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Abstract

There has been much recent work on privacy-preservingscoasrol negotiations, i.e., carrying out
the negotiation in a manner that minimizes the disclosuoeaxfentials and of access policies. This paper
introduces the notion of point-based policies for accesgroband gives protocols for implementing
them in a disclosure-minimizing fashion. Specifically, Ba@tues each credential with a certain number
of points and requires a minimum total threshold of pointfleegranting Alice access to a resource.
In turn, Alice values each of her credentials with a privacyre that indicates her reluctance to reveal
that credential. She is interested in achieving the reduineeshold for accessing the resource while
minimizing the sum of the privacy scores of her used credéntiBob’s valuation of credentials is
private and should not be revealed, as is his thresholde&lrivacy-valuation of her credentials is also
private and should not be revealed. What Alice uses is a sobser credentials that achieves Bob’s
required threshold for access, yet is of as small a valuertasipossible.

We give protocols for computing such a subset of Alice’s ergthls without revealing any of the
two parties’ above-mentioned sensitive valuation fumtiand threshold numbers. A contribution of this
paper that goes beyond the specific problem considered inexajenethod for recovering an optimal
solution from any value-computing dynamic programming patation, while detecting cheating by the
participants. Specifically, our traceback technique sadie the subset sum problem to force consistency.

1 Introduction

A typical scenario for accessing a resource using digitatientials is for the client, Alice, to send her
request to Bob, who responds with the policy that governgsecto that resource. If Alice’s credentials
satisfy Bob’s policy, she sends the appropriate credent@aBob. After Bob receives the credentials and
verifies them, he grants Alice access to the resource. Qbo#gat; in this scenario, Alice learns Bob's policy
and Bob learns Alice’s credentials. However, this mechmanssunacceptable if the credentials or the access
control policies are considered to be sensitive infornmatio

The motivation for hiding credentials is individual privae.g., if the credentials are about one’s phys-
ical impairment or disability, financial distress, pol#icor religious affiliation, etc. The motivation for
hiding the policy is not only security from an evil adversamat simply the desire to prevent legitimate
users from “gaming” the system — e.g., changing their bajrdvased on their knowledge of the policy
(which usually renders an economically-motivated polieysl effective). This is particularly important for
policies that are not incentive-compatible in economicn®(they suffer from perverse incentives in that
they reward the wrong kinds of behavior, such as free-lagdim yet other examples, the policy is simply
a commercial secret — e.g., Bob has pioneered a novel waying dosiness, and knowledge of the policy
would compromise Bob’s strategy and invite unwelcome itoita

It is also important to point out that a process that treatsed credentials as confidential is ultimately
not only to Alice’s advantage but also to Bob’s: Bob can wadess about rogue insiders in his organization
illicitly leaking (or selling) Alice’s private informatin, and may even lower his liability insurance rates as
a result of this. Privacy-preservation is a win-win propiosi, one that is appealing even if Alice and Bob
are honest and trustworthy entities. This paper gives anmasagement model that quantitatively addresses
degrees of sensitivity. Moreover, the degree of sengitivita given credential is private to each user, and
can vary from one user to another.



1.1 Motivations

In a probing attack, Alice can engage in a protocol with Bolitiple times using different credential sets
each time (all of which are subsets of her credentials) to g@ormation about Bob’s policy. In the case
where Alice is requesting access to a service, Bob will kndvetiver she got access and can therefore also
probe (by using different policies and observing their &lféo gain information about Alice’s credentials.

One way of mitigating probing attacks is the one followedhe trust negotiation literature [8, 42,
46, 47, 48, 53, 54, 55], in which the disclosure of a credémgigoverned by an access control policy
that specifies the prerequisite conditions that must befiatiin order for that credential to be disclosed.
Typically, the prerequisite conditions are a subset of #ieall credentials, and the policies are modeled
using propositional formulas. A trust negotiation protoisonormally initiated by a client requesting a
service or aresource from a server, and the negotiationstsrms a sequence of credential exchanges: Trust
is established if the initially requested service or reseus granted and all policies for disclosed credentials
are satisfied [48, 53].

Although mitigating probing attacks, the requirementsheftrust negotiation literature have some prac-
tical limitations. (1) Probing is still possible when policies are not treated asitee resources, and the
client (or server) can game the system in many ways. For ebeanfiphe client knows the access control
policies for the server’s credentials then she will know piagh of least resistance to unlock certain cre-
dentials. (2) Pre-mature information leaking is difficult to prevent inisig trust negotiation protocols
including the recent framework using cryptographic créidés[39]. The pre-mature information leaking
refers to the situation when a negotiation is not successtulever sensitive credentials of a negotiator are
already disclosed3) The service model in trust negotiation is usually limitddhttis, the requested service
is fixed and independent of the amount of information relédsethe client at the end of the negotiation
session. However, a client may end up disclosing more irdtion than what is required for the initially
requested service. The reward or service provided by thesshould be dynamically adjustable with the
amount of information released from the client.

As will become clear soon, the approach presented in thisrpajiigates the above-mentioned prob-
lems. The computation for determining whether a user sagisfipolicy is privacy-preserving, whareither
party needs to disclose sensitive information. The pol&less rigid than a Boolean expression, which
makes probing by Alice harder. Of the multiple ways of sgirgf the policy, Alice will tend to use the one
that utilizes the credentials whose privacy she valueg.leas

1.2 Overview

The concept of quantitatively addressing the trust estatsient problem has existed in several papers on
trust and reputation models [7, 21, 51, 56]. These models Applications in open systems such as mobile
ad hoc networks, Peer-to-Peer networks [21], and e-trastersg.

We consider a new point-based trust management policyefr#itlan a Boolean expression) that is pri-
vate and should therefore not be revealed to Alice: Bob #&st&sca number of points with every possible
credential, and requires the sum of the points of those otedethat Alice uses to reach a minimum thresh-
old before he grants her access to the resource. Each restefines its own threshold, and that threshold
is itself private and should not be revealed to Alice. Ali@eds to satisfy the threshold requirement to
gain access by using a subset of her credentials that givehdneequired number of points, but there can
be many such subsets: Alice is interested in using the stihgehas minimum privacy-value to her, ac-
cording to her privacy-valuation function; that valuatiomction is itself private and should not be revealed
to Bob. We give a protocol which determines which subset ate’d credential®ptimally satisfies Bob’s
threshold, i.e., it has minimum privacy value to Alice amatigsubsets that satisfy Bob’s threshold. Bob'’s
point-valuation of credentials, his thresholds, and Adiggivacy-valuation of her credentials are all private
and not revealed by the protocol.



1.3 Applications

The point-based model explicitly associates credentiath walues obtained from the service provider,
therefore the client’'s reward or service can be dynamiaadiysted according to the amount of information
released. This flexibility makes the point-based modehaetitre to the trust management in web-services
and e-commerce applications in general, as users havedbstives to carry on the computation for trust
establishment, which facilitates business transactions.

Another important type of applications for point-based elad privacy-aware presence systems [5,
33, 49], where presence data such as the location of a useliésted through devices such as GPS on a
cellphone. The management of presence data is crucialygedaconcerns not only user privacy, but also
safety: presence data can be used to track and profile indigdIn the meantime, there may be emergency
situations or extenuating circumstances when certainegaftike emergency workers) should have access
to this kind of information, and friends and relatives of ausight be allowed to query his or her location
information at any time. Therefore, a desirable featurelotation query system is that it provides different
levels of precision based on the requester’s trustworsisire¥ the context of the query. This requires a
flexible authorization model for accessing the private fiocedata, which can be offered by the point-based
authorization model.

1.4 Our contributions

1. We propose a point-based trust management model and mealfpe the credential selection problem
of the model into a knapsack problem. Our point-based trustagement model enables users to
quantitatively distinguish the sensitivities of diffetamedentials. It also allows a provider to quanti-
tatively assign values to credentials held by clients. Toiatgbased model has several featur@s:
Policy specification is simple and easily allows dynamicuatipent of services provided based on
released credentialgii) A user can pro-actively decide whether the potential pyvass is worth
the service without disclosing any sensitive informati¢ii) To satisfy a policy, a user can select
to disclose theoptimal credential set that minimizes the privacy loss, based omhiser personal
measure.

2. We give secure and private dynamic programming protdoolsolving the knapsack problem. Our
solution, consisting of a basic protocol and an improvedqaal, allows the server and user to jointly
compute the optimal sum of privacy scores for the releasedienitials, without revealing their private
parameters. The complexity of our basic protoc@li®7”), wheren is the total number of credentials
andT” is the (privateymarginal thresholdwhich corresponds to the sum of the points of the credantial
that arenotdisclosed. The protocol makes use of a homomorphic enorygttheme, and is semantic-
secure under a semi-honest adversarial model.

Our improved protocol, théngerprint protoco] is secure in an adversarial model that is stronger
than a semi-honest one (a.k.a honest-but-curious). Theoirag protocol prevents a participant from
tampering with the values used in the dynamic programmimgpedation. That is, while we cannot
prevent a participant from lying about her input, we can déaronsistency in lyindy preventing
capricious use of different inputs during the crucial solitraceback phase. The complexity of our
fingerprint protocol iO(n?T").

3. One contribution of this paper that goes beyond the spamifiblem considered is a geneiradiexing
expansiomrmethod for recovering an optimal solution from any valueapating dynamic program-
ming computation, while detecting cheating by the paréioig. Our traceback technique relies on
the subset sum problem and random information checksumféwoenthe consistency of a partici-
pant. Using this method, a participant is not required tetttiie other party during the back-tracing
phase. This is possible because the participant is ablditteatly identify whether the other party
has tampered with the computation. Furthermore, sengtivameters used by both parties remain



private in the protocol. For the traceback in general dyegmbgramming problems, our algorithm
not only allows a participant to independently and easitpver the optimal traceback solution, once
the computed optimal value is given, but also enables thicqeants to verify the integrity of the
optimal value.

Organization of the paper. The paper is organized as follows. Our point-based trustigement model is
presented in Section 2. The basic protocol for privacygmasg credential selection is given in Section 3.
The improved protocol is given in Section 4. We analyze tloeisty in Section 5. Related work is given in
Section 7. Conclusions and future work are given in Section 8

2 Model

In this section, we describe a point-based trust managemeadé!, and define the credential selection prob-
lem in this model.

2.1 Point-based trust management

In the point-based trust management model, the autharizabilicies of a resource owner definesaaaess
thresholdfor each of its resources. The threshold is the minimum amaoiupoints required for a requester
to access that resource. For example, accessing a medigbhda requires fifty points. The resource owner
also defines goint valuefor each type of credentials, which denotes the number aftpair credits a
requester obtains if a type of credential is disclosed. kample, a valid ACM membership is worth ten
points. This means that a client can disclose his or her ACvhbezship credential in exchange for ten
points. We call this a trust management model as opposeddoaass control model, because the resource
owner does not know the identities or role assignments afiestgrsa priori as in conventional access
control settings.

A requester has a set of credentials, and some of which mapsdered sensitive and cannot be
disclosed to everyone. However, in order to access a cegsaurce, the requester has to disclose a number
of credentials such that the access threshold is met by #wtoded credentials. Different clients have
different perspective on the sensitivity of their credalsti even though the credentials are of the same type.
For example, a teenager may consider age information iitsensvhereas a middle-aged person may not
be very willing to tell his or her age.

Therefore, in point-based trust management model, eaehtadefines @rivacy scorefor each of their
credentials. The privacy score represents the inverseafilingness to disclose a credential. For example,
Alice may give privacy score 10 to her college ID, and 50 to ¢redit card. The client is granted access
to a certain resource if the access threshold is met and tiledfisclosed credentials are valid. Otherwise,
the access is denied. From the requester’s point of viewceng&al question is how to fulfill the access
threshold while disclosing thieastamount of sensitive information. We now define this as a crtale
selection problem. Solving the credential selection mobis challenging, because the requester considers
his or her privacy scores sensitive, and the server corssitdgpoint values and access threshold sensitive.

Note that there is no need for a trusted third-party (TTP)unmodel, because the signatures on the
digital credential of a client can be verified by the serveewkelected credentials are exchanged.

2.1.1 Expressiveness of point-based trust management

One advantage of conventional Boolean-based access abdramagement is the ability to express poli-
cies at a fine-grained level. One way to improve the expressss of point-based trust management is to
support theyping of points For example, financial point-type represents credit cacdlmnk account, and
demographic point-type represents birth date, addreskatitiation. In the on-line shopping scenario, a
conventional policy defined by the server requires the tleisclose valid demographic information that



is either an email address or a home address, and valid fatami@rmation that is either a credit card num-
ber or a bank checking account humber, iemail address vV home address ) A (credit card v bank
account).

One way to translate this policy to points and thresholdsointgbased trust management is as follows.
The server specifies equal point values (e.g., 20) for thaleddress and the home address, and equal
point values (e.g., 40) for the credit card number and the lzaxcount. The threshold fatemographic
point-typeis 20 and for thedfinancial point-typeis 40. In general, the number of options for the client to
disclose private information may be large. For example,diet can disclose a certain combination of
home phone/address, work phone/address, email addrassurfgber, etc. With this typing mechanism,
the server can improve the expressiveness of point valnesthe client can choose the optimal subset of
information to release for each point-type. To supportrigpithe credential selection protocol (presented
later) needs to be run multiple times, twice in this examflbe translation between point-based policies
and Boolean policies is an interesting research topic, sdhject to our future study.

Where do point values come from? One approach to obtain point values is from reputation gyste
[7, 45, 56]. Essentially the point value of a credential esints the trustworthiness of the organization that
issues the credential. If a resource owner thinks organizat is more reputable than organizatiéh the
resource owner specifies a higher point value for a credessiaed byA than the one issued by. This

idea has been explored in a recent paper that quantitastetifes the connections between computational
trust/reputation models with point values in point-bagedttmanagement [51]. The paper also discusses the
application of such models in privacy-preserving locasgatems. The work in trust models and reputation
systems [7, 45, 56, 51] serve as a starting point for dematirglr the applicability of point-based trust
management.

2.2 Credential selection problem

Definition 1 The credential selection problem is to determine an opticoahbination of requester’s cre-
dentials to disclose to the resource owner, such that thenmalramount of sensitive information is disclosed
and the access threshold of the requested resource is edttsfithe disclosed credentials.

We formalize the credential selection problem as an op#tion problem. Our model assumes that the
resource owner (or server) and the requester (or clienfeagn a set of credential types as the universe of
credential§ C1, ..., C,,). We define a binary vectdr, . .., z,) as the unknown variable to be computed,
wherez; is 1 if credentialC; is selected, and O if otherwise. Integgr> 0 is theprivacy scoreof credential
C;. ltis assigned by the requestepriori. If the requester does not have a certain crede@tiathe privacy
scorea; for that credential can be set to a large integer. The sem@nats? that is theaccess threshold
of the requested resource. Integer> 0 is thepoint valuefor releasing credential typ@;. The requester
considers all of the:; values sensitive, and the server considers the accestdhtds and all of thep;
values sensitive.

The credential selection problem is for the requester topegena binary vectofz, . .., z,) such that
the sum of pointsy_" | ;p; satisfiesT', and the sum of privacy scorgs;  ; x;a; is minimized. This
is captured in the following minimization problem. Compuatdinary vector(xi,...,z,) such that the
following holds:

n
min Z T;0;
i=1
n
subjectto » “ap; > T
i=1

The above minimization problem can be rewritten into a kaakgroblem with a new variablg =
1 —z; € {0,1}. Fori-th credentialy; = 1 represents not disclosing the credential, gne- 0 represents
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disclosing the credential.
n
max Z Yia;
i=1
n n
subject to Z yipi < sz- -7
=1 =1

The dynamic programming solution for the knapsack problepsieudo-polynomial: the running time
isinO(nT"), whereT” = 3" | p; —T. We refer tol” as themarginal thresholdwhich coarsely correlates
to the sum of the points of the credentials that are not disclo

Definition 2 The marginal threshold” of the credential selection problem is defineda$ , p, —1', where
p; is the point value for credential typ@;, T is the access threshold for a requested resource,raigithe
total number of credential types.

Let us first review the dynamic programming solution for thi& Knapsack problem [19]. Then, we
describe our protocol for carrying out private dynamic pemgming computation of the knapsack problem.
The 0/1 knapsack problem is defined as follows. Given itendift@rent integer values and weights, find
the most valuable set of items that fit in a knapsack of fixeegiat capacity. In the dynamic programming
of knapsack problem, a table is made to track the optimatgeteof items so far. A column indicates the
range of values, which corresponds to the target weightekttapsack. A row corresponds to each item.
The table stops at the maximum capacity of the knapsack. Wtecfilumn and the first row are initialized
to zeros, i.e. My ; and M; o are zeros, for ali € [1,n] andj € [0,7”]. The table is filled from top to
bottom and from left to right. Using the notations definediearthe recurrence relation is formally defined
as follows. Denotél/; ; as the value atth row andj-th column, and € [0,n],j € [0,7"].

M; ; = M;_q; ifj <pi
max{M;_1;, Mi_1;_p, +a;} ifj>p;

Each entry of the table stores the total value of a knapsablghais determined as either the value of
a knapsack without the current item (expressed as the vadeetlg to the top of the current entry), or the
value of the knapsack with the current item added into it. &t énd of the computation, the entry at the
lower right corner of the table contains the optimal valugehaf knapsack. The selections of items can be
obtained by book-keeping the information of where the valuan entry comes from.

For our credential selection problem, the above recurregle¢ion can be interpreted as follows. If the
point value of credential typ€'; exceedsg, which is a value in the range @, 7"], then thei-th credential
is not selected and the privacy scavg ; is kept the same a&/;_, ;. Otherwise, the algorithm compares
the scoreM;_; ; for not selecting the-th credential with the scor&/;_, ;_,, + a; for selecting the-th
credential. The larger value is chosen to be the privacyestfy;.

The standard dynamic programming computation requiresegal andp; for all i € [1, n]. However, in
our model, the requester considegssensitive, and the server considgysensitive. We present a protocol
that allows the completion of the dynamic programming cotation without revealing any sensitive infor-
mation. In addition to protecting sensitivg andp; values, the entries in the dynamic programming table
are also protected from both parties. From this perspeatireprotocol provides better privacy protection
than the secure multi-agent dynamic programming work byodaknd Suzuki [52], as their approach cannot
prevent the disclosure of table entries.

Privacy score of a credential setin the current model, the privacy score of multiple credaatis the sum
of each individual privacy score. The summation represth@sadditive characteristic of privacy, and is
simple to model. Another advantage of the summation of pyngores is the efficiency; the specification
of privacy scores has a size linear in the number of credsntitowever, the client may want to explicitly



specify an arbitrary privacy score of a certain group of gmescredentials. The group privacy score may be
higher or lower than the sum of individual privacy scorese Tdtter case can happen when one credential
might subsume or include some information that is includethe other credential(s). However, the dy-
namic programming solution is not clear for the dynamic paogming problem with arbitrary constraints.

It remains an interesting open question how to formulatedyramic programming to support arbitrary
privacy score specifications.

3 Basic protocol

We present the basic protocol, which is a secure two-panmaehyc-programming protocol for computing
the optimal solution of the credential selection probleme Basic protocol has two sub-protocols: recursion
and traceback, which represent the two phases of dynangcgroming. The protocol maintains the secrecy
of sensitive parameters of both parties. Furthermoreheethe server nor the client learns any intermediate
result. The main technical challenge is that the server doésvant to reveal point valuep;} and the
client does not want to reveal privacy scofes}. As shown by the recurrence relation in Section 2, it
seems difficult to compute entry/; ; without knowingp; anda;. We overcome the challenge by designing
a protocol that hides the conditional testing from the ¢liérhe basic protocol is efficient and is secure in
the semi-honest adversarial model.

3.1 Building blocks

In our protocol, we store values in a modularly additivelyitsmanner with a large base calldd The
additively split manner means that the server and the ckewch has a share of a value, and the value
equals to the sum of their shares modularlf z° andz® represent the share of the server and the client,
respectively, then the value equalsitd+ 2¢ mod L. We useL — i to represent-i (and use to represent

7). This implies that the range of the values is betw@énandg, and L must be chosen so that it is larger
enough to prevent accidental wrap-around. Secure twg-paxiate protocols were given in [26] that allow
comparison of above described values, in which the comprarissult is additively split between the server
and the client. It is easy to modify these protocols to comphe maximum of the values in additively
split format, which we refer to as th@ivate two-party maximum protocoWe use the private two-party
comparison and maximum protocols in our paper as a black box.

Our protocols use homomaorphic encryption extensively. dRdhat a cryptographic scheme with en-
cryption function E is said to be homomorphic, if the following hold¥(z) * E(y) = E(z + y).
Another property of such a scheme is thatz)? = E(zy). The arithmetic performed under the en-
cryption is modular, and the modulus is part of the publicapssters for this system. Homomorphic
schemes are described in [20, 41]. We utilize homomorphitygtion schemes that are semantically se-
cure. Informally, a homomorphic schemesismantically securé the following condition holds. Given
the public parameters of a homomorphic scheffjeand the encryption of one of the two messages
m’ wherem is from a specific message and is chosen uniformly random from the message space, then
|(Pr(P(E(m))) = 1) — Pr(P(E(m/)) = 1)| is negligible for any probabilistic polynomial time algo-
rithm P.

3.2 Bird’s eye view of protocol

The basic protocol consists of two sub-protocols: the beeiarsion sub-protocol and the basic traceback
sub-protocol.

e Basic recursion sub-protocol: the client and server compuft: + 1) x (7" + 1) matrix M in an
additive split form. Let)M; ; denote the value stored at theh row andj-th column. LetEq be
the public encryption function of the client’s semantigedecure homomaorphic encryption scheme.
The server learn&c(1; ;) values for alli € [1,n] andj € [1,7”]. From the security oftc, a



computationally-bounded server gains no information ftbeEc (M, ;) values. The server com-
putes (with the client’s help) the valugs (M ;), when givenEc (M ;) for all values(i’, ;') that
are dominated byi, j), for alli € [1,n] andj € [1,T"]. My ; andM,  are zeros, for all € [0,n]
andj € [0,7"].

e Basic traceback sub-protocol: once the dynamic programrtgble has been filled, the client dis-
covers (with the server’s help) the set of credentials thattbeen selected to disclose. The optimal
selection is revealed to both parties.

Note that the basic recursion sub-protocol should unifydperations in the two case$ K p; and
j > p;) of the recurrence relation. Otherwise, the client camigafrom the computation. We solve this by
designing a generic and private maximum function and bytaetii splitting intermediate results between
the two patrties.

3.3 Basic recursion sub-protocol
The basic recursion sub-protocol is described in Figure 1.

[¢)

Setup: The client has published the public parameters of a senadlgtisecure homomorph
schemeE~. We will use the base of this scheme as the modulus for theiealgisplit values.

Input: The server ha€ic(M; ;) for all values(i’, ;') that are dominated by, j), wherei €
[1,n] andj € [0,7']. The sever also has point valugs . . ., p, and the client has privacy scores

Aly...,0np.
Output: The server learn&c (M, ;).
Steps:

1. The server creates a pair of valugsanda,, whereay = Ec(M;—1 ;), andoy = Ec(—00)
if p; > j, andoy = Ec(M;—1 ;—p,) Otherwise. Without lose of generality, we assume that
values defined by the client are always bounded by an intBgéat is known to the server,
i.e.a; < Bforalli € [1,n]. The server then usesB — 1 as—oo. The server also chooses
random values, andr;, and sends to the clieaty Ec(r9) anday Ec(r1).

2. The client decrypts the values to obtgnand3,. The server sets its shares-te, and—rq
and the client sets its sharesggand 3, + a;. Note that the two candidate values fof; ;
are additively split between the client and the server.

3. The client and the server engage in a private maximum gobto compute the maximum of
these two values in an additively split format. Denote theres by andzC.

4. The client send&c(2“) to the server, and the server compuigs(z© + =) and sets thi
value as his output.

192

Figure 1: Basic recursion sub-protocol.

Whenj > T’ (recall thatT” = > | p; — T'), the server stops the protocol. The last edify ;+ of the
dynamic programming matrix has been computed. The cliemwkrthe marginal thresholfl’, as she keeps
her share of the matrix. Yet, the client does not learn th&iedal point valuep; and access threshold
from the computation so far.

Lemma 1 The complexity of the basic recursion sub-protocaDig:7”), with O(1) homomorphic encryp-
tions or decryptions at each round, wheneis the total number of credentials arif is the marginal
threshold.

The proof of Lemma 1 is in the Appendix.



The basic recursion sub-protocol runs(rn1”), where marginal threshold@” or the number of cre-
dentialsn can potentially be large. We point out that an important ath@e of our protocol compared to
conventional boolean-based policies lies in the privagserving functionality offered. Our protocol not
only computes the optimal selection of credentials, but dtses it in a privacy-preserving fashion for both
the server and client. For conventional policies, the tapect cannot be easily achieved without having
the server to publish or disclose unfairly its policies.

The protocol presented here is secure in the semi-honestsatty model, which is improved later by
our indexing expansion method in Section 4. The detailedrigg@nalysis is given in Section 5.

3.4 Basic traceback sub-protocol

To support the back-tracking of the optimal solution (itlkee, optimal credential set to be disclosed), the basic
recursion sub-protocol needs to be modified accordinglythAtstep 3 in the basic recursion sub-protocol,
not only the maximum but also theomparison resulof the two candidate values fd/; ; are computed
forall : € [1,n] andj € [1,7"]. During the computation, neither the server nor the cliemivks the result
of the comparison tests, as the result is split between tiom the recurrence relation in Section 2, it is
easy to see that the comparison result directly indicatestiveina; is contained in/; ; and thus whether
credentialC; is selected. Denoté’ as a matrix that contains the result of the comparisons, wdifynthe
previous basic recursion sub-protocol so that the sereenseézc (F; ;) for the entire matrix. In the basic
traceback sub-protocol, the server and the client workttegeo retrieve the plaintext comparison results
starting from the last entry of the table, following the cartggion path of the optimal dynamic programming
solution.

Figure 2 describes the basic traceback sub-protocol.

O

Input: The server has matrix entri¢&'c (M; ;) } and{ Ec(F; ;) } encrypted with the client’s publi
key, for alli € [1,n] andj € [1,7"]. The client has her private key.

Output: The client learns the optimal value of the dynamic prograngnciomputation of knapsack.
The server and the client learn the optimal selection ofamédls, or nothing.
Steps:

1. The server sends the cliefit(M,, 7). The client decrypts the ciphertext to obtain the result
M, 1. M,  represents the privacy score associated with the unseleatdentials. If this
value is acceptable to the client according to some pre-gtkfirivacy standard set by the
client, then this sub-protocol continues. Otherwise, shis-protocol terminates.

2. The server reveals the entBy (£}, 1) to the client.

3. The client decrypté’c (F,, 1) to obtainF,, 7+ € {0,1}. The client sends the plaintext value
F,, 1+ to the server (The server then knows whetfigris selected or not.)
If F, 7 = 1, then credential’;, will not be disclosed. F;, 7+ = 1 also means that entfy
M,, 1+ is computed from entry/,,_; 7. Therefore, the server next revedls: (F,,_; 1) to
the client. If £, v = 0, then the server next reveal& (£, 77—, ), as the entryM,, 7 is
computed from entryl,,_q 7/,

4. The revealed entries represent the computation patheabgtimal knapsack dynamic prn
gramming solution. The above process is repeated mméhches zero.

(@)
1

Figure 2: Basic traceback sub-protocol

Lemma 2 The complexity of the basic traceback sub-protoca (s ), with O (1) homomorphic decryptions
at each round, where is the total number of credentials.



The following theorem states the overall complexity of tlasib protocol.

Theorem 1 The complexity of the basic protocoli¥n7T"), wheren is the total number of credentials and
T’ is the marginal threshold.

The proof of Theorem 1 is in the Appendix.

The basic traceback sub-protocol assumes that the seresrra maliciously alter the computation
results. In the case of a malicious server, the server may/Be(0) instead of the real values to mislead the
client to disclose all credentials. Although the attack Imige caught by the client (as the client may find a
subset of credentials that still satisfies the thresholdtramt), we give a stronger traceback algorithm that
pro-actively prevents this type of attacks in the next secti

4 Fingerprint protocol

In this section, we give an alternative protocol for privgmeserving knapsack computation. The new
approach is inspired by treubset sum problenyet we stress that this solution does not require the client
to solve the general subset sum problem. The main idea iotw #ie client fot the servérto efficiently
identify the selected credentials from the optimal privacgre. The new protocol, which we refer to as
the fingerprint protoco}t is an important step towards a protocol that is secure agaiakcious servers,
because it can be extended to prevent the server from tamgyge computation during traceback.

In addition to solving our credential selection problemddnmus the knapsack problem), the fingerprint
protocol can be generalized to solve the traceback probieariarge variety of integer linear programming
problems. It can be used for one party to securely and phvatace the optimal solution from the final
computed value, with very little or no participation frometlother party. The technique guarantees the
correctness of the traceback results, even though the jpdingr cannot be trusted during traceback.

4.1 Fingerprint protocol description

The key idea of the fingerprint protocol is to convert therdieprivacy scorega; } into another set of scores
{A;}, such that the following two conditions hold. (1) The optiro@dential selection computed wifd; }
should be the same as the optimal credential selection amahmith{a;}. (2) The privacy score computed
with {4;} should reveal which set of credentials are used to obtainstte. Thus, this transformation
process requires the following two properties:

Property 1 Ordering consistency: For two setsS and R in 287} if 37 oA, < 3. 5 A;, then
2ies i < Dicp Gir
Property 2 Uniqueness:For any two distinct set§ and R in 217, Yies Ai F D icr Ai-

The ordering consistency property ensures that the seveéled credentials computed with the trans-
formed scores is optimal even when the original scores ad. UEhe uniqueness property guarantees that
traceback is possible, as only one set of credentials casrgtena specific score. Note that the above proper-
ties do not imply that an efficient traceback is possible duuttransformation leads to an efficient traceback
method. We give amdexing expansiomethod that transforms a privacy scargo A; as follows.

A =a; x 2"+ 271,

In binary representation, the indexing expansion shiféskiimary form ofa; to the left byn positions,
and gives zeros ta least significant bits except theth least significant bit, which is given a one. For
example, suppose there are four privacy scores 2, 3, 5, 8aanamy form 010, 011, 101, 1000. Hene= 4.
After the transformations, the expanded scores have ttegybform 010 0001, 011 0010, 101 0100, 1000

1The name is because of the similarities between fingerpgriti forensics and the indexing technique that we use touejq
identify a subset.
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10002 respectively. Readers can verify that the example sati&fywo required properties. We now prove
that the indexing expansion has the desired properties.

Lemma 3 The indexing expansion achieves the ordering consistemopefy.
Lemma 4 The indexing expansion achieves the uniqueness property.

Proofs of the above two lemmas are in Appendix A.2.

Hence, the indexing expansion method allows the client topde the credentials that are used to
achieve a specific privacy score. Although the optimal vahtained from the secure dynamic programming
with the A; scores is different from the one with the origirglscores, the set of credentials corresponding
to the optimal privacy values are the same. We now descridérberprint protocol, which makes use of
the indexing expansion.

Input: The server has the marginal thresh@ldand point valuegs, . . ., p,,. The client has privacy
scoresuy, ..., an.

Output: The client qot the serverlearns the optimal selection of credentials.
Steps:

1. The client applies the indexing expansion to each of heagy scoresa;} and obtains th
transformed scoregA; }.

2. The server and the client carry out the basic recursiofpsoiimcol (Figure 1) with the trans
formed privacy score$A;}. Recall that at the end of the basic recursion sub-protdhel,
server has computellc (M, 7+) in entry (n, T") of the dynamic programming matrix.

3. The server sends the ciphertéxt (), 1) to the client.

. The client decrypt&c(M,, 7+) to obtainM,, 7.

5. The client expresses the optimal valug 7 in binary form and identifies the non-zero bits in
the lastn bits. The positions of such bits give the indices of creddstihat give the optima
solutior?. Note that the-th least significant bit of,, 7 is true if and only if credential was
used to obtain the optimal value.

112

N

Figure 3: Fingerprint protocol

The indexing expansion of privacy scores requitesdditional bits for each credential, whetas the
total number of credentials. In Lemma 5 below, we prove thairder to satisfy the uniqueness property,
the number of bits required for the transformed privacy es@ bounded b§2(n). Therefore, our indexing
expansion method is efficient.

Lemma 5 For any transformation of index to satisfy the uniquenesgperty, the number of additional bits
introduced for a privacy score is lower-bounded®fn), wheren is the number of credentials.

Theorem 2 The complexity of the fingerprint protocoli¥»>T"), wheren is the total number of credentials
and 7" is the marginal threshold.

The proofs of Lemma 5 and Theorem 2 are in Appendix A.2.

4.2 Detection of value substitution by the server

In the method described above, although difficult, it is mopossible for a malicious server to forge its
share of the optimal value and thus mislead a client to disclnore credentials. The probability of the
server correctly guessing a credential’s privacy scoreiniit position in the indexing expansion may

>The space between each binary number indicates that tHelastigits come from the indexing expansion.
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not be negligible. For example, the server may hbxe probability of correctly guessing the bit position
of a credential, where is the total number of credentials. Also, it may hdvemax {a;} probability of
correctly guessing the privacy score, whérg} represents the set of untransformed privacy scores. In
Section 5, we describe a simple checksum technique for ptiegethe server from tampering with the
traceback computation. This is done by appending randa@hirfermation to privacy scores.

5 Security

We define our security model as a semi-honest (a.k.a. hboestirious) model. Intuitively, this means that
adversaries follow the protocol but try to compute addaionformation other than what can be deduced
from their input and output alone. A protocol is defined asusedf it implements a functioryf, such
that the information learned by engaging in the protocol lsarearned in an ideal implementation where
the functionality is provided by a trusted oracle. This d&bn follows the standard definitions given by
Goldreich [28] for private multi-party computation.

Let A be any one of the two parties in our protocol, we usaw 4 to represent all of the information
that A sees during the protocol. A protocol is secure against a-semeéstA, if and only if there exists

an algorithm that can simulateew, when givenA’s inputs andA’s output. To be more precise, two

probability ensembles’ def {Xn}pen andY def {Y,},.cnr @re computationally indistinguishable (i.e., a

polynomial bounded algorithm cannot distinguish the twatrihutions) if for any PPT algorithnD, any
positive polynomialp, and sufficiently large: it holds that: |(Pr(D(X,,1") = 1)) — (Pr(D(Y,,1") =
1) < ﬁ. Let A’s input and output be represented Ay and Ao respectively. A protocol is secure in the
semi-honest model against adversaryf there is an algorithnb' 7 M 4 such thaview 4 andSIM4(Ar, Ao)
are computationally indistinguishable (i.6. M 4 simulatesA’s view of the protocol).

To prove the security of the basic protocol (in Figure 1), watesa lemma about the security of the
private two-party maximum protocol used in step 3 of the bpsdtocol.

Lemma 6 The private two-party maximum protocol is secure in the deoniest model.

The above lemma states that there exists a private two-pakymum protocol such that when given
the client’s inputs:© andb®, there is an algorithm that simulates the client’s view eftiaximum protocol.

Given such a private two-party maximum protocol, we show tha basic recursion sub-protocol in
Section 3 is secure.

Theorem 3 The basic recursion sub-protocol is secure in the semi-ioadversarial model.

Proof: See Appendix B.

We have shown that each individual round is secure in theeapostocol. The composition follows
from the composition theorem [13].

We show the basic traceback sub-protocol (in Figure 2) isrgeecNote that the basic traceback sub-
protocol makes uses of a matriX that is computed in the recurrence phase. Each entry of xmaAtri
contains the selection decision of a credential. The coatiout of £ is secure, which can be deduced from
Theorem 3.

Theorem 4 The basic traceback sub-protocol is secure in the semidtadyersarial model.

Proof See Appendix B.
Given Theorem 3, the fingerprint protocol (in Figure 3) issecbecause once the server gites M,, 1)
to the client, the client carries out the traceback compuriatvithout any communication from the server.

Theorem 5 The fingerprint protocol is secure in the semi-honest acireasmodel.
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6 Extension

The checksum technique has applications beyond the sppaifitem considered, and is a general method
for recovering an optimal solution from any value-compatilynamic programming computation, while
detecting cheating by the participants. We discuss an siitermo fingerprint protocol that is secure against
an adversary who is stronger than a semi-honest one. TonHisvee consider an adversarial model as
described follows.

An adversary may tamper with the private computation by fyotdj intermediate results during a
protocol, which is not allowed in a semi-honest model. Anaadary is curious as in a semi-honest model,
in that she may store all exchanged data and try to deducemafmn from it. An adversary is assumed not
to refuse to participate or prematurely terminate the matowhich is a weaker assumption than the full
malicious model.

It is important to define the above adversarial model. Whigecannot prevent a participant from lying
about her input, we can for@nsistency in lyindpy preventing capricious use of different inputs during the
crucial solution-traceback phase. For complex functiarshsas the one being studied, lying about one’s
input wrecks the worthiness of the answer for both partiipaand the participant who does so would have
been better off not engaging in the protocol in the first plghis is not true for simple functions where the
lier can still get the answer gorrecting for her lig.

Note that our extension does not support a full malicious ehoathich would require expensive Zero
Knowledge Proofs [31]. However, we do raise the bar on comthimgs that a malicious server may try in
our model. When the server is not semi-honest, a significanitlgm with our protocols is that the server
has Ec(M; ;) for all matrix values. Thus, the server can replace any valuthe matrix with another
value E¢(v) for any valuev. In the fingerprint protocol, the server has to guess the higigsed for
each credential. The client can easily check if the propesed is created by a certain set of credentials.
However, as described earlier, the server may have a ndigibdgy probability of successfully replacing
these values. We now describe a technique that reducesdhahility of a successful replacement by the
server to a negligible value in terms of a security parameter

The idea is that the client performs transformations on hises privacy scores. The client creates a
new set of valued, . .., A, that satisfy the traceback properties outlined in SectioRiot each value4;,
the client chooses uniformly @bit value (wherep is the security parameter), which we call The client
setsA; = A4;2'8"*° 4 r; (where4; is the already transformed value for traceback). It is ght#drward to
show that these values satisfy the properties outlined aticde4. Furthermore, for the server to substitute a
value, it would have to guessgebit value, which it can guess successfully with only negligiprobability
in the security parametex.

Another attack that the server can launch is that it can sepdnéermediate value of the matrix to the
client, and claim that it is the final result. Because an mediate value is well-formed, it cannot be detected
by the above technique. However, the server does not gaimtis type of attacks. If the server chooses
a value from a higher row (with a smaller row index), then #itit;ck can be achieved by setting the point
values of some credentials to zero (i.e., they are useldése tient and are never used). If a different column
is chosen, then this attack can be achieved by increasinacttess threshold. If the intermediate value is
from a different row and a different column, then the effeicthis attack can be achieved by increasing the
threshold and setting the point values of some credentasro at the same time. The server may attempt
to form linear combinations of row entries, but there is a-negligible chance of being caught by the client
because a repeated entry may be found.

7 Related Work

In this section, we discuss the existing work on secure rpaltty computation, access control including
trust negotiation and hidden credentials. The protocothispaper are compared with the existing work.
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Access control and trust management systemsn the access control area, the closest work to ours is
the framework for regulating service access and releaseiate information in web-services by Bonatti
and Samarati [8]. They study the information disclosureparosystems such as Internet using a language
and policy approach. In comparison, we design cryptogmapbiutions to control and manage information
exchange. In addition, we focus on solving the optimalityséecting the set of credentials to disclose.
Bonatti and Samarati considered two data types in the piortbd a user: data declaration (e.g., identity,
address, credit card number) and credential. Although viye @nsider credentials in the description of
our model, the protocols can be generalized to include datkadhtions as long as the server and the client
agree on their specifications. In general, credentials, (étiyer’s license and credit card) contain a set of
data declaration information, which is usually requested @roup. For example, credit card number is
usually asked with the expiration date of the card. Usindendials to represent private information may be
sufficient in some cases.

Our point-based trust management model quantitativetgnmemberships or credentials, which is sig-
nificantly different from most existing access control miedeDur approach aims to address the fact that
different individuals or groups of people have differenivacy concerns in terms of protecting sensitive
information. This goal differs significantly from the someat rigid conventional access control models.
The flexibility provided by the point-based model enablesrsiso pro-actively protect their private informa-
tion. Although flexible, our access control model still offestrong protection for the resources. Thresholds
specified by resource owners prevent unqualified users fomesaing the resource.

Anonymous credential and idemix systems have been dewklfde 14, 16] to allow anonymous
yet authenticated and accountable transactions betwess asd service providers. Together with zero-
knowledge proof protocols, they can be used to prove thattebude satisfies a policy without disclosing
any other information about the attribute. The work in trap@r focuses on finding the optimal credentials
to disclose, and can be integrated with anonymous credleyséems. A zero-knowledge proof protocol
can be used when the necessary information to satisfy aypsldiscovered. We can apply anonymous cre-
dential techniques to implement membership credentialsaipoint-based trust management model. These
credentials are then used to prove user's membershipswiiteeealing individual identity.

In hidden credentials system [10, 34], when a signaturevel@rfrom an identity based encryption
scheme (IBE) [9, 18, 43] is used to sign a credential, theera content can be used as a public en-
cryption key such that the signature is the correspondingygéon key. Hidden credentials can be used in
such a way that they are never shown to anyone, thus theigertsgtdentials are protected. Most recently,
a protocol [25] was proposed that allows both the client dwedserver to definprivate access policies of
their credentials.

The setup of hidden credential protocols does not allow tmaputation of theoptimal selection of
credentials. In addition, as explained in the recent worlEbken, Li, and Atallah [25], the server learns
whether the client obtained access or not in some envirotsre®en when hidden credential schemes are
used. In this case, the server can make inferences abouighgscsensitive credentials. For example, if
the server’s policy i®ne must have top secret clearance and be a FBI adkah the server can deduce a
significant amount of information about the client when theess control decision is made. Our proposed
solution allows the client to estimate potential privacgdavithout leaking any sensitive information.

We have compared the trust negotiation protocols [42, 4648753, 54, 55] with our point-based
trust management model in the introduction. Li, Li, and VBm®ugh introduce a framework for trust
negotiation, in which the diverse credential schemes aotpols including anonymous credential systems
can be combined, integrated, and used as needed [39]. Tlke pasents a policy language that enables
negotiators to specify authorization requirements. Tlseasch on trust negotiation that is closest to ours
is by Chen, Clarke, Kurose, and Towsley [17]. They develdpedtistics to find an approximation of the
optimal strategy that minimizes the disclosure of seresitiedentials and policies [17]. Using their methods,
when negotiation fails, premature information disclosargtill a problem. Our protocols prevent premature
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information leakage, because the computation does ndbdessensitive parameters. Because the selection
computation is private, the minimization problem is sinmptedefine in our point-based model than in trust
negotiation framewaorks. In addition, the solution compubg our basic and fingerprint protocols, if exists,
is the exact optimal solution, not an approximation.

Secure multi-party computation. Secure Multi-party Computation (SMC) was introduced inraisal
paper by Yao [50], which contained a scheme for secure casgrarSuppose Alice (with inpuf) and Bob
(with input b) desire to determine whether or not< b without revealing any information other than this
result (this is known a¥&ao’s Millionaire Problen). More generally, SMC allows Alice and Bob with
respective private inputs andb to compute a functiorf (a, b) by engaging in a secure protocol for public
function f. Furthermore, the protocol is private in that it reveals ddigonal information. This means that
Alice (Bob) learns nothing other than what can be deduced fr¢b) and f (a, b). Elegant general schemes
are given in [6, 15, 27, 29] for computing any functigrprivately.

Besides the generic work in the area of SMC, there has beengx¢ work on the privacy-preserving
computation of various functions. For example, computatiqgeometry [2, 23], privacy-preserving com-
putational biology [1]. The private dynamic programmingtocol given by Atallah and Li [1] is the most
relevant work to ours. Their protocol compares biologiaugences in an additively split format. Each
party maintains a matrix, and the summation of two matrisabe real matrix implicitly used to compute
the edit distance. Our protocols also carry out computaticaan additively split form. What distinguishes
us from existing solutions is that we are able to achieveieffity a stronger security guarantee without
using Zero-Knowledge Proofs [31]. Recently, there are aldlations for privacy-preserving automated
trouble-shooting [35], privacy-preserving distributestal mining [36], private set operations [24, 37], and
equality tests [40]. We do not enumerate other private apaltty computation work as their approaches
significantly different from ours.

8 Conclusions and future work

The paper is the first to formalize and solve the privacy4médng credential selection problem. We gave
a semantic-secure private two-party computation protéaolinding the optimal selection in an adversar-
ial model that can handle cheating. The indexing expansiethod that we described for the fingerprint
protocol goes beyond the specific problem considered. Idyi@ general method for recovering an optimal
solution from any value-computing dynamic programming patation, while detecting cheating by the
participants.

The point-based trust management is an interesting framketvat hosts much promising future research
opportunities. One direction is to consider the constriaimdpsack problem where a client specifies an
arbitrary privacy score for a credential combination. Tgmsblem in general may be hard, but it would be
interesting to see whether heuristics can be developedrarmdgocomputation can be achieved. In addition,
the expressiveness of the model can also be improved byhgatwulti-knapsack problem.

Arelated important topic is to study whether a satisfacpmint scheme exists and how to systematically
find one. The concept of quantitatively addressing the tessiblishment problem has existed in several
papers on trust and reputation models [7, 21, 51, 56]. Theskein have applications in open systems such
as presence systems [5] and peer-to-peer networks [21]etBuss, a suitable point scheme may not exist.
For example, suppose Bob requires from Alice eitfter andC5) or (Cs andC}) before he discloses some
credential to Alice. Suppose Bob requires a threshold ofidtpoThen, whatever points we give to the four
credentials, Alice can use one of the four invalid combraiC; andCs), (Cy andCy), (C2 andCs) and
(Cy and(Cy) to get access, as one of them is guaranteed to be no less tleaausk their sum is at least 16.
One solution to this problem is for the server to specify apfar the sef C; andCs) higher than the sum
of individual points. More efficient solutions are to be sadi
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A Proofs

A.1 Proofin the Basic Protocol

Proof of Lemma 1: n corresponds to the row of the dynamic programming table, Zncbrresponds to
the column of the table. Filling up the entire dynamic prognaing table takesT” rounds of computation.
For each round of the basic recursion sub-protocol, there@nstant number of hom omorphic operations.
Therefore, the lemma holds. O
Proof of Theorem 1: n is the row of the dynamic programming table, dfdis the column of the table.
Each invocation of the basic recursion sub-protocol fillsomg entry of the table. Therefore, filling up
the entire table takesT” rounds. In the basic traceback sub-protocol, each roundeoEdmmunication
between the server and the client discovers whether a diadéhis selected. Therefor€)(n) number of
rounds are required for all the credentials. Hence, theclpastocol has the complexity ¢#(n1”). g

A.2 Proofs in the Fingerprint Protocol

Proof of Lemma 3: For ease of notation, we usé[S] to denote) ;4 A;, anda[s] to denote) ", g a;.

Note thatA[S] = 2"*1a[S] + Y, ¢ 2. Now suppose we have two sefsand R where A[S] < A[R)].

Thus, 2" a[S] + Y. 42" < 2" a[R] + Y.z 2°. Now, it is easy to show thaf", o 2° < 2" and
>ier 2 < 2" Thusa[S] < a[R). O

Proof of Lemma 4: To show that the sums are unique, suppose we are given twd satsl R, where
S # R. There must be some elemerthat is in one set but not the other, without loss of gengralippose
j € S. Now thejith bit of A[S] will be 1, but it will be O for A[R], and thus these two values are distirigt.
Proof of Lemma 5: The following holds because of the uniqueness property:

n

ZAZ-ZQ”—I

i=1

The reason for this is that: i) each subset of credenfiatsust have a unique privacy score, ii) there are
2" subsets, and iii) all; values must be positive. This implies that the maximdis at leasg”~'oe™ — 1,
becausen(27~1osm — 1) = 2n — 1. Because the length of the maximum value is at leastlogn — 1,
there must exist ond; whose length is: — logn — 1. Therefore, the number of bits introduced by the

transformation is lower bounded by— logn — 1, and thus i£2(n). O

Lemma 7 The communication complexity of the traceback phase inigerprint protocol isO(n), where
n is the total number of credentials; the computation cog?($) for the server, and i®(n) for the user.

Proof of Lemma 7: Once the dynamic programming table is computed, the senlgmneeds to send value
Ec(M? ) to the user. Hence, the number of communication rounds istaoh Because each privacy
scoreaivis expanded witln additional binary bits, the size of information transmitie in the order of, —
assuming that the privacy scorgs; } before the indexing expansion are bounded by a constantefbine,

the communication cost of the algorithm@¥n). It is trivial to show that the server's computation cost is
constant. For the user, because she needs to idéntify indexing bits, her computation costi¥n). O
Proof of Theorem 2: The proof is similar to Theorem 1. For each round, both theeseand the user
perform constant number of homomorphic operations on fikamed privacy score$A;}. Becaused; is
O(n) bits long — assuming that untransformed privacy scéues are bounded by constant, the cost at each
round isO(n) for both parties. Hence, the overall complexitydén2T"). O

B Proofs of Security

Proof of Theorem 3: We must show that the server’s view and the client’s view ameikteable from their
input and output alone. The server’s view consists of thingegs: i) the interaction from the secure two-
party maximum protocol, ii) the value® (i.e., the server’s output) from the secure max protocad, iéh
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Ec(x%). The simulator for the server outputSIMMAXs(—rg, —r1), Ec(r2)) for randomly chosen values
ro, r1 andro. This simulation is computationally indistinguishablerfr the real view because of Lemma 6
and by the semantic security propertiesf. O
Proof of Theorem 4: The server’s output from this protocol is either a set of erdgils that the client has
disclosed or is an ABORT command from the client (when theggy requirement is too large). Now, the
server’s view is simply the ABORT or whether each credentiakvealed by the client. This is trivially
simulateable by the server’s output.

The client’s output is the privacy requirement of gainingess and the set of credentials that are too be
revealed to the server (if it does not abort). The clientawof the protocol isEc(M? 1) and E¢(F; ;)
(for each row:). These values are just the output information encryptat Wi, and thus are trivially
simulateable. O
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