
1

Independently-Verifiable Decentralized Role-Based
Delegation

Roberto Tamassia,Member, IEEE,Danfeng Yao, Member, IEEE,William H. Winsborough, Member, IEEE

Abstract— In open systems such as Grid computing and Inter-
net, delegation transfers privileges among users across different
administrative domains and facilitates information sharing. We
present an independently-verifiable delegation mechanism, where
a delegation credential can be verified without the participation of
domain administrators. Our protocol, called role-based cascaded
delegation (RBCD), supports simple and efficient cross-domain
delegation of authority. RBCD enables a role member to create
delegations based on the dynamic needs of collaboration, yet
in the meantime a delegation chain can be verified by anyone
without the participation of role administrators. We also describe
an efficient realization of role-based cascaded delegationusing
aggregate signatures, where the authentication information for
an arbitrarily long role-based delegation chain is captured by
one short signature of constant size.

Index Terms— decentralized delegation, digital credentials.

I. I NTRODUCTION

Trust management is an approach to access control in
environments where entities that are not in the same security
domain need to share resources. Several trust management
systems have been proposed in recent years, e.g., PolicyMaker
[4], KeyNote [3], SPKI/SDSI [9], and theRT framework
[22]. The notion of delegation is essential in transferringtrust
and authorization in trust management systems. It facilitates
information and resource sharing in distributed collaborative
environment such as Grid computing and peer-to-peer net-
works. Delegation chains trace sequences of entities, starting
from the resource owner and including entities authorized by
(though possibly unknown to) the owner. These entities play
a central part in authorization by providing the credentials
that represent their own delegation acts, which enable the
delegation chain to be verified.

In role-based delegation, delegated privileges are issuedto a
role rather than to an individual. The abstraction of roles makes
delegation scalable as one delegation benefits all members.
Although the concept of role-based delegation is not new
in access control and trust management literature, multi-step
role-based delegation chain and its verification have not been
much studied. Most prior work that addresses the problem
of determining whether credentials prove an entity’s resource
request is authorized [3], [4], [9] assumes that all potentially
relevant credentials are available in one central storage.How-
ever, this assumption is not valid in decentralized environment

A preliminary version of the paper was presented at the 2004ACM
Symposium on Access Control Models and Technologies[32]. Work supported
in part by NSF grants CCF-0311510, CCF-0524010, CCR-0325951, and IIS–
0324846, and by a research gift from Sun Microsystems.

Roberto Tamassia and Danfeng Yao are with Brown University;William
H. Winsborough is with University of Texas at San Antonio.

where there is no central authority. In fact, the verification
cost may be quite expensive in a typical trust management
system implementation. Collecting and verifying delegation
credentials incurs communicational and computational costs,
as does checking that together the credentials provide proof
that a given user is authorized. In this paper, we present
techniques that can be used to significantly reduce these
costs. Next, we illustrate in Example 1.1 a simple multi-step
delegation scenario that transfers rights among roles within
one administrative domain.

Example 1.1:A hospital has rolesDoctor, Nurse, and
Intern. The hospital permits all doctors to access a medical
storage room. Bob is a doctor and has a doctor role credential
issued by the hospital. When Bob is out of town, he authorizes
his nurses to access the storage room by issuing the nurses a
delegation credential. Alice is Bob’s nurse and has a nurse
role credential. She has short-term interns who also need to
access the storage room. Then Alice passes the access privilege
onto her interns by creating another delegation credential. The
two-step delegation chain gives the authorization to interns to
access the storage room, which consists of the two delegation
credentials and Bob and Alice’s role credentials. The role
credentials show the delegators have the proper roles to issue
the delegation. When an intern, say Carl, requests for access,
the delegation credentials and role credentials are verified. In
addition, Carl’sIntern role credential is also verified to ensure
he is indeed an intern.

Example 1.1 only involves one administrative domain,
namely the hospital. Therefore, the credentials and the public
keys of delegators (Bob and Alice) can be reasonably assumed
to be available to the verifier that is the hospital server.
However, trust management is to facilitate information sharing
across different administrative domains. Delegation is usually
decentralized and typically involves users and roles from
multiple organizations. The verification process is much more
complex, because there is no single trusted authority and
public keys for credentials may not be known or trusted. We
show in Section IV a more complex cross-domain role-based
delegation. In this paper, we study the role-based delegation
in the general setting. We propose arole-based cascaded
delegationprotocol that supports assured information sharing
in a decentralized fashion.

For efficient transmission and storage, compact digital cre-
dentials are desirable. Multi-step delegation credentials may
be lengthy because the verification of a delegation chain
requires checking a number of signatures linear in the length
of the chain, where the length is defined as the number of
delegations on the chain. Conventional signature schemes,

2

such as RSA [28] and DSA [12], produce relatively long
signatures compared to the security they provide. For a 1024-
bit modulus (security level), RSA signatures are 1024 bits long
and standard DSA signatures are 320 bits long. The number
of signatures required to authenticate a role-based delegation
chain of lengthn is about2n, because in addition to verifying
each of the delegation transactions, one must verify that the
intermediate delegators are members of the required roles.
Among the signatures associated with a delegation chain, the
signature on a role credential is generated by the administrator
of that role independently from the rest of the signatures.

Unfortunately, it is not known how to aggregate individually
generated signatures from different signers on different mes-
sages in conventional cryptosystems, such as RSA [7], [24].
This means that the entire set of signatures has to be stored
by delegated entities, and transmitted across networks at each
delegation and verification. Because intermediate delegators
in our model may be entities who have limited computational
power and communicational bandwidth, the implementation of
role-based cascaded delegation using conventional credentials
is inefficient. We overcome these problems by realizing the
role-based cascaded delegation with short aggregate signa-
tures [6], [8].

A. Our Contributions

Existing delegation models assume the delegation is issued
by administrators. However, to enable flexible resource shar-
ing, the decision of introducing new role members into a
collaboration needs to be dynamically made by members of
existing roles, without the involvement of administrators. In
the meantime, the shared information needs to be adequately
protected against unauthorized or unqualified users. These
goals drives us to reexamine conventional assumptions in
role-based delegation, and define our model from a different
perspective. We summarize our contributions next.

• We present a role-based delegation mechanism that sup-
ports the efficient verification of multi-step delegation
chains. It has two main features:(1) flexible delegation
where a delegation can be issued by a valid member of a
role, not just by the administrator; and(2) simple verifi-
cation where a delegation credential is self-contained and
the verification does not require the participation of any
role administrators. Our delegation mechanism takes a
simple accumulation approach, where each intermediate
delegator passes down the relevant digital credential to
the delegated entity for later verification.

• We give a detailed protocol specification for public key
signing and management that ensures the integrity of
shared resources. The significance of our RBCD protocol
is that we do not assume the existence of a public key
infrastructure (PKI), which may be expensive to adopt
widely. This feature makes our protocol general enough
for many decentralized and open system environments
such as peer-to-peer networks, where there are no central
authorities and PKI is usually not available. Another
important feature of our delegation protocol is that a
delegation is issued to a role, yet we are able to support

access accountability. That is, in case of misbehaving in-
dividuals, the resource owner can identify their identities,
who are authorized through our role-based delegation.

• We also present a concrete realization of RBCD that gives
compact delegation credentials. Traditionally, the number
of signatures required for the verification of a delegation
chain is linear in the number of entities of the chain.
Our implementation needs only one aggregate signature,
which is a significant improvement in efficiency over the
existing delegation chain protocols.

Although our delegation model is role-based, it can be
simplified to support individual delegation, i.e., a role member
further extends his or her delegated privileges to another
individual. Because role-based delegation is more generaland
scalable, it is the focus of our presentation in this paper.

B. Organization of the paper

The rest of this paper is organized as follows. We define
the terminology and notations used in our role-based cas-
caded delegation in Section II. The necessary cryptographic
knowledge is also described. The overview of our role-based
cascaded delegation mechanism is given in Section III. In
Section IV, an example of role-based cascaded delegation is
presented. Our delegation protocol is described in SectionV.
A realization of RBCD with aggregate signatures is presented
in Section VI. In Section VII, we address the issues of
revocation, security, scalability, and efficiency for our model
and implementation. A comparison of role-based cascaded
delegation with existing trust management approaches is given
in Section VIII. Section IX is the conclusion.

II. D EFINITIONS AND PRELIMINARIES

In this section, we give our definitions for affiliated and
delegated roles, and define our terminology and notations. We
also give our definition for independently-verifiable decentral-
ized role-based delegation. Finally we describe the necessary
cryptographic knowledge.

A. Roles and their scopes

In our model, we define theadministrator of a role as
the organization that creates and manages the role. If a
role credential of an entityD is signed and issued by the
administrator of the role, that role is said to be anaffiliated
role of D. (This type of role is usually obtained through the
affiliation with an organization, and thus the name.) If a role
credential ofD is instead issued through delegation and signed
by entities other than the administrator of the role, that role is
called adelegated roleof D.

The following example illustrates the difference between
affiliated and delegated roles. Bob is a full-time professor
at UniversityU . He has a credential signed by universityU
for the roleprofessorat U , denotedU.professor. Thus, role
U.professoris an affiliated role of Bob. Alice is not the univer-
sity’s employee, but she is Bob’s collaborator. Bob delegates
Alice the roleU.professorto allow her to access university’s
resources. However, Alice does not have a credential signed

3

by U for U.professor. Thus,U.professoris a delegated role of
Alice.

The reason of making this distinction is to protect sensi-
tive resources and to provide easy management for resource
owners. An affiliated role and a delegated role have different
access scopes. Delegations to a roler of an organization
only apply to those entities who haver as an affiliated
role. In the above example, if a privilege is delegated by a
third-party to roleU.professor, then Bob is entitled to this
privilege, whereas Alice is not. This is becauseU.professor
is Alice’s delegated role. The new privileges delegated to role
U.professordo not automatically propagate to her. A real-life
analogy to this distinction is professor vs. visiting professor.
In a university, a full-time professor is appointed by the
university, whereas a visiting professor position is temporary
and typically approved by a full-time professor. A visiting
professor has fewer privileges than a full-time professor in
terms of access rights.

Our delegation model for roles is different from conven-
tional delegation models, where delegations to a roleauto-
matically propagate toall the entities that are delegated the
role. However, it is important to make this distinction and our
definitions provide higher assurance to the security of shared
resources. For example, if hospitalH delegates the right of
reading a patient’s medical record to the roleU.professor,
Alice would be entitled to this privilege in conventional
delegation models, but not in our model. For sensitive data
such as medical records, the automatic propagation of dele-
gations to unknown roles may not always be desired by the
resource owner. In comparison, our delegation model allows
easy management of delegations for resource owners.

To support flexible decentralized delegation, we give to both
role types (affiliated and delegated) the capability of delegating
the role to other roles. Thus, in the above example, both Bob
and Alice are able to delegate roleU.professorto other roles.

Even though our delegation mechanism is privilege-
oriented, it is more efficient than the capability-list style
delegations [3] because of the role abstraction. Delegations
in our model may be issued to roles, as well as to individuals,
which benefit from the efficiency, scalability, and simplicity
brought by the role-based delegation. The delegated privileges
are role assignments, therefore, role-based cascaded delegation
approach is more efficient than the capability-lists.

B. Terminology

As in the RT framework [23], we define anentity to be
either an organization or an individual. An entity may issue
credentials and make requests. Also, an entity may have
one or more affiliated roles or delegated roles, which are
authenticated by role credentials. Anaffiliated role credential
is the credential for an affiliated role, and is signed by the
administrator of the role. Similarly, adelegated role credential
is the credential for proving a delegated role. Both credentials
are issued using our delegation protocol. An affiliated rolecan
be viewed as delegated directly by the administrator of the
role. A privilege can be a role assignment or an action on a
resource. Theoriginal issueror original delegatorof privilege

P is the first entity on a delegation chain, and is the owner of
the resources associated with privilegeP . A delegation chain
of privilegeP is the path that shows the delegation sequence
of P between entities. The chain connects a delegated entity to
the original issuer ofP . Given an entity on a delegation chain,
the preceding entities on the chain are theancestorentities.

An extension credentialis generated and signed by a dele-
gator on delegation transaction information, such as identities
of the delegator and delegatee, and the delegated privilege. An
extension signatureis the signature on an extension credential.
A role signatureof an entity is the signature on an affiliated
role credential of the entity. Theidentity signatureof an entity
is a signature computed by the entity using her private key. A
complete delegation credentialincludes the identity signature
of the requester, extension signatures, and role signatures. A
partial delegation credentialis a delegation credential issued
to a role. It cannot be used by an individual for proving
authorization, as it lacks the identity and role signaturesof
the requester.

We give the definition for independently-verifiable decen-
tralized role-based delegation as follows.

Definition 2.1: A delegation is an independently-verifiable
decentralized role-based delegation if and only if the following
requirements are satisfied:

1) [Decentralized] Domain1 and Domain2 are two inde-
pendent administrative domains. LetDomain1.r be a
role administrated byDomain1.

2) [Role-Based]The delegation is issued by a member of
role Domain1.r to delegate privileges associated with
r to members ofDomain2.

3) [Independently-verifiable] Given the public key asso-
ciated with Domain1, the delegation credential can be
verified by any third-party without the participation of
the administrator ofDomain1.

We will illustrate further this above definition in later sections.

C. Notations

We use a simple notation to express delegation credential.
We allow the delegation of role memberships, and delegation
to roles. A roler administered by entityA is denoted asA.r.
Entity A is the administrator of roleA.r. A role defines a
group of entities who are members of this role. An affiliated
role A.ra defines a subset of a roleA.r that contains a
group of entities whose role credentials are directly issued
by A. Similarly, a delegated roleA.rd defines a subset of
the roleA.r that contains entities whose role credentials are
not directly issued byA. RoleA.ra andA.rd defineA.r, i.e.
A.r = A.ra ∪A.rd. If an entityD has an affiliated roleA.r,
his role credentialis denoted byA

A.r
−−→ D, which indicates

thatD is assigned roleA.r by the role administratorA. Entity
D can further delegate roleA.r to a roleB.s (administered
by B) by issuing anextension credential, which is denoted by
D

A.r
−−→ B.s. Similarly, any member entityE of role B.s can

further delegate roleA.r to a roleC.t (administered byC). The
corresponding extension credential is denoted byE

A.r
−−→ C.t.

4

D. HCBE Preliminaries

Here, we give a brief overview of the necessary crypto-
graphic knowledge.

The Hierarchical Certificate-based Encryption(HCBE)
scheme [15] is a public key cryptosystem, where messages
are encrypted with public keys and decrypted with corre-
sponding private keys. What is unique about HCBE is that
it makes the decryption ability of a keyholder contingent on
that keyholder’s acquisition of a hierarchy of signatures from
certificate authorities. To decrypt a message, a keyholder needs
both his private key and the public key certificates (signatures)
that are respectively signed by a chain of CAs. The CA
hierarchy consists of a root CA and lower-level CAs. Higher-
level CA certifies the public key of the next-level CAs, and
the CAs at the bottom (leaf positions) of the hierarchy certify
the public keys of individual users.

HCBE is based on the aggregate signature scheme [6], [8],
which supports aggregation of multiple signatures on distinct
messages from distinct users into one short signature. The
HCBE scheme [15] has six algorithms, HCBESETUP,
HCBE CERT OF CA, HCBE CERT OF BOB,
HCBE AGGREGATE, HCBE ENCRYPTION, and
HCBE DECRYPTION. The second and the third algorithms
are essentially the same; HCBECERT OF CA is for
certifying the public keys of CAs, and HCBECERT OF BOB

is for certifying the public key of an individual. The API of
the algorithms are given below.

HCBE SETUP: A set of system parametersparams is gen-
erated. Among other parameters,paramscontain two crypto-
graphic hash functionsH and H ′, a bilinear mapê, and a
constantπ with certain properties. A bilinear map [5] is a
mapping function̂e(x, y) that takes two inputsx and y, and
outputs a value. Each entityD chooses his private keysD,
computes and publishes his public keysDπ.

HCBE CERT OF CA(si, infoi+1): CA at i-th level runs this
algorithm to certify the public key of the CA at leveli + 1
by computing a signature. The first input is the private key
of CAi, and the second input is a stringinfoi+1 that contains
the public keysiπ of the signer and the public keysi+1π of
CAi+1. The stringinfoi+1 may also include information such
as the expiration date, etc.

HCBE CERT OF BOB(sn−1, infon): CAn−1 runs this algo-
rithm to certify the public key of Bob. The first input is the
private key of CAn−1, and the second input is a stringinfon

that contains the public keysn−1π of the signer and the public
key snπ of Bob.

HCBE AGGREGATE(sn, info′, sig2, . . . , sign): This algorithm
is run by Bob, who uses his private keysn and the public key
certificates on his chain to compute an aggregate signature,
which will be used as his decryption key. The inputs to
this algorithm are Bob’s private keysn, the stringinfo′ that
contains the information of Bob, and a number of signatures1

that contains the public key certificate signatures associated
with his certification chain.

1HCBE AGGREGATEcan take any number of signatures.

HCBE ENCRYPTION(M, info1, . . . , infon, info′): Alice com-
putes the ciphertext to send to Bob. The inputs are a mes-
sageM , string infoi of the certification at leveli on Bob’s
chain for 1 ≤ i ≤ n, and string info′ that Bob signs in
HCBE AGGREGATE.

HCBE DECRYPTION(C, SAgg): Bob decrypts the ciphertext
C to retrieve the message using his aggregate signatureSAgg.

The security of HCBE assures that a ciphertext for an
individual can only be correctly decrypted using both the
receiver’s private key and his public key certificate obtained
from the hierarchy of CAs. We slightly modify the encryption
and decryption schemes in HCBE scheme for our verification
of delegation chain. In our protocol in Section VI, the requester
computes an aggregate signature, and gives it to the verifier.
The verifier encrypts a message with the delegation chain
information, and attempts to decrypt the ciphertext with the
aggregate signature. Successful decryption verifies the delega-
tion chain.

III. OVERVIEW OF ROLE-BASED CASCADED DELEGATION

We propose a model for the delegation of authority in role-
based trust management systems, calledrole-based cascaded
delegation. The main goal of this model is to allow flexible
transfer of privileges and sharing of resources in decentralized
environments. Our model allows a role member to delegate
his or her privileges to users who may belong to different
organizations, as opposed to restricting this delegation ability
to role administrators in traditional access control models. In
addition, our role-based cascaded delegation model allowsa
delegatee to further extend the delegated privileges to other
collaborators. The challenge arise in realizing this goal in
a decentralized environment is that the public key of an
intermediate delegator may not be known by a verifier or the
resource owner. Therefore, the delegation credential signed by
that delegator may not be trusted by the verifier.

To solve this problem, we borrow the concept of cascaded
delegation from distributed systems literature [25], [31]. The
distributed cascaded delegation problem is essentially tode-
sign a delegation mechanism that efficiently verifies a hier-
archical delegation chain. In the cascaded delegation model,
a delegation recipientE may further extend the delegated
privilege to another entityE′, and the delegation credentials of
E are passed to entityE′ along with the delegation certificate
signed byE as the issuer. The public key of the next delegatee
is encoded in the delegation credential, which naturally forms
a chain of trust. Therefore, trusting the original delegator
means that the delegatees’ public keys are authorized by the
delegation. In addition, the authorization chain is storedin
delegation credentials and does not have to be dynamically
discovered. However, previous cascaded delegation protocols
support neither multiple administrative domains nor the use of
roles in the delegation. We give support to both in our role-
based cascaded delegation model.

In our role-based cascaded delegation, given a privilege,
two types of entities can delegate the privilege to others.
One is the resource owner of the privilege. The other is a
member of a role who is delegated the privilege. A roler

5

is delegated a privilege by receiving a delegation credential
C that explicitly assigns the privilege to roler. Members
of the roler are allowed to further delegate the privilege to
another roler′ as follows. A memberD of the roler uses the
delegation credentialC to generate a delegation credentialC′.
C′ comprises multiple component credentials, which include
the credential of the current delegation authorization, the
credential C from the preceding delegation, and the role
membership credential of the delegatorD. The verifier can
make the authorization decision based on delegation credential
C′ and the role membership credential of the requester. The
verification can be done by any party without the participation
of any role administrators, which is called by us as independent
verifiability (See also Section II).

The length of a delegation chain in role-based cascaded
delegation refers to the number of delegators involved. A
privilegeP is delegated by an entityE to a roler1. A member
D of role r1 further delegates the same privilegeP to roler2.
The delegation chain of privilegeP involves entityE, role r1,
entity D, and roler2. Role r2 receives the privilegeP as the
result of the delegation chain. The length of the chain is two.

Decentralized role-based delegation allows users from ad-
ministratively independent domains to be dynamically joined
according to the needs of the tasks. We have also explored
the applications of RBCD for efficient and flexible trust
establishment in decentralized and pervasive environments
in [34].

IV. RBCD EXAMPLE

In this section, we describe a delegation example for the
role-based cascaded delegation model. Suppose a collaboration
project is established between a hospitalH and a medical
schoolM . To facilitate the collaboration, the hospital initiates
a delegation chain and delegates its roleH.guest to the
affiliated roleM.professorat the medical school. HospitalH
is the administrator of the roleH.guest. The delegation is
expressed in the partial delegation credential (1), using the
notation described in Section II.

H
H.guest
−−−−−→ M.professor (1)

In credential (1), hospitalH is the original issuer,H.guest
is the delegated privilege, andM.professor is the role that
receives the delegation.

The hospitalH allows members of the roleM.professor
to further delegateH.guest role to whomever they deem
necessary to accomplish the project. Bob is a professor atM
and has an affiliated role credential (2).

M
M.professor
−−−−−−−−→ Bob (2)

For a task in the collaboration project, Bob subcontracts to
a labL. LabL is independent from schoolM and is unknown
to the hospitalH . Lab L defines a research assistant role
L.assistant. In order for members of the roleL.assistantto
work on the task and utilize the resources of the hospital
H , Bob delegates the roleH.guest to the affiliated role
L.assistant. In our role-based cascaded delegation model, Bob
issues a partial delegation credential (3) by extending the
delegation credential (1) to roleL.assistant.

(H
H.guest
−−−−−→ M.professor), (M

M.professor
−−−−−−−−→ Bob),

(Bob
H.guest
−−−−−→ L.assistant) (3)

Credential (3) also includes Bob’s role credential (2) for
proving that he is allowed to delegateH.guest. (3) is a partial
delegation credential for roleL.assistant.

Recall that (3) is different from the linked role inRT frame-
work [22], as the roleH.guestis delegated, notM.professor.
Alice is a research assistant in labL, and has an affiliated role
credential (4) issued by labL to prove this role membership.

L
L.assistant
−−−−−−−−→ Alice (4)

(4) is equivalent to the role membership representation
below, as inRT framework. (5) is read as Alice has a role
of L.assistant.

L.assistant← Alice (5)

Because (4) is issued by the labL, the role L.assistant
is Alice’s affiliated role. To prove that she has the hospital’s
delegatedguestrole, Alice obtains the delegation credential (3)
for role L.assistantfrom a credential server, and aggregates it
with her affiliated role credential (4). This delegation generates
credential (6).

(H
H.guest
−−−−−→ M.professor), (M

M.professor
−−−−−−−−→ Bob),

(Bob
H.guest
−−−−−→ L.assistant), (L

L.assistant
−−−−−−−−→ Alice) (6)

Credential (6) and the identity signature of Alice yield a
complete delegation credential for Alice. For verification, the
hospitalH does not need to discover the delegation chain that
connects Alice with roleH.guest, because this information is
contained in credential (6). Furthermore, the lab administrator
does not have to participate in the verification of Alice’s role
membership as this information is also in (6). The hospital
makes the authorization decision by verifying each component
of credential (6) and Alice’s identity signature. Note thatthe
hospital does not need to have prior knowledge of or trust
relationship with labL. This independent verifiability enables
a cross-domain authorization chain to be easily verified.

We allow actions to be delegated, as well as roles. For
example, the hospital may delegate the read access of a
databasedb (Readdb) to roleM.professor, which is expressed
in (7).

H
(Readdb)
−−−−−−−→M.professor (7)

V. ROLE-BASED CASCADED DELEGATION PROTOCOL

In this section, we first describe the role-based cascaded
delegation protocol and then show an efficient realization of
this protocol using the HCBE scheme [15]. In what follows,
a roler represents an affiliated role.

A. Protocol

The role-based cascaded delegation protocol defines
four operations: RBCDINITIATE , RBCD EXTEND,

6

RBCD PROVE, and RBCDVERIFY. In our protocol
description, delegation credentials once issued are stored in
public credential servers that can be queried by anyone. The
credential servers (See also Section VII-B) may be simple
LDAP servers. Because of our security guarantees (See
Section VII-A, adversaries cannot use the credentials on the
servers to forge authorization.

• RBCD INITIATE (PD0
, sD0

, D0.priv, A1.r1, PA1
): This

operation is run by the administratorD0 of a privilege
D0.priv to delegateD0.priv to an affiliated roleA1.r1.
This operation initiates a delegation chain for privi-
legeD0.priv. Inputs are the public keyPD0

of entityD0,
the corresponding private keysD0

, the delegated privilege
D0.priv, the role nameA1.r1, and the public keyPA1

of role administratorA1. Recall that only affiliated roles
can receive delegations, as discussed in Section II-A. The
output is a partial delegation credentialC1 for the role
A1.r1, represented as

D0
D0.priv
−−−−−→ A1.r1.

The statement ofC1 includes the public keyPD0
, the

privilege D0.priv, and information about the roleA1.r1

such as the role name and the public key of the admin-
istratorA1. The delegation certificate is signed using the
private keysD0

. D0 storesC1 on a credential server.
Note that if the last argument is the public key of an indi-
vidual, this operation can also be used for generating role
certificates. Role certificate is given to the corresponding
role member.

• RBCD EXTEND (sDn
, D0.priv, Cn, RDn

, An+1.rn+1,
PAn+1

):
This operation is run by an intermediate delegatorDn,
who is a member of an affiliated roleAn.rn, to extend the
delegation of privilegeD0.priv to the roleAn+1.rn+1.
The inputs are the private keysDn

of the delegatorDn,
the delegated privilegeD0.priv, the partial delegation
credentialCn that delegates the privilegeD0.priv to the
role An.rn, the role credentialRDn

of the delegatorDn,
the role nameAn+1.rn+1, and the public keyPAn+1

of
role administratorAn+1. CredentialCn is retrieved from
a credential server. The partial delegation credentialCn is
a function of the preceding extension and role credentials,
which are denoted as:

(D0
D0.priv
−−−−−→ A1.r1),

(A1
A1.r1−−−→ D1), (D1

D0.priv
−−−−−→ A2.r2),

. . .

(An−1
An−1.rn−1

−−−−−−−→ Dn−1), (Dn−1
D0.priv
−−−−−→ An.rn)

whereD0 represents the resource owner, andAi.ri is the
role that is delegated the privilegeD0.priv by an entity
Di−1 who has the affiliated roleAi−1.ri−1, for i ∈ [1, n].

An extension credential denoted byDn
D0.priv
−−−−−→

An+1.rn+1 is generated as an intermediate product of
the operation RBCDEXTEND. Its statement contains
information about the delegated privilegeD0.priv and
the roleAn+1.rn+1. It is signed with the private keysDn

.
The final output of this operation is a partial delegation

credentialCn+1, which is a function of the credentialCn,

the role credentialRDn
denoted byAn

An.rn−−−−→ Dn, and
the extension credential described above.
CredentialCn+1 may simply be delegation credentialCn

together with two individual credentials. Alternatively,
Dn can compute a delegation credential for the role
An+1.rn+1 as in existing cascaded delegation protocols
[11], [27], and also passes down his role credential to
members of the roleAn+1.rn+1. In comparison, our
realization using HCBE [15] scheme provides a more
efficient approach.

• RBCD PROVE(sDn
, D0.priv, RDn

, Cn):
This operation is performed by the requesterDn who
wants to exercise privilegeD0.priv. Dn is a member
of the affiliated roleAn.rn. The requesterDn uses the
partial delegation credentialCn and Dn’s affiliated role
credentialRDn

, denoted byAn
An.rn−−−−→ Dn, to prove

that he is authorized the privilegeD0.priv. The inputs
are the private keysDn

of the requesterDn, the priv-
ilege D0.priv, the affiliated role credentialRDn

of the
requester, and the delegation credentialCn. CredentialCn

is retrieved by the requester from a credential server. The
operation produces a proofF , which contains delegation
statements and corresponding signatures for verification.
The private keysDn

is for proving the authenticity of the
public keyPDn

that appears on the role credentialRDn

of the requester.
• RBCD VERIFY(F):

This operation is performed by the resource ownerD0

to verify that the proofF produced by the requester
Dn correctly authenticates the delegation chain of priv-
ilege D0.priv. Dn is a member of the roleAn.rn.
The input is a proofF that is computed by the re-
quester Dn. F contains signatures and a string tu-
ple [D0.priv, PD0

, A1.r1, PA1
, PD1

, . . . , PDn−1
, An.rn,

PAn
, PDn

] that consists of the components of a delega-
tion chain for requesterDn. In the string tuple,D0.priv
is the delegated privilege, fori ∈ [1, n] PDi−1

is the
public key for the delegatorDi−1 whose affiliated role is
Ai−1.ri−1, Ai.ri is the role that receives the delegation
from Di−1, PAi

is the public key of role administratorAi,
andPDn

is the public key of the requester. The verifier
checks whether the signatures inF correctly authenticates
the delegation chain. This process includes the authenti-

cation of each delegation extensionDi−1
D0.priv
−−−−−→ Ai.ri,

and entityDi’s affiliated role membershipAi
Ai.ri−−−→ Di,

for all i ∈ [1, n]. F also contains the proof of possession
of private keysDn

that corresponds to public keyPDn
.

Dn is grantedD0.priv if the verification is successful,
and denied if otherwise.

Our role-based cascaded delegation model supports
independently-verifiable decentralized role-based delegation.
Recall that independently-verifiable decentralized role-based
delegation is defined in Section II as the ability for a member
of role r to delegater to other roles or entities, and in addition
the delegation credential can be independently verified by any
third-party without the participation of the administrator of

7

role r. In RBCD, RBCD EXTEND is performed by a valid
member of roler to delegater to others. The partial delegation
credential generated contains the role credentials of all delega-
tors on the delegation chain. Therefore, the verification ofthe
delegation credentials does not require any role administrators,
and can be performed by anyone.

Affiliated role credentials can be issued using
RBCD INITIATE operation by the administrator of a
role. RBCD EXTEND operation is used to issue delegated
role credentials. The delegation chain of a privilege grows
at each delegation extension. The verifier may perform
revocation checking at the RBCDVERIFY operation.
Delegation revocation is discussed in Section VII. In the
next section, we describe a realization of cascaded delegation
using the Hierarchical Certificate-based Encryption [15],
which allows aggregation of multiple credentials into one
credential.

VI. REALIZATION

Role-based cascaded delegation can be implemented in a
straightforward manner using the RSA signature scheme [28].
At each delegation, the delegatorD computes an RSA signa-
ture on the delegation statement, and issues it to delegatees
along with D’s role signature (also an RSA signature). The
delegation chain verification consists of verifying each ofthe
above signatures.

We present a more efficient realization of role-based cas-
caded delegation using the Hierarchical Certificate-basedEn-
cryption (HCBE) [15] scheme. In HCBE, each entity has a
public/private key pair generated on his own. A member of an
affiliated role has an affiliated role credential, which contains
a signature signed by the administrator of the role. The
delegation credential in this protocol consists of an aggregate
signature and a string tuple.

In RBCD, a delegator issues a partial delegation credential
to a role, which is not valid until a member of the affiliated
role adds in his role credential and identity information. The
complete delegation credential of an entity is computed by the
entity, using the partial delegation credential obtained through
credential servers, his role credential, and his secret personal
information. Each member of an affiliated role has aunique
complete delegation credential, however, the delegator only
needs to generateonepartial delegation credential, which does
not require the knowledge of the members of that affiliated
role. This feature makes our protocol scalable. Any member
of that affiliated role can further delegate the privilege toother
affiliated roles, without any assistance from administrators.
The public information of intermediate delegators is traceable.
The affiliated role membership of all the delegators on a
delegation chain can be proved, however, the signatures on
their role credentials are not revealed to anyone.

A delegation credential of an entity corresponds to a delega-
tion chain, and has two components: one aggregate signature
of constant size and a string tuple. The string tuple defines
the delegation chain, and its size is linear in the length of
the chain. The signature is used for authentication of the
chain. The aggregate signature [6] in the HCBE scheme is

an ordinary sized signature that is the aggregation of multiple
signatures, which may include signatures from delegators,
role administrators, and the requester. To request a service,
the requester uses his private key to sign a statement which
is chosen by the verifier, and aggregates this signature with
signatures from his role credential and the partial delegation
credential obtained from a credential server. To verify the
delegation chain, one simply verifies that aggregate signature
submitted by the requester.

Our role-based cascaded delegation protocol has five op-
erations, which make use of the algorithms in the HCBE
scheme [15]. Alternatively, one can use operations in the
aggregate signature scheme [6] for generating and verifying
delegation credentials. We choose to use HCBE for the pre-
sentation, because its operations have intuitive meaningsthat
are similar to our needs.

RBCD SETUP: This operation outputs the system parameters,
public/private keys, and role credentials that will be usedin
the system.

• The root of the system calls HCBESETUP and obtains a
set of public parameters denoted asparams. Among other
parameters inparams, including collision-resistant hash
functionsH andH ′, a special constantπ, and a bilinear
map ê [5].

• Each entity (organization or individual)D chooses a
secretsD as his private key, and computes the product
sDπ as its public keyPD.

• An organizationA with the private keysA certifies
entities who haveA.r as an affiliated role. For each
entity D who has the affiliated roleA.r and the public
key PD, organizationA computes a role signatureRD

by running HCBECERT OF CA(sA, PD‖A.r), where
‖ denotes string concatenation. The output signature,

representing the role assignmentA
A.r
−−→ D, is given to

entity D for proving the affiliated role membership.

RBCD INITIATE : Resource ownerD0 delegates the privilege
D0.priv to members of an affiliated roleA1.r1. The private
keysD0

corresponds to the public keyPD0
of entityD0. Entity

D0 does the following.

• Set the stringinfo1 = PD0
‖D0.priv‖A1.r1‖PA1

. String
info1 contains the public keyPD0

of the owner of the
delegated privilege, the delegated privilegeD0.priv, the
role A1.r1 that receives the privilege, and the public
key PA1

of the administrator of the roleA1.r1. Run
HCBE CERT OF CA(sD0

, info1), which outputs an ex-
tension signatureX1. Define a string tuplechain1 as
[D0.priv, PD0

, A1.r1, PA1
]. Set the partial delegation

credentialC1 for the role A1.r1 as (X1, chain1). Cre-
dentialC1 is put on a credential server.

RBCD EXTEND: An entity Di, whose role isAi.ri, further
delegatesD0.priv to role Ai+1.ri+1. Di uses his private key
sDi

, his role signatureRDi
, and the delegation credentialCi

of the role Ai.ri to compute a partial delegation credential
Ci+1. Entity Di does the following.

• Parse the credentialCi as (SAgg, chaini), where SAgg

is the aggregate signature of credentialCi and chaini

8

is the corresponding string tuple. SignatureSAgg is
a function of preceding extension and role signatures
on the delegation chain. String tuplechaini contains
the components of the delegation chain. Set the string
infoi+1 = PD0

‖D0.priv‖Ai+1.ri+1‖PAi+1
, where

PD0
is the public key of the resource owner of the

delegated privilege,D0.priv is the delegated privilege,
Ai+1.ri+1 is the role that receives the privilege, and the
public key PAi+1

of the role administratorAi+1. Run
HCBE AGGREGATE(sDi

, infoi+1, RDi
, SAgg), which

outputs an aggregate signatureS′

Agg.
• Define the string tuplechaini+1 of credentialCi+1 as

the string tuplechaini appended with public keyPDi
,

the role nameAi+1.ri+1, and the public keyPAi+1
. Set

credentialCi+1 as (S′

Agg, chaini+1). The partial delega-
tion credentialCi+1 for the roleAi+1.ri+1 is put on a
credential server.

RBCD PROVE: The requesterDn with the role signature
RDn

and delegation credentialCn wants to use the delegated
privilege D0.priv. Dn is given a random messageT by the
verifierD0. The messageT contains some random information
to prevent a replay attack.Dn does the following.

• Parse the credentialCn as (SAgg , chainn), whereSAgg

is the aggregate signature ofCn andchainn is the string
tuple. Run HCBEAGGREGATE(sDn

, T, RDn
, SAgg),

wheresDn
is the private key ofDn. HCBE AGGREGATE

outputs an aggregate signatureS′

Agg. Set the string tuple
chain′n to be chainn appended with the public keyPDn

of Dn. Set the proofF to be(S′

Agg, chain′n, T), which is
sent to the verifierD0.

RBCD VERIFY: The verifierD0 verifies the proofF submit-
ted by the requesterDn as follows.

• ParseF as(S′

Agg , chain′n, T), whereS′

Agg is an aggregate
signature,chain′n is a string tuple, andT is a message.
Parse the string tuplechain′n as [D0.priv, PD0

, A1.r1,
PA1

, . . ., An.rn, PAn
, PDn

], where fori ∈ [0, n−1] PDi

is the public key of delegatorDi whose affiliated role is
Ai.ri, Ai+1.ri+1 is the role receiving the delegation from
Di, PAi+1

is the public key of role administratorAi+1,
andPDn

is the public key of the requester.
• Encrypt a messageM in HCBE as follows. Choose a ran-

dom numberr. Set the ciphertextCiphertext= [rπ, V],
where π is one of the public parameters,V = M ⊕
H ′(gr), whereg = g1g2g3 is a product of the following:
g1 = ê(PDn

, H(T)), g2 = Πn
i=1ê(PAi

, H(PDi
‖Ai.ri)),

g3 = Πn−1
i=0 ê(PDi

, H(PD0
‖D0.priv‖Ai+1.ri+1‖PAi+1

)).
The value g is the product of multiple bilinear map
functions [5] whose inputs are the public key of a signer
and the hash digest of the signed message.H andH ′ are
the two hash functions in the system parametersparams.
⊕ denotes bit-wise XOR operation.T is the message that
Dn signs in RBCDPROVE.

• Run HCBE DECRYPTION(Ciphertext, S′

Agg) to decrypt
ciphertext Ciphertext using S′

Agg. Compare the output
M ′ of the decryption with the original messageM . The
request is granted ifM = M ′, denied if otherwise.

The correctness of the protocol can be directly deduced from
the correctness of HCBE and is not shown here.

A delegation to the intersection of roles [22], for example
A1.r1 ∩ A2.r2, may be realized by extending one delegation
to a string that represents an intersection of roles, rather
than one role. To extend or prove such a delegation, an
entity needs to aggregate two, rather than one, role signatures
into a delegation credential. Additional fields can be added
by the delegator to a delegation credential to increase the
expressiveness, one of them being the expiration date of a
delegation. Given a delegation chain defined by the credential,
the expiration date of a delegation should be no later than any
of the expiration dates of preceding delegations. The delegator
may also set restrictions on the level of a delegation, which
specifies whether or not the privilege can be further delegated
and for how many times, i. e., the length of a delegation chain.
This constraint helps improve the accountability, and gives
the delegator a tight control over the delegated privileges.
The verifier or the delegation receiver should check if all
the constraints are satisfied before accepting a credential.
Supporting the RBCD model with predicates and constraints
was recently presented in [34].

We discuss the security, efficiency, and scalability of role-
based cascaded delegation protocol in the next section.

VII. A NALYSIS

We now analyze the security, efficiency, scalability, and
revocation of role-based cascaded delegation.

A. Security

In this section, we first analyze the security of our role-based
cascaded delegation model, and then describe the security of
the RBCD realization with aggregate signatures.

The security property of the RBCD model is defined as fol-
lows: unauthorized entities cannot access protected resources,
and unauthorized entities cannot issue valid delegations.We
allow adversaries to do the following: (1) adversaries can
observe communications between delegation participants and
between resource owners and requester; (2) adversaries can
forge delegation credentials or role credentials; and (3) adver-
saries can submit access requests. We assume the existence of
a signature scheme that is secure against forgery attacks by
(probabilistic) polynomial-time adversaries.

Then in RBCD, given a partial delegation credential for
a role r, a polynomial-time adversary cannot forge a valid
delegation chain that authorizes the roler to any role or
individual. The analysis is as follows. The partial delegation
credential is generated by INITIATE or EXTEND operations. A
partial delegation credential is issued to roles, rather than to
individuals. To use the partial delegation credential for role r
to request for access, one needs to have a valid role credential
Rr of role r and the private-key corresponding to the public-
key stated inRr. The latter is for signing the challenge nonce
from the resource owner. Given any secure signature scheme
against polynomial-time adversaries, an adversary cannotforge
role credential and the signature on the nonce. Therefore, she
cannot use the partial delegation credential to authorize the

9

role r to herself. In addition, an adversary cannot forge valid
extension credentials to extend roler, because she is unable
to forge a valid role credential of roler that is required in
EXTEND operation.

The RBCD realization with aggregate signatures provides
strong protection of sensitive signatures because individual
signatures can be verified without being disclosed. To extend
a delegation, an intermediate delegator aggregates two signa-
tures. One is his role signature signed by a role administrator,
and the other is the extension signature signed by the delegator
himself. Once the role signature and the extension signature
are aggregated with the signature from the previous delegation
(the order does not matter), it is impossible for others to find
out what the role signature or the extension signature is. Sim-
ilarly, for a requester, the role signature and the signature on a
challenge statement are also protected. This is not achievable
in conventional signature schemes, such as RSA [7].

Furthermore, the security of the aggregate signature and
HCBE schemes guarantees that an attacker cannot forge a valid
aggregate signature consisting ofn individual signatures, even
if he possessesn− 1 of the required private keys [6]. In our
delegation model, this implies that one cannot forge any valid
delegation credential from existing credentials. Although sig-
nature verification can be performed by anyone, an adversary
cannot derive any signature nor secret key of the preceding
delegators from the aggregate signature that is issued to him.
HCBE also guarantees that collusions between users do not
give them any information more than what they have already
known.

B. Scalability

The abstraction of roles in role-based cascaded delegation
greatly reduces the potential for a large number of delegation
credentials, and makes the model scalable. Because the partial
delegation credentials issued by the delegators cannot be
directly used for accessing resources, they may be stored at
credential servers so that members of a role can query the
server to retrieve the partial credential. Thus, our implemen-
tation scales up to a large number of credential receivers.
Also, the delegation is decentralized. Individuals, who have
qualified roles, can make delegations of the roles without
the assistance of administrators. In collaboration environments
where coalitions are formed dynamically, this feature greatly
facilitates resource sharing. Note that our model does not
require the existence of public-key infrastructure.

C. Efficiency

We analyze the efficiency of RBCD model, and compare
its realizations with RSA and aggregate signatures. The size
of a partial or complete delegation credential is linear in the
length of a delegation chain, which is the number of delegation
transactions associated with the delegation credential. This
complexity is because at each delegation transaction, one
extension credential and one role credential are accumulated
to existing delegation credentials.

Although the asymptotic sizes of delegation credentials in
different RBCD realizations are the same, the implementation

using HCBE and aggregate signatures can have significant
advantages in delegation efficiency, compared to an implemen-
tation using conventional credentials. We compare our HCBE-
based realization with the realization using the RSA signature
scheme [28] described at the beginning of Section VI. We
consider a 1024-bit modulus RSA scheme, in which the size
of the public key is slightly larger than 1024 bits and the size
of a signature is 1024 bits long.

For the same level of security as 1024-bit modulus RSA,
the signatures and public keys in the aggregate signature
scheme can be as short as 170-bit long [8]. Observe that
at each delegation extension of RBCD, the following infor-
mation needs to be added to the delegation credential: the
public key of the delegator, the role name of recipients, the
public key of the role administrator, the signature on the
role credential of the delegator, and the extension signature
generated by the issuer. The analysis also applies to the
AGGREGATE operation performed by the requester. Therefore,
to authenticate a delegation chain of lengthn (i.e. havingn
delegations), the information required by the verifier includes
the delegated privilege, the public keys ofn delegators and
n role administrators,n role names, the public key of the
requester, along with2n + 1 digital signatures.

Suppose the length of a role name is100 bits and the
delegated privilege has the same size as a role name. The
total size of the credential in our HCBE realization is170 +
170(2n + 1) + 100(n + 1) = 440n + 440 bits. For the RSA
signature scheme, such a delegation credential contains2n
additional signatures, and the total size is at least1024(2n +
1) + 1024(2n + 1) + 100(n + 1) = 4196n + 2148 bits.

For example, consider a delegation chain of length 20.
The size of the delegation credential in RSA is more than
86 Kbits, while in the HCBE realization it is about 9.2
Kbits. Smart cards with a microprocessor typically have 32
KBytes (256 Kbits) EEPROM storage. Thus, our approach
has a clear advantage in terms of the number of credentials
that can be stored by smart cards and similar devices. For
small mobile devices with limited communication bandwidth,
this saving in the credential size allows the information to
be transmitted faster. The above analysis also applies to the
EXTEND operation.

For a 20 Kbits per second connection and a delegation
chain of length 20, the time for transmitting the entire RSA
credentials to the verifier in thePROVEoperation takes(4196×
20 + 2148)/20000 = 4.30 seconds. The time in our HCBE
realization takes(440× 20 + 440)/20000 = 0.46 seconds. In
addition, generating a signature in HCBE scheme requires only
3.57 ms on a 1 GHz Pentium III, and is faster than generating
a signature in the RSA scheme, which requires 7.90 ms for a
1007-bit private key on the same machine [1].

The running time for verifying an aggregate signature
associated with a delegation chain is linear in the number
of single signatures aggregated, i.e., the length of the chain.
The verification of a signature in the HCBE scheme is slow
(about 50 ms on a 1 GHz Pentium III) compared to RSA
signature verification (0.40 ms on the same machine for a
1007 bits private key) [1]. Nevertheless, in our protocol only
the servers of resource owners, which are typically powerful,

10

have to performs delegation chain verifications.
Table I summarizes the analysis above.

D. Delegation renewal and revocation

At each delegation extension, the issuer can set an expi-
ration date for the delegation, which may be earlier than the
expiration dates of preceding delegations on the chain. For
a delegation credential to be considered valid, none of the
expiration dates has passed. Intermediate delegators may issue
delegations with a short validity period, and then periodically
renew them. Delegation renewal can be done in a hierarchical
fashion as follows. To renew a delegation, a delegatorE puts
the renewed partial delegation credential on credential servers.
Intermediate delegators that succeed toE may retrieve the
renewed credential and update the corresponding delegations
that are issued by them.

Delegation revocation before expiration can be handled by
maintaining a revocation service, which can be efficiently
achieved using the authenticated dictionary technique (see,
e.g., [10], [17], [18], [26]). An authenticated dictionaryis
a system for distributing data and supporting authenticated
responses to queries about the data. The data originates at a
secure central site (the repository) and is distributed to servers
scattered around the network (responders). The responders
answer queries about the data made by clients on behalf of
the repository and provide a proof of the answer.

The roles or public keys whose delegated privileges are
revoked are put on the repository of the revocation service by
the resource owner. Before verifying the credential signatures
in the VERIFY operation, the resource owner queries the re-
vocation service to ensure that no public key whose delegated
privileges are revoked appears on the delegation credential.
Similarly, the revocation of affiliated role memberships can
also be supported using a revocation service, which the verifier
queries in theVERIFY operation to ensure the validity of the
affiliated role memberships of intermediate delegators.

VIII. R ELATED WORK

The PolicyMaker [4] and KeyNote [3] are the first trust
management systems that authorize decentralized access by
checking a proof of compliance. The system puts all the
policy and credential information into signed certificatesthat
are programmable. Certificates in PolicyMaker are generalized
as they consist of programs written in a general program-
ming language. SPKI/SDSI (Simple Public Key Infrastruc-
ture/Simple Distributed Security Infrastructure) is a public-
key infrastructure emphasizing decentralized name space and
flexible authorization [9], [13]. The owner of each public key
can create a local name space relative to that key. These
name spaces can be linked together to enable chains of
authorization and define groups of authorized principals. To
access a protected resource, a client must show a proof that
takes the form of a certificate chain proving that the client’s
public key is one of the groups on the resource’s ACL, or
that the client’s public key has been delegated authority from
a key in one of the groups on the resource’s ACL. Due to

the flexible naming and delegation capabilities of SPKI/SDSI
certificates, finding such a chain can be nontrivial.

Compared to RBCD, PolicyMaker, KeyNote, and
SPKI/SDSI do not define role abstractions, and thus
delegations can only be issued to individuals. The use of
roles makes authorization scalable, and in the meantime,
the role-based delegation mechanism is more complex as
demonstrated in this paper. In addition, these systems assume
that all certificates are centrally stored, which may not be
realistic in decentralized environments. In comparison, we
address this issue with a simple accumulation approach by
having delegators to pass down relevant credentials.

The RT framework is a family of Role-based Trust man-
agement languages for representing policies and credentials in
decentralized authorization [22]. Compared to our work, the
work of RT focuses on the high-level expressiveness aspect
of trust management, and does not address the cryptographic
verification problem of authorization chains as studied in this
paper. Our delegation mechanism is general and can be in-
corporated into existing role-based trust management systems
such asRT to instantiate a concrete delegate mechanism.
Details of how this incorporation is done is out of the scope
of this paper.

As we said earlier in the introduction, our role-based dele-
gation can be simplified to support individual delegation, i.e.,
a role member further extends his or her delegated privileges
to another individual. Therefore, TM systems such KeyNote,
PolicyMaker, and SPKI/SDSI can also utilize our protocol to
instantiate their delegation mechanisms.

QCM [19] and SD3 [20] are two trust-management systems
that consider distributed storage of credentials. A limitation
of the approach in QCM and SD3 is assuming that issuers
initially store all the credentials, which may be impracti-
cal for some applications. This limitation was addressed by
Li et al. [23], who presented goal-directed credential chain
discovery algorithms that support a more flexible distributed
storage scheme in which credentials may be stored by their
issuer, their recipient (also called their “subject”), or both. The
algorithms dynamically search for relevant credentials from
remote servers to build a proof of authorization. While storing
credentials with their issuers or recipients supports flexible
delegation models, in many cases such flexibility is unnec-
essarily costly. The discovery algorithms require delegation
issuers or their responders (credential servers) to participate
in the computation. Role-based cascaded delegation can be
integrated with the credential chain discovery algorithmsto
reduce the communicational and computational costs to a cer-
tain degree [34]. This is because part of the target authorization
chain is already captured in RBCD’s delegation credentialsand
does not need to be discovered.

There are several cryptographic cascaded delegation [31]
schemes for the proxy authentication and authorization, in-
cluding nested signature schemes [33], delegation keys [27],
and a combined approach [11]. These schemes do not pro-
vide the support for delegations to roles, and the delegation
credentials are not as compact as ours, as is explained in the
following. Nested signatures define the order of delegations
on a delegation path. They are used to prevent the attacker to

11

Chain lengthn = 20 Credential size Transmission (20 Kbit/s) Signing [1] Verifying [1]
RBCD using RSA 86 Kbits 4.3s 7.9ms 0.4ms

RBCD using Agg. Sig. 9.2 Kbits 0.46s 3.57ms 50ms

TABLE I

EFFICIENCY COMPARISONS BETWEENRBCD REALIZATIONS USING RSA SIGNATURES AND BILINEAR-MAP BASED AGGREGATE SIGNATURES

construct another delegation path using one of the delegation
credential [33]. The size of delegation credential is linear to
the number of entities on a delegation chain, and verification
of signatures is done sequentially. Cascaded delegation is
also implemented by binding two delegation credentials using
delegation keys [27]. Applying this scheme to role-based
delegation means sharing secret group key among members
of a role, which may cause accountability problem. The
hierarchical delegation protocol by Dinget al. [11] combines
the nested signature scheme and delegation public/private
key approach. It is based on Schnorr signature scheme [29],
self-certified public keys [16], and the concept of hierarchi-
cal key generation [14]. Compared to our realization using
HCBE, their delegation and verification algorithms require
more computations. In their scheme, to verify one hierarchical
delegation credential of lengthl, a verifier has to compute
and verify l public delegation keys (different from public
keys in conventional PKI). In addition, at each delegation
the delegation receiver is required to perform a number of
computations. In our scheme, a delegated entity is not required
to perform any computation.

The security framework for Java-based computing environ-
ment in [31] uses roles in chained delegations to simplify
the management of privileges. However, their delegations are
made to individuals rather than to roles. The framework does
not support tracing the delegation credentials of intermediate
entities on the delegation chain, therefore does not support
the verification of delegation chains. Their term cascaded
delegation has different meanings from ours, and refers to
delegations where all the privileges of preceding entitieson
the chain are inherited by the delegatee. In our model, only
the specified privilege is delegated throughout a delegation
chain.

Permission-based delegation model (PBDM) built on RBAC
supports user-to-user, role-to-role delegations [35]. A dele-
gator creates one or more temporary delegation roles and
assigns delegatees to particular roles. Delegations in PBDM
requires changes of role hierarchies by the proper authority,
for example, a project leader who has write access to the
role assignment and access policies. PBDM does not address
decentralized delegation, which is the main focus of this paper.

X-GTRBAC Admin [2] is an administration model for
policy administration within a large enterprise. It specifies
the user-to-role and permission-to-role assignments in the
XML-based Generalized Temporal Role Based Access Control
(X-GTRBAC) framework [21]. X-GTRBAC Admin supports
decentralized administration by distributing assignmenttasks
to multiple domains within the enterprise while enforcing
temporal constraints. In comparison, our RBCD models aim
at the decentralized trust management among members of

independent organizations. Therefore, X-GTRBAC Admin is
complementary to RBCD models.

Shehab, Bertino, and Ghafoor recently propose a distributed
secure interoperability framework for mediator-free collabora-
tion environments [30]. They define secure access paths for
dynamic collaboration environment, and also give a path au-
thentication technique for proving path authenticity. Their idea
of exploring trust paths in multi-domain environment is similar
to the authentication of delegation chains in RBCD. The main
difference of their work from ours is that they focus on the
domain-level authentication, as opposed to authentication of
individual role members.

IX. CONCLUSIONS

We have studied cross-domain role-based delegation prob-
lem for information sharing where there is no central ad-
ministrator. The main challenge addressed in this paper is
the verification of role-based authorization chains in decen-
tralized environments, which has not been much studied in
existing literatures. We have presented a role-based cascaded
delegation model and its associated cryptographic operations
for the purpose of convenient verification of delegation chains.
RBCD enables a role member to create delegations based on
the need of collaboration, yet in the meantime a delegation
chain can be verified by anyone without the participation of
role administrators. Our protocol is general and can be realized
by any signature scheme. We have described a specific real-
ization with hierarchical certificate-based encryption scheme
that gives delegation compact credentials.

REFERENCES

[1] P. S. Barreto, H. Y. Kim, B. Lynn, and M. Scott. Efficient algorithms
for pairing-based cryptosystems. InAdvances in Cryptology — Crypto
’02, volume 2442 ofLNCS, pages 354–368. Springer-Verlag, 2002.

[2] R. Bhatti, J. Joshi, E. Bertino, and A. Ghafoor. X-GTRBACadmin: a
decentralized administration model for enterprise wide access control.
In Proceedings of the ACM Symposium on Access Control Models and
Technologies (SACMAT ’04), pages 78–86, 2004.

[3] M. Blaze, J. Feigenbaum, and A. D. Keromytis. KeyNote: Trust
management for public-key infrastructures. InProceedings of Security
Protocols International Workshop, 1998.

[4] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust management.
In Proceedings of the 1996 IEEE Symposium on Security and Privacy,
pages 164–173. IEEE Computer Society Press, May 1996.

[5] D. Boneh and M. K. Franklin. Identity-based encryption from the Weil
pairing. In Advances in Cryptology – CRYPTO ’01, volume 2139 of
LNCS. Springer-Verlag, 2001.

[6] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and
verifiably encrypted signatures from bilinear maps. InAdvances in
Cryptology — Eurocrypt ’03, pages 416–432, 2003.

[7] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. A survey of two
signature aggregation techniques.CryptoBytes, 6(2), 2003.

[8] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil
pairing. In Advances in Cryptology — Asiacrypt ’01, volume 2248 of
LNCS, pages 514–532. Springer-Verlag, 2001.

12

[9] D. Clarke, J.-E. Elien, C. Ellison, M. Fredette, A. Morcos, and R. L.
Rivest. Certificate chain discovery in SPKI/SDSI.Journal of Computer
Security, 9(4):285–322, 2001.

[10] P. Devanbu, M. Gertz, C. Martel, and S. Stubblebine. Authentic third-
party data publication.Journal of Computer Security, 11(3), 2003.

[11] Y. Ding, P. Horster, and H. Petersen. A new approach for delegation
using hierarchical delegation tokens. In2nd Int. Conference on Com-
puter and Communications Security, pages 128 – 143. Chapman and
Hall, 1996.

[12] FIPS 186-2 Digital signature standard, 2000.
[13] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas,and T. Yloe-

nen. Simple public key certificate.http://www.ietf.org/rfc/
rfc2693.txt.

[14] C. G̈unther. An identity-based key exchange protocol. InAdvances
in Cryptology - Eurocrypt ’89, volume 434 ofLNCS, pages 29–37.
Springer-Verlag, 1989.

[15] C. Gentry. Certificate-based encryption and the certificate revocation
problem. InAdvances in Cryptology — Eurocrypt ’03, volume 2656 of
LNCS, pages 272–293, 2003.

[16] M. Girault. Self-certified public keys. InAdvances in Cryptology —
Eurocrypt ’91, volume 547 ofLNCS, pages 490–497. Springer, 1991.

[17] M. T. Goodrich, M. Shin, R. Tamassia, and W. H. Winsborough.
Authenticated dictionaries for fresh attribute credentials. In Proc.
Trust Management Conference, volume 2692 ofLNCS, pages 332–347.
Springer, 2003.

[18] M. T. Goodrich, R. Tamassia, N. Triandopoulos, and R. Cohen. Au-
thenticated data structures for graph and geometric searching. In Proc.
RSA Conference—Cryptographers’ Track, volume 2612 ofLNCS, pages
295–313. Springer, 2003.

[19] C. A. Gunter and T. Jim. Policy-directed certificate retrieval. Software:
Practice and Experience, 30:1609–1640, September 2000.

[20] T. Jim. SD3: A trust management system with certified evaluation. In
Proceedings of the 2001 IEEE Symposium on Security and Privacy,
pages 106–115. IEEE Computer Society Press, May 2001.

[21] J. Joshi, E. Bertino, U. Latif, and A. Ghafoor. A generalized temporal
role-based access control model.IEEE Trans. Knowl. Data Eng.,
17(1):4–23, 2005.

[22] N. Li, J. C. Mitchell, and W. H. Winsborough. Design of a role-based
trust-management framework. InProceedings of IEEE Symposium on
Security and Privacy, pages 114–130, 2002.

[23] N. Li, W. H. Winsborough, and J. C. Mitchell. Distributed credential
chain discovery in trust management.Journal of Computer Security,
11(1):35–86, February 2003.

[24] A. Lysyanskaya, S. Micali, L. Reyzin, and H. Shacham. Sequential
aggregate signatures from trapdoor permutations. InAdvances in
Cryptology – Eurocrypt ’04. Available athttp://eprint.iacr.
org/2003/091/.

[25] N. Nagaratnam and D. Lea. Secure delegation for distributed object
environments. InProceedings of the 4th USENIX Conference on Object-
Oriented Technologies and Systems (COOTS), April 1998.

[26] M. Naor and K. Nissim. Certificate revocation and certificate update.
In Proceedings of the 7th USENIX Security Symposium, pages 217–228,
1998.

[27] B. C. Neuman. Proxy-based authentication and accounting for dis-
tributed systems. InInternational Conference on Distributed Computing
Systems, pages 283–291, 1993.

[28] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public key cryptosystems.Commun. ACM, 21:120–126,
1978.

[29] C. P. Schnorr. Efficient signature generation by smart cards.Journal of
Cryptology, 4:161–174, 1991.

[30] M. Shehab, E. Bertino, and A. Ghafoor. Secure collaboration in
mediator-free environments. InProceedings of the ACM Conference on
Computer and Communications Security (CCS ’05), November 2005.

[31] K. R. Sollins. Cascaded authentication. InProceedings of 1988 IEEE
Symposium on Security and Privacy, pages 156–163, April 1988.

[32] R. Tamassia, D. Yao, and W. H. Winsborough. Role-based cascaded
delegation. InProceedings of the ACM Symposium on Access Control
Models and Technologies (SACMAT ’04), pages 146 – 155. ACM Press,
June 2004.

[33] V. Varadharajan, P. Allen, and S. Black. An analysis of the proxy
problem in distributed systems. InProceedings of 1991 IEEE Symposium
on Security and Privacy, pages 255–275, 1991.

[34] D. Yao, R. Tamassia, and S. Proctor. On improving the performance of
role-based cascaded delegation in ubiquitous computing. In Proceedings
of IEEE/CreateNet Conference on Security and Privacy for Emerging

Areas in Communication Networks (SecureComm ’05), pages 157–168.
IEEE Press, September 2005.

[35] X. Zhang, S. Oh, and R. Sandhu. PBDM: A flexible delegation model
in RBAC. In Proceedings of the ACM Symposium on Access Control
Models and Technologies, pages 149 – 157. ACM Press, 2003.

