. Causal relation-
ships should be defined with a specified granularity,
as different granularity result in different direct and
indirect causal relationships.

Given observed user’s mouse-click events and file
and process creation events, we aim to infer their
causal relationships based on pre-defined rules, and to
identify suspicious system events that cannot be at-
tributed to any user action. Our inference approach
involves the comparison of attributes of events includ-
ing timestamps, file types, process IDs, and seman-
tic information. In this work, the causal relation-
ship among events is inferred or estimated, thus is
not provably-assured. Cryptographic provable prove-
nance has been realized in the host-based system se-
curity settings to ensure keystroke authenticity and
traffic generation [34].

Our work belongs to a broader category of re-
search on human-behavior driven malware detection.
We define that the key research problems in human-
behavior driven malware detection include i) how to
select humans’ characteristic behavior features, ii)
how to prevent malware forgery, and iii) how to
make security solutions nonintrusive and transparent
to users. Anti-forgery techniques have been proposed
with the help of tamper-resistant cryptographic hard-
ware (namely TPM) [12, 34]. Researchers have in-
vestigated keystroke dynamics [35], Internet chat be-

3

haviors [10] for anomaly-detection purposes. For iii)
Nonintrusiveness requires any (host-based) security
solution to produce minimal disruption and annoy-
ance to users.

Security solutions that rely on constant user in-
teractions (for example, through pop-up windows as
in [41]) may distract users and cause usability issues.
Besides, feedback supplied by users may not be ac-
curate and reliable. Our detection in DeWare col-
lects and utilizes the existing human computer inter-
actions, in particular user inputs to applications, for
security detection. The tool does not require user to
perform additional tasks, thus is easy to use.

IRP filtering for
file creation

Alert

High Risk?

No
User InputTimestamp

Within
Threshold?Alert

Execution
Monitor

Accessible
Area?

Executable
Gets

Running?

Yes

Download
Area?

Yes

Yes

No

No

Figure 1: Schematic drawing of the work flow for de-
tecting the infection onset on a host based on analyz-
ing user-behaviors and file system/process properties.

Security and attack models We assume that the
browser and its components are not secure and may
have software vulnerabilities. The operating system
is assumed to be trusted and secure, and thus the
kernel-level monitoring of file-system events and user
inputs yields trusted information. The integrity of
file systems defined in our model refers to the enforce-
ment of user-intended or user-authorized file-system
activities; the detection and prevention of malware-
initiated tampering. We assume that malware makes
persistent changes to the target host’s file system or
attempts to execute its code by creating a new pro-
cess, which are commonly observed behaviors at the
onset of infection. Similar assumptions were also used
in Strider HoneyMonkeys [40].

We do not consider social engineering attacks in
this paper. For example, a user may be tricked to

click on Web links or links in email messages that
result in the download of malicious executables. (Re-
cent Hydraq malware started with a personalized
spam message with an embedded link to attacker’s
website [2].)

3 Overview of DeWare Design
The purpose of DeWare is to detect unauthorized
system activities, in particular file and process cre-
ations on a host. We consider the system events di-
rectly caused by the owner (human user) of the com-
puter legitimate. Malware-triggered download and
execution are unauthorized. We realize DeWare by
instrumenting specialized sensors (i.e., components
mostly at the kernel level for collecting and moni-
toring system-event data), and inferring at real-time
legitimate events directly or indirectly caused by the
human user’s activities. Thus, file creation or process
creation that cannot be attributed to any human ac-
tions (namely mouse activities) is likely to be suspi-
cious and caused by malware infection. DeWare is
capable of host-wide monitoring that is application
independent.

System events that we focus on in this work are the
file creation and process creation – either of the two
characteristics is often observed at the onset of mal-
ware infection. Similar assumption was previously
used by others as well [17, 40]. We discuss the limita-
tions of DeWare against more sophisticated malware
in Section 5.

Although this intuition of DeWare is simple, tech-
nical challenges arise due to the fact that many appli-
cations such as the browser automatically fetch and
create files that make persistent changes to the file
systems. Our solution is to enforce fine-grained ac-
cess policies on applications to control and confine
their access to the file systems. A temporary file au-
tomatically downloaded by an application is consid-
ered legitimate only if it appears in specified area and
is not executed. Violations of the policies are likely
caused by malware infection and are reported. We
describe it in more details in Section 3.1 and 3.2.

In our detection system, users’ intention is em-
bodied by their mouse inputs, information of which
such as timestamp, corresponding PIDs, and content
can be logged at the kernel level or at the applica-
tion level. Both approaches have different security
assumptions and yield user-input information with
different granularity. There are pros and cons asso-
ciated with both methods, which are discussed more
in Section 3.3. Given the observed user activities and

4

system events, we correlate the two data streams, ac-
cording to rules on their attributes, e.g., empirically-
defined time intervals and process IDs. In our secu-
rity model (described in Section 2), the user inputs
obtained are trustworthy, i.e., they are not forged
by malware. This assumption can be eliminated if
hardware-based attestation (e.g., with trusted plat-
form module) is enabled as described in [34].

In our model, the file downloaded by the user
through specific mouse operations is legitimate.
These files are directly caused by user actions, i.e.,
direct causal relationship.

The work flow in DeWare is shown in Figure 1.
Putting these all together, DeWare includes the fol-
lowing components.
• A file-system monitor for intercepting file-

creation related system calls;
• A click recorder for collecting user behaviors in-

formation;
• An execution monitor for inspecting a portion of

file system for illegal process creation.

3.1 File-System Monitor: Confining
Application-Triggered Downloads

Application-triggered downloads are indirectly trig-
gered by user actions. These downloads are legiti-
mate, provided that the application is not comprised,
e.g., the application is not infected with virus or par-
asitic malware [32]. Because our security model does
not assume the trustworthiness of applications, it is
necessary to examine all downloads on the host.

However, capturing all file-creation events related
to all processes generates an overwhelmingly large
number of records. For example, during a user’s 30-
minute browsing period in Internet Explorer, a user
indirectly triggers 482 file creations in Temporary In-
ternet Files folder and 47 Cookies directory. Files cre-
ated in those folders are usually benign.

We design and implement a framework that allows
us to specify policies to limit applications’ access to
portion of the file system. The access control frame-
work is to reduce white noise due to application trig-
gered downloads. We define the accessible area for an
application in the file systems.

Definition 3.1 Accessible area of an application is a
set of pre-defined directories on the file system where
the application is allowed to create files. The applica-
tion is not allowed to create files outside its accessible
area.

For example, Temporary Internet Files folder is

modifiable by Internet Explorer, whereas system fold-
ers are not. The directories to include in the acces-
sible area can be learned. For Firefox, we specify 18
folders shown in the Appendix. As a result, we signif-
icantly reduce the number of directories to monitor
for file creation, and the number of events to record.
This approach of defining policies to confine processes
is similar to what is used in SELinux. One difference
is that our detection requires real-time data compu-
tation, which is beyond the use of rules. Our solution
is also simpler, as it is specific to file-system access
and monitoring.

File-system monitor intercepts system calls related
to file creations, and probes kernel data structures
to gather process information. Timestamps can be
obtained from input logger at runtime to perform
temporal correlation. With this file-system monitor,
malware is confined to the accessible area. Moving
executables out of the accessible area is also forbid-
den.

Download directly triggered by the user does not
need to follow the same requirements. However, the
user is not allowed to download files anywhere on
the file system, but to a specified downloadable area,
which is described in more details in Section 3.5.

With the aforementioned file-system monitor, an
attacker may still be able download malware executa-
bles to the accessible area of a rogue application, e.g.,
to the temp folder via a compromised browser. Thus,
file-system monitoring alone is not sufficient for de-
tecting drive-by download. We solve the problem by
monitoring execution patterns in these download ar-
eas, which is presented in the next section.

3.2 Real-Time Execution Monitoring
on Host

Although dormant malware (downloaded but not ex-
ecuted) does not pose immediate threat to the host,
it may get executed later on. In our experiments with
real-world malware, some malware starts itself after a
reboot. In DeWare, execution monitor is to prevent
malware executables stored at accessible area from
being run. Execution monitor which gives additional
inspection to areas where access is granted to an ap-
plication.

Information of a newly created process that we col-
lect includes process ID, image file name, parent pro-
cess ID, and timestamp. Once a new process is cre-
ated, the execution monitor is notified. It verifies
that the image file is not in the accessible area of any
application.

5

Our security model assumes the operating system
is not compromised, in particular, the kernel is not
compromised, the process information observed is
complete and trustworthy. Therefore, we do not con-
sider the existence of rootkits that hide their presence
in the process table. Because we aim to to detect the
onset of the infection on an otherwise clean host, this
assumption is valid.

3.3 Intercepting Users’ Input Activi-
ties

Obtaining user intention can be realized in three dif-
ferent ways: i) directly asking the user (e.g., through
a pop-up window) [41], ii) analyzing user’s trans-
action history and extracting patterns [25], or iii)
recording the events entered through keyboard or
mouse devices [34]. Each method has pros and cons.
For example, pop-up window may be intrusive to
user, but is easy to implement. In DeWare, we opt
for the third approach.

There are two levels of user-input monitoring: ker-
nel level and application level. Kernel-level input log-
ging records user inputs at their origin, as it is to col-
lect events triggered by activities on external input
devices via device drivers. Click recorder intercepts
information about user inputs – coordinates, times-
tamp, and content – by placing listeners or hooks in
the kernel. The inputs go to the current foreground
process, whose ID can be identified. Kernel-level in-
put logging is application-independent, which makes
the method general.

One can also record user inputs at the application.
This approach – referred as application-level input
logging – requires writing a plug-in specific to the
application. It also assumes the trustworthiness of
the extension to ensure the data integrity. The obvi-
ous advantage of application-level input logging is the
ability to semantically interpret certain input events,
for example, the URL that a mouse clicks on. This
URL is application-specific data and cannot be easily
obtained outside the browser. At the kernel level, a
user’s mouse click is not associated with this semantic
information. In our prototype in Windows, we realize
and compare both methods (See also Section 5.2).

3.4 Rule-Based Causal-Relationship
Analysis

DeWare infers causal relationships between user’s
mouse clicks and file-creation events based on
temporal-based comparison rules and/or semantic-
based comparison rules.

For temporal-based comparison, a legitimate file-
creation event is defined as one that takes place
within a short threshold τ after a valid user-input
event. Different τ values can significantly affect the
false positive and false negative rates, which are ex-
perimentally evaluated in our user study in Section 5.
The two events being compared need to have the same
process ID.

The semantics of a mouse click event includes in-
formation about the file or URL that the user down-
loads or clicks, for example, source URL, file name,
type, size, and destination directory. Therefore, in
semantic-based comparison these pieces of informa-
tion need to match with the file being created, in
addition to the temporal constraint on event times-
tamps. We describe how the semantics information
can be obtained in Section 4.

3.5 Coincidental Download, Piggy-
backing Download, and Their De-
tection

Our simple temporal-based rule does not provide suf-
ficient security protection against infection onset, be-
cause of coincidental malware download and piggy-
backing malware download defined as follows.

Definition 3.2 We define coincidental download as
the download of malware that coincidentally occurs
immediately after a user’s mouse click, more specifi-
cally the time interval between the download event and
its immediately preceding mouse-click event is within
threshold τ .

The problem of coincidental download only exists
when logging user’s mouse events at the kernel level,
which lacks semantic and contextual information of
the events. For example, a click on a URL cannot be
distinguished from a click on download-dialogue box.
This problem is prevented when using application-
level input logging as described in Section 3.3.

Piggyback download defined in [33] is where mal-
ware is part of a piece of software downloaded with
proper user permission, e.g., spyware bundled with
compression software. (Stamminger et al. described
several automated techniques for recognizing spy-
ware [33].)

Preventing piggybacking code from being down-
loaded is difficult in our model. Thus, our approach
is to detect it when the downloaded malware is being
executed. The area that execution monitor inspects
needs to be expanded beyond the accessible areas of
applications. The execution monitor also inspects the
area at which user-authorized downloads are stored,

6

and seeks confirmation from the user if files in that
area get executed. We define downloadable area in
Definition 3.3 below.

Definition 3.3 Downloadable area of a user is a set
of pre-defined directories on the file system to which
the user downloads files from the Internet.

If piggybacking download in this area creates new
processes, the execution monitor prompts the user for
additional approval. Note that the user interaction
is only needed for files with download-and-execute
patterns; not for each process creation in the system.
Thus, the required user interaction is minimal.

As stated in Section 2, we assume that the host
is not infected with malware that is capable of eaves-
dropping on user mouse events (and downloads imme-
diate after the user clicks the mouse). This assump-
tion is valid, as DeWare aims to detect the onset of
infection on a clean host.

4 Prototype Implementation in
Windows

We describe our implementation of DeWare proto-
type in Windows XP utilizing some existing kernel
driver and tools for monitoring system events in Win-
dows. The prototype is easy to deploy and efficient to
run. We describe our realization of file-system mon-
itor, execution monitor, click recorder, and causal-
relationship analysis respectively.

File-System Monitor Our prototype builds on Min-
ispy to intercept file-related system calls. Minispy is
an existing kernel driver for Windows that monitors
all system calls involving opening a handle to a file
object, including file creation. Our file-system moni-
tor consists of a kernel-space driver and a user-space
component. File-creation events are collected at the
kernel level and reported to the user space for filter-
ing.

The kernel-space driver filters all IRP (I/O request
packet) calls issued by operating system to the low
level I/O devices. We specify the program images
(running process names) to be monitored, so only the
IRP calls issued by those programs are collected. In
our prototype, we focus on the FILE CREATE sys-
tem call. Other file-related system calls such as
FILE OPEN and FILE OVERWRITE may be recorded
as well.

We keep track of targeted processes as well as their
child processes. We implement the directories ap-
peared in both accessible and downloadable areas
with the array data structure for each process. Given

a file-creation event requested by a process, the cor-
responding array is searched to check for violations.
If file creation outside the permitted areas is found,
then the user is alerted. This verification has low
overhead, because of the small array sizes. In the
downloadable area of user, certain low-risk downloads
(e.g., TEXT files) can be safely ignored. High-risk
files [21] in that area are examined in our causal-
relationship analysis.

Execution Monitor Our execution monitor is imple-
mented based on PsTools suite, which is an existing
collection of command-line utilities to manage pro-
cesses in Windows. The tool leverages the security-
monitoring features provided by Windows OS. Win-
dows OS (XP and higher) comes with security set-
tings for monitoring the local host, among which the
AuditPolicy is able to track all the processes. The
execution monitor records all the process start and
exit events, and applies policies to inspect them for
violations. A sample log entry collected is shown as
follows.

A new process has been created:
New Process ID: 3444
Image File Name: C:\WINDOWS\system32\cmd.exe
Creator Process ID: 1396
User Name: Administrator
Domain: XMENXK-50C6105A
Logon ID: (0x0,0xEB4D)

Click Recorder DeWare implements two indepen-
dent mechanisms for collecting mouse clicks: one at
kernel level and another within the Firefox browser.
The kernel-level logging records user inputs at the
kernel level through hooks SetWindowsHookex pro-
vided by Windows OS. We also write a Firefox ex-
tension (based on tlogger) that is capable of record-
ing users’ clicks that correspond to downloading ac-
tivities. This extension – assumed to be trusted –
provides semantics of user clicks, so one is able to
learn the detailed meaning of what a click is intended
to achieve as shown in Table 1. We note that if a
user clicks on buttons within a browser plug-in (e.g.,
Adobe Reader) to download, then the extension is
unable to record the event. With semantic informa-
tion, the inference accuracy can be improved (shown
in Section 5). DeWare can securely function with
only the kernel-level click logging.

Causal-Relationship Analysis In our prototype, the
causal-relationship analysis is performed off-line, af-
ter data is collected. This implementation can be
extended to realize real-time analysis. Our detailed
analysis algorithm in pseudo-code is shown in Fig-

7

Download Scenarios Recorded
Clicking on a link Yes
Typing a URL into address bar Yes
Using “Save Target As...” button Yes
Download initiated by page redirect Yes
Download from embedded plugin No

Table 1: User clicks recorded through our Firefox
extension.

ure 6 in the Appendix.
Privacy Discussion Our solution does not create

any new privacy vulnerability. DeWare is a stand-
alone host-based solution that does not export the
collected data out of the user’s computer. Only
mouse clicks are recorded (user’s keyboard inputs are
not). Collected data is erased after the analysis and
does not need to be stored for a long term.

Limitations DeWare is capable of detecting a wide
spectrum of syndromes associated with infection on-
set. Our detection assumes that malware either
makes persistent changes to the disk or creates its
own new process. Thus, DeWare cannot detect the
infection onset where code or dynamic loadable li-
brary (DLL) is injected into the memory of a legit-
imate process [26, 27, 28]. This type of in-memory
injection is able to retrieve and store library files just
in memory and load them directly. It is stealthy since
it does not need to touch the hard disk and the mali-
cious code can run in the context of the compromised
process without the creation of a new process.

5 Experimental Evaluation
We carry out extensive experiments to evaluate the
effectiveness and usability of our solution. We per-
form a user study with 21 users to collect real-world
user download behavior data. We also use DeWare
to evaluate a large number of both legitimate and
malware-hosting websites for testing its accuracy.

5.1 User Study
21 users participated in our user study – all of them
are graduate or undergraduate students from a uni-
versity. Each user is asked to surf the web with Fire-
fox browser for 30 minutes and download at least 10
files of her choice. Firefox 3.0.19 is run on Microsoft
Windows XP Professional Service Pack 3.

In Figure 2, we give the histogram of the observed
intervals between a user’s mouse-click event and the
corresponding file-creation event. For this analysis,
the two types of events are correlated manually by

0

20

40

60

80

100

120

140

[0,20) [20,40) [40,60) [60,80) [80,100) [100,∞)N
um

be
rs

 o
f <

U
se

r
Cl

ic
k,

 F
ile

-C
re

at
io

n>
 P

ai
rs

Intervals between mouse clicks and file-creations in milliseconds

Figure 2: Histogram on the interval in milliseconds
of the user click events and their corresponding file
creation events.

the authors. User’s click events are recorded at the
kernel level through a mouse hook to the input device
driver, and the timestamps for file-creation events are
extracted from the intercepted system calls. The ma-
jority of user-triggered download have a short delay
within 80 milliseconds.

Figure 3: Simulated probability of false negatives
caused by piggybacking download vs. allowed thresh-
old between user click event and file creation.

Our false negative analysis shown in Figure 3 is
based on simulating coincidental downloads (defined
in 3.5). Here, a false negative is where a mal-
ware download is mistakenly classified as a legitimate
download, due to the close proximity in time of the
download event to an observed user mouse click. We
aim to estimate the likelihood of having coincidental
downloads.

8

We assume that malware is equally likely to be
downloaded across the time spectrum considered. In
Figure 3, X-axis is the threshhold in milliseconds, and
Y-axis is our simulated false negative rate, which is
computed as in Equation 1, where n is the number
of users, mi is the number of mouse clicks by useri,
Surfing timei is useri’s total computer-use time (30
minutes). Given threshold τ and a mouse click at
time t, safe time is from t to t+ τ , and is of duration
τ . Thus, miτ gives the total safe time for useri.

1
n

n∑
i=1

miτ

surfing timei
(1)

For example, the probability is 0.00154 for a
threshold of 10 milliseconds and 0.01524 for 100 mil-
liseconds. The likelihood of having false negatives
due to coincidental download is low, and the value in-
creases with increasing threshold, which is expected.

The false-positives based on the basic temporal
correlation (i.e., comparing timestamps of events)
are reported in Figure 4. False positives in our user
study may come from two sources. i) File creation
from user download in downloadable area of the user
that has a high risk extension, but is not within the
required threshhold, and ii) (legitimate) file creation
by the browser that is not in the accessible area dur-
ing the user study, we have six such violations, e.g.,
\Program Files\NOS\bin\getPlusPlus_Adobe.exe,
which result from a single installation of getPlus (a
download manager from NOS) that is piggybacking
downloaded with Adobe Reader.

Figure 4: The averaged false positive rate vs. various
threshold values based on a total of 25092 file-creation
events including temporary files by the browser.

The results show that the number of false alarms
that temporal-comparison based DeWare generates in
our user study is small compared to the total number
of file creations. A larger threshold leads to a lower
false positive rate, but at the same time it also in-
creases the likelihood of false negatives as we show
earlier. Given our results, we recommend a threshold
within 80-100 milliseconds. The false positives are
further reduced in Section 5.2 with the application-
assisted semantic comparison.

False alarm evaluation with legitimate web-
sites. Given the pre-defined accessible area (consist-
ing of 18 folders, shown in Appendix) of the Firefox
browser, we test DeWare with 2000 legitimate web-
sites to see if there are any false alarms. A false alarm
may be caused by a website i) downloading files out-
side the accessible area, or ii) creating new processes
from files stored in the accessible area. We evaluate
the top 1000 and bottom 1000 websites according to
the ranking from Alexa.com on August 20th, 2010
with Firefox. We give the browser 30 seconds to load
a webpage. We have zero false alarm in our exper-
iment. The result indicates that our pre-defined ac-
cessible area is sufficient in containing the files that
the browser and common plug-ins create. We demon-
strate the feasibility of confining a process’ access to
file system for reducing DeWare’s workload of system-
call monitoring. We are able to achieve it without the
need of modifying how browser operates.

5.2 Reducing False Positives With Se-
mantic Correlation

For 8 out of the 21 participants, we also collected
application-level inputs using the Firefox extension
described in Section 4. It allows us to collects users’
mouse-click activities on download-dialogue windows,
and obtain semantic information of the user event
such as file name, type, size, source URL, timestamp,
and destination directory. The timestamp, file name,
and directory information are compared with those
of the file-creation event for causal-relationship anal-
ysis. The mouse clicks that do not trigger download
are ignored and not recorded. Figure 5 shows that the
semantics of user actions helps reduce the false posi-
tive rate. The remaining (six) false positives were due
to JavaScript files that came together with a webpage
that a user downloaded.

5.3 Detecting Known DBD Exploits
and Real-World Malicious URLs

We test DeWare against real-world websites with
drive-by download exploits [18, 19]. The ex-

9

Figure 5: Reduced false positives with semantic-
based comparison between user’s mouse-click events
and downloaded files.

periment is carried out on a laptop with 2.26
GHz dual-core CPU and 2 GB RAM. The test-
ing system is Windows XP Version 5.1 (Build
2600.xpsp sp2 rtm.040803-2158: Service Pack 2) in-
stalled within VMware 7.0. We use Internet Explorer
Version 6.0.2900.2180.xpsp sp2 rtm.040803-2158 as
the victim application. We take a snapshot of a clean
version of the system and then test DeWare with ma-
licious websites. We give each URL one minute to
load and launch the attack. We revert the system to
the initial clean state before each new test. During a
two-week period, we successfully detected 84 unique
domains with drive-by download exploits. Observa-
tions from the experiment are summarized as follows.

• The malicious websites typically download ex-
ecutables and .dll files onto the victim’s host,
and then try to get the executables running. The
entire procedure is surreptitious. In some cases,
after reboot the browser is automatically loaded
and re-directed to pornography websites.

• There are several popular exploit kits, such as
“Phoenix exploit kit” and “Eleonore exploits
pack”, which are widely used by many mali-
cious websites. They target at multiple software
vulnerabilities including Flash, PDF, Java and
browser.

• There are websites who track the incoming re-
quests. In that case, the first visit triggers the
exploit, while during the second visit no exploit
is observed or the web server refuses the connec-
tion.

• Some exploits attempt to download executables

to directories such as \DocumentsandSettings\
Administrator\LocalSettings\Temp\ to avoid
detection, which can be detected by DeWare.

We also produce several known drive-by-download
exploits in a lab environment shown in the following.
DeWare can successfully detect executables down-
loaded as a result of a successful exploit.

• Heap Feng Shui attack [30];
• HTML Object Memory Corruption Vulnerabil-

ity [13];
• Superbuddy exploits through AOL activeX con-

trol [37];
• Adobe Flash player remote-code execution [8].
• Microsoft Data Access Component API mis-

use [6];
• DBD exploiting IE 7 XML library [14].

5.4 Evaluation of Off-the-Shelf Secu-
rity Products Against a DBD Ex-
ploit.

We evaluate popular commercial anti-virus software
and Internet security products against the IE 7 XML
Heap Corruption exploit (VU#493881). The results
are shown in Table 3 in the Appendix.

Our comparison shows that signature-based secu-
rity monitoring is not effective in detecting drive-
bydownloads, due to the variation in the malicious
executables downloaded. For example, 360 Safeguard
cannot detect IE 7 exploits with an older version
(360v6.0.1) anti-virus driver and a newer definition
database, but can do so vice versa. In our experiment,
Trend Micro Internet Security Pro is not effective
against the DBD attack tested. Although Zonealarm
Pro and Microsoft Security Essentials alert the user
the DBD threats, the malicious executables are still
downloaded.

6 Related Work
Cova, Kruegel, and Vigna proposed a DBD detec-
tion solution [3] that abstracted and categorized
commonly shared features in the Javascripts that
launch drive-by-download attacks. They used ma-
chine learning techniques to build characteristics of
normal Javascript code, and then in the detection
phase the system is to identify malicious Javascript
code. This system is built with the goal of de-
tecting zero-day exploits. A DBD-detection solution
was proposed based on monitoring browser’s inter-
module communication patterns [29]. The work uti-
lizes the inter-module communications of browser to

10

Solutions Architecture Analysis Browser
Modified

Traffic Mon-
itored

Security assumption

Obfuscated-
JS [15]

Client side Offline No No N/A

SpyProxy [20] Client side
& Network
Service

Online No No Secure virtual machine

Inter-
Module [29]

Client side Online Yes No Secure browser and OS

DBD-JS [3] Client side Online Yes Yes Secure browser
Shellcode [7] Client side Online Yes No Secure browser
Strider-
HM [40]

Client side Offline No Yes Secure virtual machine

BLADE [17] Client side Online Yes Yes Secure OS
DeWare Client side Online No No Secure OS

Table 2: Comparison of select drive-by-download solutions.

collect signatures of drive-by-download exploits and
performs online detection of known exploits.

The work that is conceptually close to ours is
BLADE [17], which is a host-based drive-by-exploit
detection framework in Windows. BLADE is an ef-
fective solution independently developed by Lu et
al. for detecting drive-by downloads, in particular
unconsented-content execution [17]. The authors per-
formed extensive experiments in Windows OS envi-
ronments. Although the goal of BLADE is the same
as in ours, our technical approaches differ much, par-
ticularly on obtaining user behavior information and
how file system is monitored. DeWare treats applica-
tions as a black box – passively monitors the operat-
ing system and does not change to how applications
access the existing file systems. BLADE performs
redirections on browsers’ I/O requests. Our solution
is designed for general applications, not specific for
the browser; thus we provide monitoring mechanisms
in the kernel level all of them external and indepen-
dent of the application. DeWare functions well even
without the optional semantic comparison that in-
volves an application-level component. Our experi-
mental evaluation approach is different from what is
reported in [17], as we carried out a nontrivial user
study with 21 participants.

In our work, we also present and take the first step
to formalize the new concepts of causal relationships
and their important application in the context of se-
curing personal computers, which is beyond the spe-
cific drive-by download detection problem studied.

We compared related work about DBD detection
with ours in Table 2. The method used in [3, 15]

is based on feature extraction from malicious code
such as existence of redirection and obfuscation.
Careful preparation and selection of features make
this feature-based detection robust against known
threats. [20, 40] both utilize virtual machine to load
webpage, take records and perform post-analysis.
This class of behavior-based detection is better at
catching 0-day attack. In [7], string buffers are
checked for executable instructions, which enables the
solution to detect the shellcode before an vulnerabil-
ity can be exploited. (Some papers did not specify
about their security models, thus we infer them in
Table 2.)

Egele, Kirda, and Kruegel [6] and Niki [22]
gave general introductions to drive-by exploits and
mentioned possible detection and mitigation ap-
proaches (without concrete implementations), such as
emulation-based shellcode analysis technique based
on existing work in [7], and analyzing DNS and web
server relationships.

There exist several system integrity work that may
bear superficial similarity to our work. Tripwire [31]
is a cryptographic-based solution that aims to detect
tampering in files by comparing the cryptographic
hash values of file systems. Tripwire is not de-
signed for detecting illegal file creation, as it does
not have a classification mechanism for that purpose.
Baliga, Iftode, and Chen proposed a rootkit contain-
ment strategy Paladin [1] that is based on tracking
processes’ hierarchical relationships and their corre-
sponding file creation, and using policies to restrict
processes’ privileges to directories and memory ac-
cess. The part of our work on controlling the access

11

of processes to file systems has a similar spirit with
Paladin. What sets our work apart is that i) we cor-
relation user inputs with file system monitoring; and
ii) we focus on distinguishing authorized and illegal
file creation, whereas Paladin allows arbitrary file cre-
ation. It is worth mentioning that in Paladin, virtual
machine monitor (VMM) is used to enforce the in-
tegrity of the detection, namely policy tables. VMM
can be applied in our model to relax the assumption
of the trust on the operating system.

Many browser security solutions have been pro-
posed, including secure browsers and browser-as-an-
OS [11, 39], securing browser extensions [5, 16], and
browser mashup security [38, 42]. Our work funda-
mentally differs from the secure browser line of re-
search, as our solution is completely independent of
the browser without any assumption on its or its com-
ponents’ integrity – yielding a more robust detection
technique.

7 Conclusions and Future
Work

We describe the importance of inferring the causal re-
lationships among the user actions and system events
on a personal computer for security monitoring and
forensic purposes. Specifically, the analysis on file
and process creation enables the identification of
the onset of infection through drive-by download, as
demonstrated in this paper. We described the de-
sign, implementation, and use of DeWare for host-
based security protection against unauthorized sys-
tem events. A main technical challenge of our ap-
proach is how to accurately interpreting user inten-
tion and to tell apart legitimate user-triggered down-
load, malware download, and benign application-
triggered download. Our techniques are based on
defining practical policies and the enforcement of
policies through data collection and analysis. We per-
formed extensive experiments to evaluate the usabil-
ity, accuracy, and precision of DeWare, including a
user study, tests on thousands of legitimate URLs for
evaluating false positives, and tests on known ma-
licious URLs. DeWare is effective against drive-by
download exploits that we evaluated with a low (<
1%) false positive rate.

Tracking the origin and provenance of critical sys-
tem events by inferring and enforcing the causal re-
lationships between them and user actions is a novel
and effective approach for managing a secure host.
We envision that our approach can be generalized

beyond file and process activities. For example, the
correlation between user actions and outbound traf-
fic can be systematically studied for cyber security
purposes.

8 Acknowledgments
The authors would like to thank the first author
in [17] for sharing the sources for obtaining malicious
URLs.

12

References

[1] A. Baliga, L. Iftode, and X. Chen. Automated
containment of rootkits attacks. Computers &
Security, 27(7-8):323–334, 2008.

[2] E. Chien. The new generation of targeted at-
tacks, 2010. Keynote in Recent Advances in In-
trusion Detection (RAID).

[3] M. Cova, C. Kruegel, and G. Vigna. Detec-
tion and analysis of drive-by-download attacks
and malicious javascript code. In Proceedings of
19th International World Wide Web Conference,
2010.

[4] M. Cruz. Most abused infection vector, 2008.
Trend Micro. http://blog.trendmicro.com/
most-abused-infection-vector/.

[5] M. Dhawan and V. Ganapathy. Analyzing infor-
mation flow in javascript-based browser exten-
sions. In ACSAC, pages 382–391. IEEE Com-
puter Society, 2009.

[6] M. Egele, E. Kirda, and C. Kruegel. Mitigat-
ing drive-by download attacks: Challenges and
open problems. In Proceedings of the Open Re-
search Problems in Network Security(iNetSec),
pages 52–62, 2009.

[7] M. Egele, P. Wurzinger, C. Kruegel, and
E. Kirda. Defending browsers against drive-by
downloads: Mitigating heap-spraying code injec-
tion attacks. In Proceedings of the Sixth Confer-
ence on Detection of Intrusions and Malware &
Vulnerability Assessment (DIMVA), 2009.

[8] Adebe Flash Player remote code execution.
http://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2007-3456.

[9] D. A. Freedman. Statistical Models and Causal
Inference: A Dialogue with the Social Sciences.
Cambirdge University Press, 2010.

[10] S. Gianvecchio, M. Xie, Z. Wu, and H. Wang.
Measurement and classification of humans and
bots in internet chat. In Proceedings of USENIX
Security Symposium, 2008.

[11] C. Grier, S. Tang, and S. T. King. Secure web
browsing with the OP web browser. In IEEE
Symposium on Security and Privacy, May 2008.

[12] R. Gummadi, H. Balakrishnan, P. Maniatis, and
S. Ratnasamy. Not-a-Bot: Improving service
availability in the face of botnet attacks. In
Proceedings of the 6th USENIX Symposium on
Networked Systems Design and Implementation
(NDSI), 2009.

[13] HTML Object Memory Corruption Vulner-
ability. http://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2010-0249.

[14] Vulnerability Note VU#493881. US-CERT.
http://www.kb.cert.org/vuls/id/493881.

[15] P. Likarish, E. E. Jung, and I. Jo. Obfuscated
malicious javascript detection using classifica-
tion techniques. In Proceedings of 4th Interna-
tional Conference on Malicious and Unwanted
Software, 2009.

[16] M. T. Louw, J. S. Lim, and V. N. Venkatakr-
ishnan. Enhancing web browser security against
malware extensions. Journal in Computer Virol-
ogy, 4(3):179–195, 2008.

[17] L. Lu, V. Yegneswaran, P. Porras, and W. Lee.
Blade: An attack-agnostic approach for prevent-
ing drive-by malware infections. In Proceed-
ings of 17th ACM Conference on Computer and
Communications Security, 2010.

[18] www.malwaredomainlist.com.
[19] www.malwareurl.com.
[20] A. Moshchuk, T. Bragin, and D. Deville.

SpyProxy: Execution-based detection of mali-
cious web content. In Proceedings of the 16th
USENIX Security Symposium, 2007.

[21] Microsoft high-risk extensions. http:
//support.microsoft.com/kb/883260.

[22] A. Niki. Drive-by download attacks: Effects and
detection methods. Master’s thesis, Royal Hol-
loway University of London, 2009.

[23] N. Provos, D. McNamee, P. Mavrommatis,
K. Wang, and N. Modadugu. The ghost in the
browser analysis of web-based malware. In Hot-
Bots’07: Proceedings of the first conference on
First Workshop on Hot Topics in Understand-
ing Botnets, Berkeley, CA, USA, 2007. USENIX
Association.

[24] Apple QuickTime 7.3 RTSP Re-
sponse Exploit, CVE-2007-6166, http:
//securityevaluators.com/content/
case-studies/sl/.

[25] J. Shirley and D. Evans. The user is not the en-
emy: Fighting malware by tracking user inten-
tions. In Proceedings of New Security Paradigms
Workshop (NSPW), pages 22–25, September
2008.

[26] skape. Understanding windows shellcode.
http://www.nologin.org/Downloads/
Papers/win32-shellcode.pdf, 2003.

13

[27] skape. Metasploit’s meterpreter. http:
//www.nologin.org/Downloads/Papers/
meterpreter.pdf, 2004.

[28] skape and J. Turkulainen. Remote library in-
jection. http://www.nologin.org/Downloads/
Papers/remote-library-injection.pdf,
2004.

[29] C. Song, J. Zhuge, X. Han, and Z. Ye. Pre-
venting drive-by download via inter-module
communication monitoring. In Proceedings
of the 5th ACM Symposium on Information,
Computer and Communications Security (ASI-
ACCS), 2010.

[30] A. Sotirov. Heap Feng Shui in JavaScript.
http://www.phreedom.org/research/
heap-feng-shui/.

[31] E. H. Spafford and G. Kim. The design and im-
plementation of tripwire: A file system integrity
checker. In 2d ACM Conf. on Computer and
Communication Security (CCS), 1994.

[32] A. Srivastava and J. T. Giffin. Automatic discov-
ery of parasitic malware. In S. Jha, R. Sommer,
and C. Kreibich, editors, RAID, volume 6307 of
Lecture Notes in Computer Science, pages 97–
117. Springer, 2010.

[33] A. Stamminger, C. Kruegel, G. Vigna, and
E. Kirda. Automated spyware collection and
analysis. In P. Samarati, M. Yung, F. Martinelli,
and C. A. Ardagna, editors, ISC, volume 5735 of
Lecture Notes in Computer Science, pages 202–
217. Springer, 2009.

[34] D. Stefan, C. Wu, D. Yao, and G. Xu. Crypto-
graphic provenance verification for the integrity
of keystrokes and outbound network traffic. In
Proceedings of the 8th International Conference
on Applied Cryptography and Network Security
(ACNS), June 2010.

[35] D. Stefan and D. Yao. Keystroke-dynamics au-
thentication against synthetic forgeries. In Pro-
ceedings of the International Conference on Col-
laborative Computing: Networking, Applications
and Worksharing (CollaborateCom), November
2010.

[36] B. Stone-Gross, M. Cova, L. Cavallaro,
B. Gilbert, M. Szydlowski, R. A. Kemmerer,
C. Kruegel, and G. Vigna. Your botnet is my
botnet: analysis of a botnet takeover. In E. Al-
Shaer, S. Jha, and A. D. Keromytis, editors,
ACM Conference on Computer and Communi-
cations Security, pages 635–647. ACM, 2009.

[37] Superbuddy exploits through AOL activeX
control. http://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2006-5820.

[38] H. J. Wang, X. Fan, J. Howell, and C. Jackson.
Protection and communication abstractions for
web browsers in MashupOS. In ACM Symposium
on Operating Systems Principle (SOSP), pages
1–16. ACM Press, 2007.

[39] H. J. Wang, C. Grier, A. Moshchuk, S. T.
King, P. Choudhury, and H. Venter. The multi-
principal OS construction of the Gazelle web
browser. In Proceedings of the 18th Usenix Se-
curity Symposium, August 2009.

[40] Y.-M. Wang, D. Beck, X. Jiang, R. Roussev,
C. Verbowski, S. Chen, and S. King. Automated
web patrol with Strider HoneyMonkeys: Finding
web sites that exploit browser vulnerabilities. In
Proceedings of the Annual Symposium on Net-
work and Distributed System Security (NDSS),
2006.

[41] H. Xiong, P. Malhotra, D. Stefan, C. Wu, and
D. Yao. User-assisted host-based detection of
outbound malware traffic. In Proceedings of
International Conference on Information and
Communications Security (ICICS), December
2009.

[42] S. Zarandioon, D. Yao, and V. Ganapathy.
OMOS: A framework for secure communication
in mashup applications. In ACSAC’08: Proceed-
ings of the 24th Annual Computer Security Ap-
plications Conference, pages 355–364, December
2008.

A Pseudo-Code of DeWare De-
tection Algorithm

B Evaluation of Commercially-
Available Security Products

C Accessible Area For Firefox
Browser

14

Product Driver Engine
Version

Definition Reaction

360 Safeguard v3.0 2008-6-16 No detection
360 v6.0.1 2008-6-16 No detection
360 v6.0.1 2009-10-27 No detection
360 v6.0.2 2009-10-14 Detected heap spray attack, shut-

down iexplorer.exe
Zonealarm Pro 7.0.483 Anti-spyware engine 5.0.189 Captured .exe trying to access In-

ternet; user clicked “Deny”; but
.exe was still downloaded

8.0.400 Anti-spyware engine 5.0.209
9.1.008 Anti-spyware engine 9.1.008

Trend Micro In-
ternet Security
Pro

v8.952 Pattern version 6.289 No detection

Pattern version 6.587.50 2009-10-
29

No detection

Microsoft Secu-
rity Essentials

Virus Definition 1.69.825, Spy-
ware Definition 1.69.825 2009-11-
11

Detected threats; user clicked
“Clean the threat”; but .exe files
were still downloaded

AVG Internet
Security

v8.5.423 Virus DB 270.14.20 2009-03 Threats detected; page blocked

v9.0.707 Virus DB 270.14.68/2507 2009-
11-16

Detected threats; page blocked

McAfee v8.1 Build
8.1.175

VirusScan v12.1, 2009-10-28,
Personal Firewall v9.1 2009-10-
28, Anti-Spam v9.1 2009-10-29

Buffer overflow attack captured

Kaspersky Inter-
net Security

v7.0 Database 2007-10-1 Detect suspicious “Data Execu-
tion”

Table 3: Comparison of security products’ effectiveness against IE 7 XML DBD attack.

\DocumentsandSettings\dyao\LocalSettings\Temp\
\DocumentsandSettings\dyao\ApplicationData\Mozilla\Firefox\Profiles\
\DocumentsandSettings\user\LocalSettings\ApplicationData\Mozilla\Firefox\MozillaFirefox\
\DocumentsandSettings\user\LocalSettings\ApplicationData\Mozilla\Firefox\Profiles\
\ProgramFiles\MozillaFirefox\
\DocumentsandSettings\user\ApplicationData\Macromedia\FlashPlayer\
\WINDOWS\system32\Macromed\Flash\
\DocumentsandSettings\user\ApplicationData\Adobe\FlashPlayer\
\DocumentsandSettings\user\ApplicationData\Adobe\Acrobat\
\DocumentsandSettings\AllUsers\ApplicationData\Adobe\Reader\
\ProgramFiles\CommonFiles\Adobe\
\DocumentsandSettings\AllUsers\ApplicationData\Real\
\WINDOWS\Tasks\RealUpgradeScheduledTaskS
\WINDOWS\Tasks\RealUpgradeLogonTaskS
\DocumentsandSettings\user\ApplicationData\Sun\Java\
\DocumentsandSettings\user\LocalSettings\ApplicationData\Microsoft\WindowsMedia\
\DocumentsandSettings\user\LocalSettings\TemporaryInternetFiles\
\DocumentsandSettings\user\Cookies\

15

Require:

File creation events filtered from I/O request packets:

 , , ,… …, , … …

Process creation events from system built-in security auditing:

 , , ,… …, , … …

Result: alert if safety policy violated

#Define

Threshhold: T

T = latency between user input and corresponding file creation

A set of high-risk file extensions: Hi-risk

Hi-risk = {.bat, .cmd, .exe, .js, … …}

Accessible area: A-area

A-area = {C:\....\Local Settings\Temp,

C:\... \Local Settings\Temporary Internet Files, … …}

Downloadable area: D-area

D-area = {D:\My Documents\Downloads, … …}

for each do

 if Path() ∈ A-area

 OK

 end if

 if Path() ∈ D-area

 if Extension() ∈ Hi-risk

 if Input-Timestamp() ≤ T

 OK

 end if

 Generate an alert

 end if

 OK

 end if

Generate an alert

end for

while (true) do

 if Path() ∈ A-area or Path() ∈ D-area

 Generate an alert

 end if

end while

Figure 6: Detection algorithm in pseudo-code.

16

