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Abstract

There has been much recent work on privacy-preservingaccess control negotiations, i.e., carrying out
the negotiation in a manner that minimizes the disclosure ofcredentials and of access policies. This paper
introduces the notion of point-based policies for access control and gives protocols for implementing
them in a disclosure-minimizing fashion. Specifically, Bobvalues each credential with a certain number
of points and requires a minimum total threshold of points before granting Alice access to a resource.
In turn, Alice values each of her credentials with a privacy score that indicates her reluctance to reveal
that credential. She is interested in achieving the required threshold for accessing the resource while
minimizing the sum of the privacy scores of her used credentials. Bob’s valuation of credentials is
private and should not be revealed, as is his threshold. Alice’s privacy-valuation of her credentials is also
private and should not be revealed. What Alice uses is a subset of her credentials that achieves Bob’s
required threshold for access, yet is of as small a value to her as possible.

We give protocols for computing such a subset of Alice’s credentials without revealing any of the
two parties’ above-mentioned sensitive valuation functions and threshold numbers. A contribution of this
paper that goes beyond the specific problem considered is a general method for recovering an optimal
solution from any value-computing dynamic programming computation, while detecting cheating by the
participants. Specifically, our traceback technique relies on the subset sum problem to force consistency.

1 Introduction
A typical scenario for accessing a resource using digital credentials is for the client, Alice, to send her
request to Bob, who responds with the policy that governs access to that resource. If Alice’s credentials
satisfy Bob’s policy, she sends the appropriate credentials to Bob. After Bob receives the credentials and
verifies them, he grants Alice access to the resource. Observe that, in this scenario, Alice learns Bob’s policy
and Bob learns Alice’s credentials. However, this mechanism is unacceptable if the credentials or the access
control policies are considered to be sensitive information.

The motivation for hiding credentials is individual privacy, e.g., if the credentials are about one’s phys-
ical impairment or disability, financial distress, political or religious affiliation, etc. The motivation for
hiding the policy is not only security from an evil adversary, but simply the desire to prevent legitimate
users from “gaming” the system — e.g., changing their behavior based on their knowledge of the policy
(which usually renders an economically-motivated policy less effective). This is particularly important for
policies that are not incentive-compatible in economic terms (they suffer from perverse incentives in that
they reward the wrong kinds of behavior, such as free-loading). In yet other examples, the policy is simply
a commercial secret — e.g., Bob has pioneered a novel way of doing business, and knowledge of the policy
would compromise Bob’s strategy and invite unwelcome imitators.

It is also important to point out that a process that treats Alice’s credentials as confidential is ultimately
not only to Alice’s advantage but also to Bob’s: Bob can worryless about rogue insiders in his organization
illicitly leaking (or selling) Alice’s private information, and may even lower his liability insurance rates as
a result of this. Privacy-preservation is a win-win proposition, one that is appealing even if Alice and Bob
are honest and trustworthy entities. This paper gives a trust management model that quantitatively addresses
degrees of sensitivity. Moreover, the degree of sensitivity of a given credential is private to each user, and
can vary from one user to another.
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1.1 Motivations
In a probing attack, Alice can engage in a protocol with Bob multiple times using different credential sets
each time (all of which are subsets of her credentials) to gain information about Bob’s policy. In the case
where Alice is requesting access to a service, Bob will know whether she got access and can therefore also
probe (by using different policies and observing their effect) to gain information about Alice’s credentials.

One way of mitigating probing attacks is the one followed in the trust negotiation literature [8, 42,
46, 47, 48, 53, 54, 55], in which the disclosure of a credential is governed by an access control policy
that specifies the prerequisite conditions that must be satisfied in order for that credential to be disclosed.
Typically, the prerequisite conditions are a subset of the set of all credentials, and the policies are modeled
using propositional formulas. A trust negotiation protocol is normally initiated by a client requesting a
service or a resource from a server, and the negotiation consists of a sequence of credential exchanges: Trust
is established if the initially requested service or resource is granted and all policies for disclosed credentials
are satisfied [48, 53].

Although mitigating probing attacks, the requirements of the trust negotiation literature have some prac-
tical limitations. (1) Probing is still possible when policies are not treated as sensitive resources, and the
client (or server) can game the system in many ways. For example, if the client knows the access control
policies for the server’s credentials then she will know thepath of least resistance to unlock certain cre-
dentials. (2) Pre-mature information leaking is difficult to prevent in existing trust negotiation protocols
including the recent framework using cryptographic credentials [39]. The pre-mature information leaking
refers to the situation when a negotiation is not successful, however sensitive credentials of a negotiator are
already disclosed.(3) The service model in trust negotiation is usually limited, that is, the requested service
is fixed and independent of the amount of information released by the client at the end of the negotiation
session. However, a client may end up disclosing more information than what is required for the initially
requested service. The reward or service provided by the server should be dynamically adjustable with the
amount of information released from the client.

As will become clear soon, the approach presented in this paper mitigates the above-mentioned prob-
lems. The computation for determining whether a user satisfies a policy is privacy-preserving, whereneither
party needs to disclose sensitive information. The policy is less rigid than a Boolean expression, which
makes probing by Alice harder. Of the multiple ways of satisfying the policy, Alice will tend to use the one
that utilizes the credentials whose privacy she values least.

1.2 Overview
The concept of quantitatively addressing the trust establishment problem has existed in several papers on
trust and reputation models [7, 21, 51, 56]. These models have applications in open systems such as mobile
ad hoc networks, Peer-to-Peer networks [21], and e-trade systems.

We consider a new point-based trust management policy (rather than a Boolean expression) that is pri-
vate and should therefore not be revealed to Alice: Bob associates a number of points with every possible
credential, and requires the sum of the points of those credentials that Alice uses to reach a minimum thresh-
old before he grants her access to the resource. Each resource defines its own threshold, and that threshold
is itself private and should not be revealed to Alice. Alice needs to satisfy the threshold requirement to
gain access by using a subset of her credentials that gives her the required number of points, but there can
be many such subsets: Alice is interested in using the subsetthat has minimum privacy-value to her, ac-
cording to her privacy-valuation function; that valuationfunction is itself private and should not be revealed
to Bob. We give a protocol which determines which subset of Alice’s credentialsoptimally satisfies Bob’s
threshold, i.e., it has minimum privacy value to Alice amongall subsets that satisfy Bob’s threshold. Bob’s
point-valuation of credentials, his thresholds, and Alice’s privacy-valuation of her credentials are all private
and not revealed by the protocol.
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1.3 Applications
The point-based model explicitly associates credentials with values obtained from the service provider,
therefore the client’s reward or service can be dynamicallyadjusted according to the amount of information
released. This flexibility makes the point-based model attractive to the trust management in web-services
and e-commerce applications in general, as users have the incentives to carry on the computation for trust
establishment, which facilitates business transactions.

Another important type of applications for point-based model is privacy-aware presence systems [5,
33, 49], where presence data such as the location of a user is collected through devices such as GPS on a
cellphone. The management of presence data is crucial, because it concerns not only user privacy, but also
safety: presence data can be used to track and profile individuals. In the meantime, there may be emergency
situations or extenuating circumstances when certain parties (like emergency workers) should have access
to this kind of information, and friends and relatives of a user might be allowed to query his or her location
information at any time. Therefore, a desirable feature of alocation query system is that it provides different
levels of precision based on the requester’s trustworthiness or the context of the query. This requires a
flexible authorization model for accessing the private location data, which can be offered by the point-based
authorization model.

1.4 Our contributions
1. We propose a point-based trust management model and we formalize the credential selection problem

of the model into a knapsack problem. Our point-based trust management model enables users to
quantitatively distinguish the sensitivities of different credentials. It also allows a provider to quanti-
tatively assign values to credentials held by clients. The point-based model has several features:(i)
Policy specification is simple and easily allows dynamic adjustment of services provided based on
released credentials;(ii) A user can pro-actively decide whether the potential privacy loss is worth
the service without disclosing any sensitive information;(iii) To satisfy a policy, a user can select
to disclose theoptimal credential set that minimizes the privacy loss, based on hisor her personal
measure.

2. We give secure and private dynamic programming protocolsfor solving the knapsack problem. Our
solution, consisting of a basic protocol and an improved protocol, allows the server and user to jointly
compute the optimal sum of privacy scores for the released credentials, without revealing their private
parameters. The complexity of our basic protocol isO(nT ′), wheren is the total number of credentials
andT ′ is the (private)marginal threshold, which corresponds to the sum of the points of the credentials
that arenotdisclosed. The protocol makes use of a homomorphic encryption scheme, and is semantic-
secure under a semi-honest adversarial model.
Our improved protocol, thefingerprint protocol, is secure in an adversarial model that is stronger
than a semi-honest one (a.k.a honest-but-curious). The improved protocol prevents a participant from
tampering with the values used in the dynamic programming computation. That is, while we cannot
prevent a participant from lying about her input, we can force consistency in lyingby preventing
capricious use of different inputs during the crucial solution-traceback phase. The complexity of our
fingerprint protocol isO(n2T ′).

3. One contribution of this paper that goes beyond the specific problem considered is a generalindexing
expansionmethod for recovering an optimal solution from any value-computing dynamic program-
ming computation, while detecting cheating by the participants. Our traceback technique relies on
the subset sum problem and random information checksum to enforce the consistency of a partici-
pant. Using this method, a participant is not required to trust the other party during the back-tracing
phase. This is possible because the participant is able to efficiently identify whether the other party
has tampered with the computation. Furthermore, sensitiveparameters used by both parties remain
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private in the protocol. For the traceback in general dynamic programming problems, our algorithm
not only allows a participant to independently and easily recover the optimal traceback solution, once
the computed optimal value is given, but also enables the participants to verify the integrity of the
optimal value.

Organization of the paper. The paper is organized as follows. Our point-based trust management model is
presented in Section 2. The basic protocol for privacy-preserving credential selection is given in Section 3.
The improved protocol is given in Section 4. We analyze the security in Section 5. Related work is given in
Section 7. Conclusions and future work are given in Section 8.

2 Model
In this section, we describe a point-based trust managementmodel, and define the credential selection prob-
lem in this model.

2.1 Point-based trust management
In the point-based trust management model, the authorization policies of a resource owner defines anaccess
thresholdfor each of its resources. The threshold is the minimum amount of points required for a requester
to access that resource. For example, accessing a medical database requires fifty points. The resource owner
also defines apoint valuefor each type of credentials, which denotes the number of points or credits a
requester obtains if a type of credential is disclosed. For example, a valid ACM membership is worth ten
points. This means that a client can disclose his or her ACM membership credential in exchange for ten
points. We call this a trust management model as opposed to anaccess control model, because the resource
owner does not know the identities or role assignments of requestersa priori as in conventional access
control settings.

A requester has a set of credentials, and some of which may be considered sensitive and cannot be
disclosed to everyone. However, in order to access a certainresource, the requester has to disclose a number
of credentials such that the access threshold is met by the disclosed credentials. Different clients have
different perspective on the sensitivity of their credentials, even though the credentials are of the same type.
For example, a teenager may consider age information insensitive, whereas a middle-aged person may not
be very willing to tell his or her age.

Therefore, in point-based trust management model, each client defines aprivacy scorefor each of their
credentials. The privacy score represents the inverse of the willingness to disclose a credential. For example,
Alice may give privacy score 10 to her college ID, and 50 to hercredit card. The client is granted access
to a certain resource if the access threshold is met and all ofthe disclosed credentials are valid. Otherwise,
the access is denied. From the requester’s point of view, onecentral question is how to fulfill the access
threshold while disclosing theleastamount of sensitive information. We now define this as a credential
selection problem. Solving the credential selection problem is challenging, because the requester considers
his or her privacy scores sensitive, and the server considers its point values and access threshold sensitive.

Note that there is no need for a trusted third-party (TTP) in our model, because the signatures on the
digital credential of a client can be verified by the server when selected credentials are exchanged.

2.1.1 Expressiveness of point-based trust management

One advantage of conventional Boolean-based access and trust management is the ability to express poli-
cies at a fine-grained level. One way to improve the expressiveness of point-based trust management is to
support thetyping of points. For example, financial point-type represents credit card and bank account, and
demographic point-type represents birth date, address, and affiliation. In the on-line shopping scenario, a
conventional policy defined by the server requires the client to disclose valid demographic information that
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is either an email address or a home address, and valid financial information that is either a credit card num-
ber or a bank checking account number, i.e.,(email address ∨ home address ) ∧ (credit card ∨ bank
account).

One way to translate this policy to points and thresholds in point-based trust management is as follows.
The server specifies equal point values (e.g., 20) for the email address and the home address, and equal
point values (e.g., 40) for the credit card number and the bank account. The threshold fordemographic
point-typeis 20 and for thefinancial point-typeis 40. In general, the number of options for the client to
disclose private information may be large. For example, theclient can disclose a certain combination of
home phone/address, work phone/address, email address, fax number, etc. With this typing mechanism,
the server can improve the expressiveness of point values, and the client can choose the optimal subset of
information to release for each point-type. To support typing, the credential selection protocol (presented
later) needs to be run multiple times, twice in this example.The translation between point-based policies
and Boolean policies is an interesting research topic, and is subject to our future study.
Where do point values come from? One approach to obtain point values is from reputation systems
[7, 45, 56]. Essentially the point value of a credential represents the trustworthiness of the organization that
issues the credential. If a resource owner thinks organization A is more reputable than organizationB, the
resource owner specifies a higher point value for a credential issued byA than the one issued byB. This
idea has been explored in a recent paper that quantitativelystudies the connections between computational
trust/reputation models with point values in point-based trust management [51]. The paper also discusses the
application of such models in privacy-preserving locationsystems. The work in trust models and reputation
systems [7, 45, 56, 51] serve as a starting point for demonstrating the applicability of point-based trust
management.

2.2 Credential selection problem
Definition 1 The credential selection problem is to determine an optimalcombination of requester’s cre-
dentials to disclose to the resource owner, such that the minimal amount of sensitive information is disclosed
and the access threshold of the requested resource is satisfied by the disclosed credentials.

We formalize the credential selection problem as an optimization problem. Our model assumes that the
resource owner (or server) and the requester (or client) agree on a set of credential types as the universe of
credentials(C1, . . . , Cn). We define a binary vector(x1, . . . , xn) as the unknown variable to be computed,
wherexi is 1 if credentialCi is selected, and 0 if otherwise. Integerai ≥ 0 is theprivacy scoreof credential
Ci. It is assigned by the requestera priori. If the requester does not have a certain credentialCi, the privacy
scoreai for that credential can be set to a large integer. The server definesT that is theaccess threshold
of the requested resource. Integerpi ≥ 0 is thepoint valuefor releasing credential typeCi. The requester
considers all of theai values sensitive, and the server considers the access threshold T and all of thepi

values sensitive.
The credential selection problem is for the requester to compute a binary vector(x1, . . . , xn) such that

the sum of points
∑n

i=1 xipi satisfiesT , and the sum of privacy scores
∑n

i=1 xiai is minimized. This
is captured in the following minimization problem. Computea binary vector(x1, . . . , xn) such that the
following holds:

min
n∑

i=1

xiai

subject to
n∑

i=1

xipi ≥ T

The above minimization problem can be rewritten into a knapsack problem with a new variableyi =
1 − xi ∈ {0, 1}. For i-th credential,yi = 1 represents not disclosing the credential, andyi = 0 represents
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disclosing the credential.

max

n∑

i=1

yiai

subject to
n∑

i=1

yipi <

n∑

i=1

pi − T

The dynamic programming solution for the knapsack problem is pseudo-polynomial: the running time
is in O(nT ′), whereT ′ =

∑n
i=1 pi −T . We refer toT ′ as themarginal threshold, which coarsely correlates

to the sum of the points of the credentials that are not disclosed.

Definition 2 The marginal thresholdT ′ of the credential selection problem is defined as
∑n

i=1 pi−T , where
pi is the point value for credential typeCi, T is the access threshold for a requested resource, andn is the
total number of credential types.

Let us first review the dynamic programming solution for the 0/1 knapsack problem [19]. Then, we
describe our protocol for carrying out private dynamic programming computation of the knapsack problem.
The 0/1 knapsack problem is defined as follows. Given items ofdifferent integer values and weights, find
the most valuable set of items that fit in a knapsack of fixed integer capacity. In the dynamic programming
of knapsack problem, a table is made to track the optimal selection of items so far. A column indicates the
range of values, which corresponds to the target weight of the knapsack. A row corresponds to each item.
The table stops at the maximum capacity of the knapsack. The first column and the first row are initialized
to zeros, i.e.M0,j andMi,0 are zeros, for alli ∈ [1, n] andj ∈ [0, T ′]. The table is filled from top to
bottom and from left to right. Using the notations defined earlier, the recurrence relation is formally defined
as follows. DenoteMi,j as the value ati-th row andj-th column, andi ∈ [0, n], j ∈ [0, T ′].

Mi,j = Mi−1,j if j < pi

max{Mi−1,j,Mi−1,j−pi
+ ai} if j ≥ pi

Each entry of the table stores the total value of a knapsack, which is determined as either the value of
a knapsack without the current item (expressed as the value directly to the top of the current entry), or the
value of the knapsack with the current item added into it. At the end of the computation, the entry at the
lower right corner of the table contains the optimal value ofthe knapsack. The selections of items can be
obtained by book-keeping the information of where the valueof an entry comes from.

For our credential selection problem, the above recurrencerelation can be interpreted as follows. If the
point value of credential typeCi exceedsj, which is a value in the range of[0, T ′], then thei-th credential
is not selected and the privacy scoreMi,j is kept the same asMi−1,j . Otherwise, the algorithm compares
the scoreMi−1,j for not selecting thei-th credential with the scoreMi−1,j−pi

+ ai for selecting thei-th
credential. The larger value is chosen to be the privacy scoreMi,j .

The standard dynamic programming computation requires valuesai andpi for all i ∈ [1, n]. However, in
our model, the requester considersai sensitive, and the server considerspi sensitive. We present a protocol
that allows the completion of the dynamic programming computation without revealing any sensitive infor-
mation. In addition to protecting sensitiveai andpi values, the entries in the dynamic programming table
are also protected from both parties. From this perspective, our protocol provides better privacy protection
than the secure multi-agent dynamic programming work by Yokoo and Suzuki [52], as their approach cannot
prevent the disclosure of table entries.
Privacy score of a credential set.In the current model, the privacy score of multiple credentials is the sum
of each individual privacy score. The summation representsthe additive characteristic of privacy, and is
simple to model. Another advantage of the summation of privacy scores is the efficiency; the specification
of privacy scores has a size linear in the number of credentials. However, the client may want to explicitly
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specify an arbitrary privacy score of a certain group of sensitive credentials. The group privacy score may be
higher or lower than the sum of individual privacy scores. The latter case can happen when one credential
might subsume or include some information that is included in the other credential(s). However, the dy-
namic programming solution is not clear for the dynamic programming problem with arbitrary constraints.
It remains an interesting open question how to formulate thedynamic programming to support arbitrary
privacy score specifications.

3 Basic protocol
We present the basic protocol, which is a secure two-party dynamic-programming protocol for computing
the optimal solution of the credential selection problem. The basic protocol has two sub-protocols: recursion
and traceback, which represent the two phases of dynamic programming. The protocol maintains the secrecy
of sensitive parameters of both parties. Furthermore, neither the server nor the client learns any intermediate
result. The main technical challenge is that the server doesnot want to reveal point values{pi} and the
client does not want to reveal privacy scores{ai}. As shown by the recurrence relation in Section 2, it
seems difficult to compute entryMi,j without knowingpi andai. We overcome the challenge by designing
a protocol that hides the conditional testing from the client. The basic protocol is efficient and is secure in
the semi-honest adversarial model.

3.1 Building blocks
In our protocol, we store values in a modularly additively split manner with a large base calledL. The
additively split manner means that the server and the clienteach has a share of a value, and the value
equals to the sum of their shares modularL. If xS andxC represent the share of the server and the client,
respectively, then the value equals toxS + xC mod L. We useL − i to represent−i (and usei to represent
i). This implies that the range of the values is between−L

2 and L
2 , andL must be chosen so that it is larger

enough to prevent accidental wrap-around. Secure two-party private protocols were given in [26] that allow
comparison of above described values, in which the comparison result is additively split between the server
and the client. It is easy to modify these protocols to compute the maximum of the values in additively
split format, which we refer to as theprivate two-party maximum protocol. We use the private two-party
comparison and maximum protocols in our paper as a black box.

Our protocols use homomorphic encryption extensively. Recall that a cryptographic scheme with en-
cryption functionE is said to be homomorphic, if the following holds:E(x) ∗ E(y) = E(x + y).
Another property of such a scheme is thatE(x)y = E(xy). The arithmetic performed under the en-
cryption is modular, and the modulus is part of the public parameters for this system. Homomorphic
schemes are described in [20, 41]. We utilize homomorphic encryption schemes that are semantically se-
cure. Informally, a homomorphic scheme issemantically secureif the following condition holds. Given
the public parameters of a homomorphic schemeE, and the encryption of one of the two messagesm,
m′ wherem is from a specific message andm′ is chosen uniformly random from the message space, then
|(Pr(P (E(m))) = 1) − Pr(P (E(m′)) = 1)| is negligible for any probabilistic polynomial time algo-
rithm P .

3.2 Bird’s eye view of protocol
The basic protocol consists of two sub-protocols: the basicrecursion sub-protocol and the basic traceback
sub-protocol.

• Basic recursion sub-protocol: the client and server compute a(n + 1) × (T ′ + 1) matrix M in an
additive split form. LetMi,j denote the value stored at thei-th row andj-th column. LetEC be
the public encryption function of the client’s semantically-secure homomorphic encryption scheme.
The server learnsEC(Mi,j) values for alli ∈ [1, n] and j ∈ [1, T ′]. From the security ofEC , a
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computationally-bounded server gains no information fromthe EC(Mi,j) values. The server com-
putes (with the client’s help) the valueEC(Mi,j), when givenEC(Mi′,j′) for all values(i′, j′) that
are dominated by(i, j), for all i ∈ [1, n] andj ∈ [1, T ′]. M0,j andMi,0 are zeros, for alli ∈ [0, n]
andj ∈ [0, T ′].

• Basic traceback sub-protocol: once the dynamic programming table has been filled, the client dis-
covers (with the server’s help) the set of credentials that have been selected to disclose. The optimal
selection is revealed to both parties.

Note that the basic recursion sub-protocol should unify theoperations in the two cases (j < pi and
j ≥ pi) of the recurrence relation. Otherwise, the client can learn pi from the computation. We solve this by
designing a generic and private maximum function and by additively splitting intermediate results between
the two parties.

3.3 Basic recursion sub-protocol
The basic recursion sub-protocol is described in Figure 1.

Setup: The client has published the public parameters of a semantically secure homomorphic
schemeEC . We will use the base of this scheme as the modulus for the additively split values.
Input: The server hasEC(Mi′,j′) for all values(i′, j′) that are dominated by(i, j), wherei ∈
[1, n] andj ∈ [0, T ′]. The sever also has point valuesp1, . . . , pn and the client has privacy scores
a1, . . . , an.
Output: The server learnsEC(Mi,j).
Steps:

1. The server creates a pair of valuesα0 andα1, whereα0 = EC(Mi−1,j), andα1 = EC(−∞)
if pi > j, andα1 = EC(Mi−1,j−pi

) otherwise. Without lose of generality, we assume thatai

values defined by the client are always bounded by an integerB that is known to the server,
i.e. ai ≤ B for all i ∈ [1, n]. The server then uses−B − 1 as−∞. The server also chooses
random valuesr0 andr1, and sends to the clientα0EC(r0) andα1EC(r1).

2. The client decrypts the values to obtainβ0 andβ1. The server sets its shares to−r0 and−r1

and the client sets its shares toβ0 andβ1 + ai. Note that the two candidate values forMi,j

are additively split between the client and the server.

3. The client and the server engage in a private maximum protocol to compute the maximum of
these two values in an additively split format. Denote the shares byxS andxC .

4. The client sendsEC(xC) to the server, and the server computesEC(xC + xS) and sets this
value as his output.

Figure 1: Basic recursion sub-protocol.

Whenj > T ′ (recall thatT ′ =
∑n

i=1 pi − T ), the server stops the protocol. The last entryMn,T ′ of the
dynamic programming matrix has been computed. The client knows the marginal thresholdT ′, as she keeps
her share of the matrix. Yet, the client does not learn the individual point valuepi and access thresholdT
from the computation so far.

Lemma 1 The complexity of the basic recursion sub-protocol isO(nT ′), with O(1) homomorphic encryp-
tions or decryptions at each round, wheren is the total number of credentials andT ′ is the marginal
threshold.

The proof of Lemma 1 is in the Appendix.
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The basic recursion sub-protocol runs inO(nT ′), where marginal thresholdT ′ or the number of cre-
dentialsn can potentially be large. We point out that an important advantage of our protocol compared to
conventional boolean-based policies lies in the privacy-preserving functionality offered. Our protocol not
only computes the optimal selection of credentials, but also does it in a privacy-preserving fashion for both
the server and client. For conventional policies, the latter aspect cannot be easily achieved without having
the server to publish or disclose unfairly its policies.

The protocol presented here is secure in the semi-honest adversary model, which is improved later by
our indexing expansion method in Section 4. The detailed security analysis is given in Section 5.

3.4 Basic traceback sub-protocol
To support the back-tracking of the optimal solution (i.e.,the optimal credential set to be disclosed), the basic
recursion sub-protocol needs to be modified accordingly. Atthe step 3 in the basic recursion sub-protocol,
not only the maximum but also thecomparison resultof the two candidate values forMi,j are computed
for all i ∈ [1, n] andj ∈ [1, T ′]. During the computation, neither the server nor the client knows the result
of the comparison tests, as the result is split between them.From the recurrence relation in Section 2, it is
easy to see that the comparison result directly indicates whetherai is contained inMi,j and thus whether
credentialCi is selected. DenoteF as a matrix that contains the result of the comparisons, we modify the
previous basic recursion sub-protocol so that the server learnsEC(Fi,j) for the entire matrix. In the basic
traceback sub-protocol, the server and the client work together to retrieve the plaintext comparison results
starting from the last entry of the table, following the computation path of the optimal dynamic programming
solution.

Figure 2 describes the basic traceback sub-protocol.

Input: The server has matrix entries{EC(Mi,j)} and{EC(Fi,j)} encrypted with the client’s public
key, for all i ∈ [1, n] andj ∈ [1, T ′]. The client has her private key.
Output: The client learns the optimal value of the dynamic programming computation of knapsack.
The server and the client learn the optimal selection of credentials, or nothing.
Steps:

1. The server sends the clientEC(Mn,T ′). The client decrypts the ciphertext to obtain the result
Mn,T ′ . Mn,T ′ represents the privacy score associated with the unselected credentials. If this
value is acceptable to the client according to some pre-defined privacy standard set by the
client, then this sub-protocol continues. Otherwise, thissub-protocol terminates.

2. The server reveals the entryEC(Fn,T ′) to the client.

3. The client decryptsEC(Fn,T ′) to obtainFn,T ′ ∈ {0, 1}. The client sends the plaintext value
Fn,T ′ to the server (The server then knows whetherCn is selected or not.)
If Fn,T ′ = 1, then credentialCn will not be disclosed.Fn,T ′ = 1 also means that entry
Mn,T ′ is computed from entryMn−1,T ′ . Therefore, the server next revealsEC(Fn−1,T ′) to
the client. IfFn,T ′ = 0, then the server next revealsEC(Fn−1,T ′−pn

), as the entryMn,T ′ is
computed from entryMn−1,T ′−pn

.

4. The revealed entries represent the computation path of the optimal knapsack dynamic pro-
gramming solution. The above process is repeated untiln reaches zero.

Figure 2: Basic traceback sub-protocol

Lemma 2 The complexity of the basic traceback sub-protocol isO(n), withO(1) homomorphic decryptions
at each round, wheren is the total number of credentials.
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The following theorem states the overall complexity of the basic protocol.

Theorem 1 The complexity of the basic protocol isO(nT ′), wheren is the total number of credentials and
T ′ is the marginal threshold.

The proof of Theorem 1 is in the Appendix.
The basic traceback sub-protocol assumes that the server does not maliciously alter the computation

results. In the case of a malicious server, the server may send EC(0) instead of the real values to mislead the
client to disclose all credentials. Although the attack might be caught by the client (as the client may find a
subset of credentials that still satisfies the threshold constraint), we give a stronger traceback algorithm that
pro-actively prevents this type of attacks in the next section.

4 Fingerprint protocol
In this section, we give an alternative protocol for privacy-preserving knapsack computation. The new
approach is inspired by thesubset sum problem, yet we stress that this solution does not require the client
to solve the general subset sum problem. The main idea is to allow the client (not the server) to efficiently
identify the selected credentials from the optimal privacyscore. The new protocol, which we refer to as
the fingerprint protocol,1 is an important step towards a protocol that is secure against malicious servers,
because it can be extended to prevent the server from tampering the computation during traceback.

In addition to solving our credential selection problem (and thus the knapsack problem), the fingerprint
protocol can be generalized to solve the traceback problem in a large variety of integer linear programming
problems. It can be used for one party to securely and privately trace the optimal solution from the final
computed value, with very little or no participation from the other party. The technique guarantees the
correctness of the traceback results, even though the otherparty cannot be trusted during traceback.

4.1 Fingerprint protocol description
The key idea of the fingerprint protocol is to convert the client’s privacy scores{ai} into another set of scores
{Ai}, such that the following two conditions hold. (1) The optimal credential selection computed with{Ai}
should be the same as the optimal credential selection computed with{ai}. (2) The privacy score computed
with {Ai} should reveal which set of credentials are used to obtain that score. Thus, this transformation
process requires the following two properties:

Property 1 Ordering consistency: For two setsS and R in 2{1,...,n}, if
∑

i∈S Ai <
∑

i∈R Ai, then∑
i∈S ai ≤

∑
i∈R ai.

Property 2 Uniqueness:For any two distinct setsS andR in 2{1,...,n},
∑

i∈S Ai 6=
∑

i∈R Ai.

The ordering consistency property ensures that the set of revealed credentials computed with the trans-
formed scores is optimal even when the original scores are used. The uniqueness property guarantees that
traceback is possible, as only one set of credentials can generate a specific score. Note that the above proper-
ties do not imply that an efficient traceback is possible, butour transformation leads to an efficient traceback
method. We give anindexing expansionmethod that transforms a privacy scoreai to Ai as follows.

Ai = ai ∗ 2n + 2i−1.

In binary representation, the indexing expansion shifts the binary form ofai to the left byn positions,
and gives zeros ton least significant bits except thei-th least significant bit, which is given a one. For
example, suppose there are four privacy scores 2, 3, 5, 8 or inbinary form 010, 011, 101, 1000. Heren = 4.
After the transformations, the expanded scores have the binary form 010 0001, 011 0010, 101 0100, 1000

1The name is because of the similarities between fingerprinting in forensics and the indexing technique that we use to uniquely
identify a subset.
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1000,2 respectively. Readers can verify that the example satisfy the two required properties. We now prove
that the indexing expansion has the desired properties.

Lemma 3 The indexing expansion achieves the ordering consistency property.

Lemma 4 The indexing expansion achieves the uniqueness property.

Proofs of the above two lemmas are in Appendix A.2.
Hence, the indexing expansion method allows the client to compute the credentials that are used to

achieve a specific privacy score. Although the optimal valueobtained from the secure dynamic programming
with theAi scores is different from the one with the originalai scores, the set of credentials corresponding
to the optimal privacy values are the same. We now describe the fingerprint protocol, which makes use of
the indexing expansion.

Input: The server has the marginal thresholdT ′ and point valuesp1, . . . , pn. The client has privacy
scoresa1, . . . , an.
Output: The client (not the server) learns the optimal selection of credentials.
Steps:

1. The client applies the indexing expansion to each of her privacy scores{ai} and obtains the
transformed scores{Ai}.

2. The server and the client carry out the basic recursion sub-protocol (Figure 1) with the trans-
formed privacy scores{Ai}. Recall that at the end of the basic recursion sub-protocol,the
server has computedEC(Mn,T ′) in entry(n, T ′) of the dynamic programming matrix.

3. The server sends the ciphertextEC(Mn,T ′) to the client.

4. The client decryptsEC(Mn,T ′) to obtainMn,T ′ .

5. The client expresses the optimal valueMn,T ′ in binary form and identifies the non-zero bits in
the lastn bits. The positions of such bits give the indices of credentials that give the optimal
solution3. Note that thei-th least significant bit ofMn,T ′ is true if and only if credentiali was
used to obtain the optimal value.

Figure 3: Fingerprint protocol

The indexing expansion of privacy scores requiresn additional bits for each credential, wheren is the
total number of credentials. In Lemma 5 below, we prove that in order to satisfy the uniqueness property,
the number of bits required for the transformed privacy scores is bounded byΩ(n). Therefore, our indexing
expansion method is efficient.

Lemma 5 For any transformation of index to satisfy the uniqueness property, the number of additional bits
introduced for a privacy score is lower-bounded byΩ(n), wheren is the number of credentials.

Theorem 2 The complexity of the fingerprint protocol isO(n2T ′), wheren is the total number of credentials
andT ′ is the marginal threshold.

The proofs of Lemma 5 and Theorem 2 are in Appendix A.2.

4.2 Detection of value substitution by the server
In the method described above, although difficult, it is not impossible for a malicious server to forge its
share of the optimal value and thus mislead a client to disclose more credentials. The probability of the
server correctly guessing a credential’s privacy score andits bit position in the indexing expansion may

2The space between each binary number indicates that the lastfour digits come from the indexing expansion.
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not be negligible. For example, the server may have1/n probability of correctly guessing the bit position
of a credential, wheren is the total number of credentials. Also, it may have1/max {ai} probability of
correctly guessing the privacy score, where{ai} represents the set of untransformed privacy scores. In
Section 5, we describe a simple checksum technique for preventing the server from tampering with the
traceback computation. This is done by appending randomized information to privacy scores.

5 Security
We define our security model as a semi-honest (a.k.a. honest-but-curious) model. Intuitively, this means that
adversaries follow the protocol but try to compute additional information other than what can be deduced
from their input and output alone. A protocol is defined as secure if it implements a functionf , such
that the information learned by engaging in the protocol canbe learned in an ideal implementation where
the functionality is provided by a trusted oracle. This definition follows the standard definitions given by
Goldreich [28] for private multi-party computation.

Let A be any one of the two parties in our protocol, we useviewA to represent all of the information
that A sees during the protocol. A protocol is secure against a semi-honestA, if and only if there exists
an algorithm that can simulateviewA when givenA’s inputs andA’s output. To be more precise, two

probability ensemblesX
def
= {Xn}n∈N andY

def
= {Yn}n∈N are computationally indistinguishable (i.e., a

polynomial bounded algorithm cannot distinguish the two distributions) if for any PPT algorithmD, any
positive polynomialp, and sufficiently largen it holds that: |(Pr(D(Xn, 1n) = 1)) − (Pr(D(Yn, 1n) =
1))| < 1

p(n) . Let A’s input and output be represented byAI andAO respectively. A protocol is secure in the
semi-honest model against adversaryA, if there is an algorithmSIMA such thatviewA andSIMA(AI , AO)
are computationally indistinguishable (i.e.,SIMA simulatesA’s view of the protocol).

To prove the security of the basic protocol (in Figure 1), we state a lemma about the security of the
private two-party maximum protocol used in step 3 of the basic protocol.

Lemma 6 The private two-party maximum protocol is secure in the semi-honest model.

The above lemma states that there exists a private two-partymaximum protocol such that when given
the client’s inputsaC andbC , there is an algorithm that simulates the client’s view of the maximum protocol.

Given such a private two-party maximum protocol, we show that the basic recursion sub-protocol in
Section 3 is secure.

Theorem 3 The basic recursion sub-protocol is secure in the semi-honest adversarial model.

Proof: See Appendix B.
We have shown that each individual round is secure in the above protocol. The composition follows

from the composition theorem [13].
We show the basic traceback sub-protocol (in Figure 2) is secure. Note that the basic traceback sub-

protocol makes uses of a matrixF that is computed in the recurrence phase. Each entry of matrix F
contains the selection decision of a credential. The computation ofF is secure, which can be deduced from
Theorem 3.

Theorem 4 The basic traceback sub-protocol is secure in the semi-honest adversarial model.

Proof See Appendix B.
Given Theorem 3, the fingerprint protocol (in Figure 3) is secure, because once the server givesEC(Mn,T ′)

to the client, the client carries out the traceback computation without any communication from the server.

Theorem 5 The fingerprint protocol is secure in the semi-honest adversarial model.
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6 Extension
The checksum technique has applications beyond the specificproblem considered, and is a general method
for recovering an optimal solution from any value-computing dynamic programming computation, while
detecting cheating by the participants. We discuss an extension to fingerprint protocol that is secure against
an adversary who is stronger than a semi-honest one. To this end, we consider an adversarial model as
described follows.

An adversary may tamper with the private computation by modifying intermediate results during a
protocol, which is not allowed in a semi-honest model. An adversary is curious as in a semi-honest model,
in that she may store all exchanged data and try to deduce information from it. An adversary is assumed not
to refuse to participate or prematurely terminate the protocol, which is a weaker assumption than the full
malicious model.

It is important to define the above adversarial model. While we cannot prevent a participant from lying
about her input, we can forceconsistency in lyingby preventing capricious use of different inputs during the
crucial solution-traceback phase. For complex functions such as the one being studied, lying about one’s
input wrecks the worthiness of the answer for both participants, and the participant who does so would have
been better off not engaging in the protocol in the first place(this is not true for simple functions where the
lier can still get the answer bycorrecting for her lie).

Note that our extension does not support a full malicious model, which would require expensive Zero
Knowledge Proofs [31]. However, we do raise the bar on commonthings that a malicious server may try in
our model. When the server is not semi-honest, a significant problem with our protocols is that the server
hasEC(Mi,j) for all matrix values. Thus, the server can replace any valueof the matrix with another
value EC(v) for any valuev. In the fingerprint protocol, the server has to guess the weights used for
each credential. The client can easily check if the proposedsum is created by a certain set of credentials.
However, as described earlier, the server may have a non-negligible probability of successfully replacing
these values. We now describe a technique that reduces the probability of a successful replacement by the
server to a negligible value in terms of a security parameter.

The idea is that the client performs transformations on his or her privacy scores. The client creates a
new set of valueÂ1, . . . , Ân that satisfy the traceback properties outlined in Section 4. For each value,Ai,
the client chooses uniformly aρ-bit value (whereρ is the security parameter), which we callri. The client
setsÂi = Ai2

lg n+ρ + ri (whereAi is the already transformed value for traceback). It is straightforward to
show that these values satisfy the properties outlined in Section 4. Furthermore, for the server to substitute a
value, it would have to guess aρ bit value, which it can guess successfully with only negligible probability
in the security parameterρ.

Another attack that the server can launch is that it can send any intermediate value of the matrix to the
client, and claim that it is the final result. Because an intermediate value is well-formed, it cannot be detected
by the above technique. However, the server does not gain from this type of attacks. If the server chooses
a value from a higher row (with a smaller row index), then thisattack can be achieved by setting the point
values of some credentials to zero (i.e., they are useless tothe client and are never used). If a different column
is chosen, then this attack can be achieved by increasing theaccess thresholdT . If the intermediate value is
from a different row and a different column, then the effect of this attack can be achieved by increasing the
threshold and setting the point values of some credentials to zero at the same time. The server may attempt
to form linear combinations of row entries, but there is a non-negligible chance of being caught by the client
because a repeated entry may be found.

7 Related Work
In this section, we discuss the existing work on secure multi-party computation, access control including
trust negotiation and hidden credentials. The protocols inthis paper are compared with the existing work.
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Access control and trust management systems.In the access control area, the closest work to ours is
the framework for regulating service access and release of private information in web-services by Bonatti
and Samarati [8]. They study the information disclosure in open systems such as Internet using a language
and policy approach. In comparison, we design cryptographic solutions to control and manage information
exchange. In addition, we focus on solving the optimality inselecting the set of credentials to disclose.
Bonatti and Samarati considered two data types in the portfolio of a user: data declaration (e.g., identity,
address, credit card number) and credential. Although we only consider credentials in the description of
our model, the protocols can be generalized to include data declarations as long as the server and the client
agree on their specifications. In general, credentials (e.g., driver’s license and credit card) contain a set of
data declaration information, which is usually requested as a group. For example, credit card number is
usually asked with the expiration date of the card. Using credentials to represent private information may be
sufficient in some cases.

Our point-based trust management model quantitatively treats memberships or credentials, which is sig-
nificantly different from most existing access control models. Our approach aims to address the fact that
different individuals or groups of people have different privacy concerns in terms of protecting sensitive
information. This goal differs significantly from the somewhat rigid conventional access control models.
The flexibility provided by the point-based model enables users to pro-actively protect their private informa-
tion. Although flexible, our access control model still offers strong protection for the resources. Thresholds
specified by resource owners prevent unqualified users from accessing the resource.

Anonymous credential and idemix systems have been developed [11, 14, 16] to allow anonymous
yet authenticated and accountable transactions between users and service providers. Together with zero-
knowledge proof protocols, they can be used to prove that an attribute satisfies a policy without disclosing
any other information about the attribute. The work in this paper focuses on finding the optimal credentials
to disclose, and can be integrated with anonymous credential systems. A zero-knowledge proof protocol
can be used when the necessary information to satisfy a policy is discovered. We can apply anonymous cre-
dential techniques to implement membership credentials inthe point-based trust management model. These
credentials are then used to prove user’s memberships without revealing individual identity.

In hidden credentials system [10, 34], when a signature derived from an identity based encryption
scheme (IBE) [9, 18, 43] is used to sign a credential, the credential content can be used as a public en-
cryption key such that the signature is the corresponding decryption key. Hidden credentials can be used in
such a way that they are never shown to anyone, thus the sensitive credentials are protected. Most recently,
a protocol [25] was proposed that allows both the client and the server to defineprivate access policies of
their credentials.

The setup of hidden credential protocols does not allow the computation of theoptimal selection of
credentials. In addition, as explained in the recent work byFrikken, Li, and Atallah [25], the server learns
whether the client obtained access or not in some environments even when hidden credential schemes are
used. In this case, the server can make inferences about the client’s sensitive credentials. For example, if
the server’s policy isone must have top secret clearance and be a FBI agent, then the server can deduce a
significant amount of information about the client when the access control decision is made. Our proposed
solution allows the client to estimate potential privacy loss without leaking any sensitive information.

We have compared the trust negotiation protocols [42, 46, 47, 48, 53, 54, 55] with our point-based
trust management model in the introduction. Li, Li, and Winsborough introduce a framework for trust
negotiation, in which the diverse credential schemes and protocols including anonymous credential systems
can be combined, integrated, and used as needed [39]. The paper presents a policy language that enables
negotiators to specify authorization requirements. The research on trust negotiation that is closest to ours
is by Chen, Clarke, Kurose, and Towsley [17]. They developedheuristics to find an approximation of the
optimal strategy that minimizes the disclosure of sensitive credentials and policies [17]. Using their methods,
when negotiation fails, premature information disclosureis still a problem. Our protocols prevent premature
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information leakage, because the computation does not disclose sensitive parameters. Because the selection
computation is private, the minimization problem is simpler to define in our point-based model than in trust
negotiation frameworks. In addition, the solution computed by our basic and fingerprint protocols, if exists,
is the exact optimal solution, not an approximation.

Secure multi-party computation. Secure Multi-party Computation (SMC) was introduced in a seminal
paper by Yao [50], which contained a scheme for secure comparison. Suppose Alice (with inputa) and Bob
(with input b) desire to determine whether or nota < b without revealing any information other than this
result (this is known asYao’s Millionaire Problem). More generally, SMC allows Alice and Bob with
respective private inputsa andb to compute a functionf(a, b) by engaging in a secure protocol for public
functionf . Furthermore, the protocol is private in that it reveals no additional information. This means that
Alice (Bob) learns nothing other than what can be deduced from a (b) andf(a, b). Elegant general schemes
are given in [6, 15, 27, 29] for computing any functionf privately.

Besides the generic work in the area of SMC, there has been extensive work on the privacy-preserving
computation of various functions. For example, computational geometry [2, 23], privacy-preserving com-
putational biology [1]. The private dynamic programming protocol given by Atallah and Li [1] is the most
relevant work to ours. Their protocol compares biological sequences in an additively split format. Each
party maintains a matrix, and the summation of two matrices is the real matrix implicitly used to compute
the edit distance. Our protocols also carry out computationin an additively split form. What distinguishes
us from existing solutions is that we are able to achieve efficiently a stronger security guarantee without
using Zero-Knowledge Proofs [31]. Recently, there are alsosolutions for privacy-preserving automated
trouble-shooting [35], privacy-preserving distributed data mining [36], private set operations [24, 37], and
equality tests [40]. We do not enumerate other private multi-party computation work as their approaches
significantly different from ours.

8 Conclusions and future work
The paper is the first to formalize and solve the privacy-preserving credential selection problem. We gave
a semantic-secure private two-party computation protocolfor finding the optimal selection in an adversar-
ial model that can handle cheating. The indexing expansion method that we described for the fingerprint
protocol goes beyond the specific problem considered. It yields a general method for recovering an optimal
solution from any value-computing dynamic programming computation, while detecting cheating by the
participants.

The point-based trust management is an interesting framework that hosts much promising future research
opportunities. One direction is to consider the constraintknapsack problem where a client specifies an
arbitrary privacy score for a credential combination. Thisproblem in general may be hard, but it would be
interesting to see whether heuristics can be developed and private computation can be achieved. In addition,
the expressiveness of the model can also be improved by solving multi-knapsack problem.

A related important topic is to study whether a satisfactorypoint scheme exists and how to systematically
find one. The concept of quantitatively addressing the trustestablishment problem has existed in several
papers on trust and reputation models [7, 21, 51, 56]. These models have applications in open systems such
as presence systems [5] and peer-to-peer networks [21]. Sometimes, a suitable point scheme may not exist.
For example, suppose Bob requires from Alice either(C1 andC2) or (C3 andC4) before he discloses some
credential to Alice. Suppose Bob requires a threshold of 4 points. Then, whatever points we give to the four
credentials, Alice can use one of the four invalid combinations(C1 andC3), (C1 andC4), (C2 andC3) and
(C2 andC4) to get access, as one of them is guaranteed to be no less than 4 because their sum is at least 16.
One solution to this problem is for the server to specify a point for the set(C1 andC3) higher than the sum
of individual points. More efficient solutions are to be studied.
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A Proofs
A.1 Proof in the Basic Protocol
Proof of Lemma 1: n corresponds to the row of the dynamic programming table, andT ′ corresponds to
the column of the table. Filling up the entire dynamic programming table takesnT ′ rounds of computation.
For each round of the basic recursion sub-protocol, there are constant number of hom omorphic operations.
Therefore, the lemma holds. �

Proof of Theorem 1: n is the row of the dynamic programming table, andT ′ is the column of the table.
Each invocation of the basic recursion sub-protocol fills upone entry of the table. Therefore, filling up
the entire table takesnT ′ rounds. In the basic traceback sub-protocol, each round of the communication
between the server and the client discovers whether a credential Ci is selected. Therefore,O(n) number of
rounds are required for all the credentials. Hence, the basic protocol has the complexity ofO(nT ′). �

A.2 Proofs in the Fingerprint Protocol
Proof of Lemma 3: For ease of notation, we useA[S] to denote

∑
i∈S Ai, anda[s] to denote

∑
i∈S ai.

Note thatA[S] = 2n+1a[S] +
∑

i∈S 2i. Now suppose we have two setsS andR whereA[S] < A[R].
Thus,2n+1a[S] +

∑
i∈S 2i < 2n+1a[R] +

∑
i∈R 2i. Now, it is easy to show that

∑
i∈S 2i < 2n+1 and∑

i∈R 2i < 2n+1. Thusa[S] ≤ a[R]. �

Proof of Lemma 4: To show that the sums are unique, suppose we are given two setsS andR, where
S 6= R. There must be some elementj that is in one set but not the other, without loss of generality suppose
j ∈ S. Now thejth bit of A[S] will be 1, but it will be 0 forA[R], and thus these two values are distinct.�

Proof of Lemma 5: The following holds because of the uniqueness property:

n∑

i=1

Ai ≥ 2n − 1

The reason for this is that: i) each subset of credentialsS must have a unique privacy score, ii) there are
2n subsets, and iii) allAi values must be positive. This implies that the maximumAi is at least2n−log n− 1

n
,

becausen(2n−log n − 1
n
) = 2n − 1. Because the length of the maximum value is at leastn − log n − 1,

there must exist oneAi whose length isn − log n − 1. Therefore, the number of bits introduced by the
transformation is lower bounded byn − log n − 1, and thus isΩ(n). �

Lemma 7 The communication complexity of the traceback phase in the fingerprint protocol isO(n), where
n is the total number of credentials; the computation cost isO(1) for the server, and isO(n) for the user.

Proof of Lemma 7: Once the dynamic programming table is computed, the server only needs to send value
EC(MS

n,T ′) to the user. Hence, the number of communication rounds is constant. Because each privacy
scoreai is expanded withn additional binary bits, the size of information transmitted is in the order ofn –
assuming that the privacy scores{ai} before the indexing expansion are bounded by a constant. Therefore,
the communication cost of the algorithm isO(n). It is trivial to show that the server’s computation cost is
constant. For the user, because she needs to identifyO(n) indexing bits, her computation cost isO(n). �

Proof of Theorem 2: The proof is similar to Theorem 1. For each round, both the server and the user
perform constant number of homomorphic operations on transformed privacy scores{Ai}. BecauseAi is
O(n) bits long – assuming that untransformed privacy scores{ai} are bounded by constant, the cost at each
round isO(n) for both parties. Hence, the overall complexity isO(n2T ′). �

B Proofs of Security
Proof of Theorem 3: We must show that the server’s view and the client’s view are simulateable from their
input and output alone. The server’s view consists of three things: i) the interaction from the secure two-
party maximum protocol, ii) the valuexS (i.e., the server’s output) from the secure max protocol, and iii)
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EC(xC). The simulator for the server outputs(SIMMAXS(−r0,−r1), EC(r2)) for randomly chosen values
r0, r1 andr2. This simulation is computationally indistinguishable from the real view because of Lemma 6
and by the semantic security properties ofEC . �

Proof of Theorem 4: The server’s output from this protocol is either a set of credentials that the client has
disclosed or is an ABORT command from the client (when the privacy requirement is too large). Now, the
server’s view is simply the ABORT or whether each credentialis revealed by the client. This is trivially
simulateable by the server’s output.

The client’s output is the privacy requirement of gaining access and the set of credentials that are too be
revealed to the server (if it does not abort). The client’s view of the protocol isEC(MS

n,T ′) andEC(Fi,j)
(for each rowi). These values are just the output information encrypted with EC , and thus are trivially
simulateable. �
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