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Abstract—Security log analysis is extremely useful for
uncovering intrusions and anomalies. However, the sheer
volume of log data demands new frameworks and tech-
niques of computing and security. We present a lightweight
distributed and parallel security log analysis framework
that allows organizations to analyze a massive number
of system, network, and transaction logs efficiently and
scalably. Different from the general distributed frameworks,
e.g., MapReduce, our framework is specifically designed
for security log analysis. It features a minimum set of
necessary properties, such as dynamic task scheduling for
streaming logs. For prototyping, we implement our frame-
work in Amazon cloud environments (EC2 and S3) with
a basic analysis application. Our evaluation demonstrates
the effectiveness of our design and shows the potential of
our cloud-based distributed framework in large-scale log
analysis scenarios.

I. INTRODUCTION

Logs of computing systems, networks, and trans-
actions contain rich information for security analysis.
They can be used to diagnose faults and errors, as
well as uncover past and ongoing anomalies. Network
log analysis enables system administrators to reconstruct
attack scenarios, e.g., [1], or identify unexpected network
events [2]. File system log analysis allows one to de-
tect unauthorized file creation and execution, a common
symptom of infection [3].

However, a large number of logs coming from dif-
ferent security systems becomes a huge burden to cor-
porations and organizations. To effectively, efficiently
and economically store and analyze the rapidly growing
number of logs is a big challenge to many organizations.
Existing security-related log analysis solutions typically
assume centralized data storage and computing, which
does not scale. This paper addresses this research ques-
tion of how to analyze massive logs for security in a
timely fashion.

To speed up the computation, parallelization of con-
ventional Intrusion Detection Systems (IDS) has been
explored on multi-core CPU, FPGA, and GPU, e.g., [4].
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Another approach to speeding up is to distribute the
workload to multiple nodes, then to harvest and aggregate
the results, e.g., using MapReduce framework [5]. Simple
log analysis tasks such as pattern matching are easy
to be made parallel, since the analyses of events are
independent. Complex tasks with dependencies (e.g.,
event correlation [6]) are usually more difficult to realize.

In this paper, we consider the distributed log analysis
model to process a massive number of logs for security.
Unlike MapReduce, which assumes a specialized file
system for data storage, our model describes a more com-
mon cloud storage scenario. That is, the organizational
logs are generated and stored in the cloud along with
their services outsourced to the cloud [7]. We present a
cloud-based framework and protocol for organizations to
conveniently store and streamingly examine large-scale
event logs. The framework is versatile; it supports pattern
matching and counting types of security analysis. It can
also be extended to support more complex correlation
tasks.

Previous distributed security analysis systems,
e.g., [5], [8], [9], are built on general distributed
computing frameworks. Most of them emphasize on the
effectiveness of making specific security tasks executed
distributedly. These existing pieces of work demonstrate
the feasibility of developing security applications on
general distributed computing frameworks, especially on
Hadoop [10]. However, the distributed file system may
not be necessary for distributed log analysis tasks. It
may reduces system performance, especially when the
whole distributed environment is realized on Network
File System (NFS) with a single drive pool.

In this paper, we design a practical, lightweight and
specialized framework for security log analysis in the
cloud, aiming to achieve the following design goals.

• Usability includes the ease of use, general log anal-
ysis task support and streaming log support.

• Cloud compatibility refers to having the advantages
of cloud computing, e.g., availability, flexibility,
economic efficiency, etc.

• Scalability refers to the ability to perform effectively
with a large number of cloud instances.

• Lightweight requires the low overhead of the frame-
work itself.



We present our design of the lightweight distributed
security log analysis framework. Our contributions are
summarized as follows.

• We utilize a two-level master-slave model to effi-
ciently distribute, execute and harvest tasks. This
architecture is specifically optimized for security log
analysis. It adopts techniques such as log segmen-
tation, task scheduling, etc.

• We design the streaming log analysis feature based
on the appending file feature supported by the native
file system. It avoids the “appending file” feature in
complex distributed file systems, which is expensive
to maintain and sometimes error-prone1.

• We design our framework upon the computation-on-
demand cloud environment. Customers pay for the
analysis computation they need.

• We realize our framework in the mature and stable
Amazon cloud environments (EC2 and S3). We
demonstrate the ease of use in the environment.

In the following sections, we first introduce our
lightweight distributed security log analysis framework
design in Section II. Then we present the realization of
our framework with a log analysis application in Sec-
tion III. We further evaluate our framework in Amazon
EC2 and S3 cloud environment in Section IV. In the end
we give the conclusions and discuss our future work.

II. DESIGN

Our proposed log analysis framework is for the cloud
computing environment. We have two assumptions of the
environments.

i) The logs are generated and stored in the cloud.
ii) The deployment cloud environment provides a com-

prehensive interface to manage its computation re-
sources.

The first assumption is reasonable in terms of the
trend to outsource services to the cloud from traditional
IT department of companies and organizations. For ex-
ample, [7] and [13] reported this change of logging
perspectives. The second assumption is practical. It is
one of the keys to the success of current commercial
clouds. It guarantees that the computation power is easy
to use and manage. This is a critical assumption in our
design, only on which can our framework conveniently
create and destroy analysis nodes at any time. This makes
it possible to response to dynamically generated logs and
to adjust processing speed to log generation speed on the
fly.

A. Entities and Components

We define the basic unit of our distributed framework
as a node, which is a machine, physical or virtual.
There are three kinds of nodes in the framework, master,

1Hadoop suffers from file appending bugs since several years
ago [11], [12]

computation slave, and storage slave. There is only
one master node, which is possessed by the user, or
the security administrator. Other nodes are cloud nodes,
which are created and owned by the cloud provider. The
framework is responsible for configuring the computation
slave nodes and storage slave nodes, and specifying the
protocols so that nodes can communicate correctly and
efficiently.

Master node (nm) is the only command and control
(C2) node in the whole framework. And it is the only
interface to the user. It configures the other two kinds
of cloud nodes, and communicates with them to perform
the analysis. It retrieves log information (metadata) from
storage slave nodes, programs the log segmentation and
work balance of each computation slave node, distributes
tasks to different computation slave nodes and harvests
analysis results from them.

Computation slave nodes ({ncs}2) are responsible
for concrete log analysis tasks. There could be a large
amount of them to analyze logs in parallel. Because of
the advantage of cloud computation, their computation
power is flexible to adjust according to the size of logs,
the speed of log generations and the complexity of the
analysis. They receive tasks from the master node. Then
they retrieve log segments from storage slave nodes
according to the tasks, normalize and start to analyze
the logs.

Storage slave nodes ({nss}) are simple nodes used
only to store logs. The distributed nature of the design
boosts the power of concurrent log retrieval from the
storage to the analysis nodes. The bandwidth of multiple
links could be fully utilized to accelerate the transferring
and minimize the overhead of I/O. In some cases, espe-
cially when the analysis is not complex, one can merge
the computation slave node and the storage slave node
into one. The analysis can be done on the node which
minimizes data movement. In the streaming log analysis
scenario, the storage slave node is responsible for reading
in the latest log from its native file system and responding
to the network request for the appended log.

B. Framework Architecture and Operations

With the three kinds of nodes, the architecture of
our lightweight distributed log analysis framework is
presented in Figure 1. Each edge indicates an abstract
operation/step.

Step 1: RETRIEVEMETA is a communication step where
the master node retrieves metadata of the logs
stored at storage slave nodes. This may be a
running service in the background when dealing
with streaming logs.

Step 2: SCHEDULE is a local step run on the master
node. The master node divides the task into task
units and computes a scheme to assign them
to each computation slave node. The scheduler

2{n} denotes the whole collection of node type n.
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Fig. 1. The workflow of our distributed log analysis framework

considers the computation power of each com-
putation slave node and its network condition to
compute a good task splitting scheme. It is aware
of the boundaries of the entries in logs through
the metadata. The scheduler should also be able
to deal with log generating speed vibration in
streaming log analysis tasks. In another word, it
should schedule proper amount of computation
slave nodes to match the change of the speed of
log generation.

Step 3: DISTRIBUTE is a management and communica-
tion step where the master node initializes each
computation slave node and sends scheduled task
units to them.

Step 4: RETRIEVEDATA is a communication step exe-
cuted by every computation slave node to re-
quest the segments of logs stored at storage
slave nodes with respect to their task units.
One computation slave node may be assigned
several task units, which correspond to several
log segments. The step retrieves all log segments
for all task units which are executed on the
specific computation slave node.

Step 5: ANALYZE is a local step run on each compu-
tation slave node to analyze the segments of
logs. It consists of two substeps in our design,
i.e. log normalization and log analysis. This
design guarantees the analysis of logs in various
formats. There is no restriction on writing a log
analysis payload (in each task unit) in terms of
the analysis method and programming prefer-
ence. The user should be aware of the cloud
instance architecture and optimize the analysis
payload for it.

Step 6: HARVEST is a step mixed with communication
between computation slave nodes and the master
node. It is also the step to merge the results
harvested from computation slave node and to
present the final result to the user.

To instantiate the framework with a concrete log anal-
ysis application, the user needs to prepare the analysis
algorithm. She also needs to conceive how to perform the
concrete analyzing steps in parallel. We do not intend to
propose an artificial intelligent method to automatically
parallelize an arbitrary log analysis algorithm in this
paper. We minimize the complexity of SCHEDULE on the
master node to make the framework feasible and friendly
to users. The method of parallelizing an arbitrary log
analysis algorithm and defining the task unit is left to
the user in each specific deployment.

We show the six steps in our design as a linear
procedure. However, they can also be performed in a
cycle depending on the needs, e.g., in the situation of
streaming log analysis. The master node performs Steps
1 and 2 in the background to compute how much com-
putation power is needed for the streaming log analysis.
In the meanwhile, the system executes Step 3 to Step
6 to obtain, analyze and report the latest logs analyzed,
harvested and reported to the user.

With the lightweight design, we develop our dis-
tributed security log analysis framework in the cloud en-
vironment. Many usability issues, e.g., streaming log, are
taken into account in the design process. The scalability
goal is achieved by the lightweight design minimizing
the management overhead, and we demonstrate the cloud
compatibility of our framework by implementing and
evaluating its prototype in the Amazon cloud environ-
ment.

III. IMPLEMENTATION WITH AN ANALYSIS
APPLICATION

We realize our distributed log analysis framework in
the commercial Amazon cloud environments, i.e., Elastic
Compute Cloud (EC2) and Simple Storage Service (S3)
clouds for computation and storage services, respectively.
In our implementation, we develop an analysis applica-
tion to calculate security event occurrences, and test our
framework using it in Section IV.

A. Distributed Analysis Framework Realization

Using the Amazon AWS SDK for Java, we implement
two components, one for the master node and the other
for computation slave nodes. The former is run directly
on nm by the user, while the latter is distributed and
executed on {ncs} which are in charge of nm. The user
is responsible for giving nm the data (log) location in
{nss} and the number of computation slave nodes. nm

takes care of scheduling, creating {ncs}, distributing task
units, and harvesting results.

We adopt the log segmentation technique on {nss},
and we employ HTTP requests to transfer log segments
between {nss} and {ncs}. This method directly stands
on the native file system and avoids using appending files
in a distributed file system, which makes our lightweight
system stable and robust.



We describe the concrete operations implemented in
our framework.

• nm.RETRIEVEMETA({nss}, lm)
nm requests the metadata, lm, of all logs stored on
the storage cloud, or the storage slave nodes, {nss}.
The communication is based on HTTP protocol. lm
consists of
◦ the URL of each log stored,
◦ the number of entries in each log,
◦ the average size of each entry for each log,
◦ the range of every entry in each log.

• nm.SCHEDULE({tu}, lm, |{ncs}|)
Given task units {tu}3, the log metadata lm, and
the number of computation slave nodes |{ncs}|, the
step computes a scheme assigning {tu} to {ncs}.
We assume all computation slave nodes are equal in
terms of their computation power. The step yields a
scheduling table Ts, which maps every tu to an ncs.
Each tu consists of
◦ tup , an executable task procedure,
◦ lul

, the URL of the corresponding log segment.
• nm.DISTRIBUTE({tu})

nm creates all computation slave nodes {ncs} (ini-
tializes and launches the cloud instances) and dis-
tributes {tu} to them according to Ts.

• ncs.RETRIEVEDATAd(tu)
Given the task units tu assigned to it, each ncs

retrieves the log segment l stored at storage slave
nodes according to lul

in tu. When an ncs is
assigned to process multiple task units, multiple log
segments should be retrieved.

• ncs.ANALYZE(l, tu)
Every ncs analyzes the log segment l using the
analysis executable tup . For general security log
analysis, we implement a format unification proce-
dure before the run of tup , so that tup can be written
in a general way without considering the input log
format. Using the free tier Amazon EC2 instance,
we make use of the multi-processor property and
implement a multithreading tup

in our realization.
The result of each thread is merged to the node
result.

• nm.HARVEST({ncs})
nm harvests results from {ncs}. nm waits each ncs

for sending back the finish signal and the local
result. For streaming log analysis, nm does not
wait for all {ncs} submitting their results before
assigning new tu to new ncs. nm assembles the local
results retrieved from {ncs} to obtain the global
result of the current overall analysis. The global
result is then presented to the user.

B. Analysis Application: Security Event Occurrence
Counter

Counting security events is the basic step in under-
standing the security status of a running system. More

3It should be planned by the user paralleling the overall analysis task
into task units, as it is discussed in Section II-B.
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Fig. 2. Three-level hashmap used in our analysis application

sophisticated statistical analyses can be performed further
based on frequency and other collected information.

In our case, we analyze HTTP connection logs and
specify a bunch of connections with pre-defined destina-
tion IP addresses as the target. The analysis application
counts these special entries in the logs. We parallelize
the algorithm by splitting the counting onto different
computation slave nodes for different log segments. Then
the local results are sent back and assembled on nm to
give the overall number of occurrence of each special
category of HTTP connections.

To efficiently count the event occurrence with large
amount of task units, we use a three-level hashmap in
the system to store and merge the analysis results. The
lower two levels are built within each computation slave
node, and they are defined and maintained by the task
unit. The highest level is placed in the master node. The
parallel nature of hashmap merging operation guarantees
the ability and efficiency to distribute the analysis onto
multiple computation slave nodes.

The design of our three-level hashmap is shown in
Figure 2. The three levels are i) master hashmap, ii) slave
hashmap and iii) thread hashmap. The structures of all
hashmaps are the same. Each maps a Key field to a
Record that contains all information needed to summarize
all entries that share the same Key. In our case, the Key
is defined as a destination IP address, and the Record
contains the counter.

When a thread finishes its job, the result (thread
hashmap) is merged into slave hashmap. When a ncs ter-
minates and reports back to nm, its result (slave hashmap)
is merged into master hashmap. After all computation
slave nodes terminate and report, nm composes and
presents the overall security event occurrence report to
the user.

IV. EVALUATION

We evaluate the correctness and performance of our
framework in Amazon cloud environment. We use Ama-
zon cloud EC2 and S3 to hold computation slave nodes
and storage slave nodes.

We utilize the security event occurrence counter (ex-
plained in Section III) as a concrete security log analysis
application in our evaluation. The logs to be analyzed
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consist of pure HTTP request entries. The target security
event is defined as a category of HTTP sessions with four
specific destination IP addresses. Both the framework and
the application are written in Java. The framework uses
Amazon AWS SDK for instance creation, management,
and destruction.

Our prototype is easy to use. To setup the framework,
the user prepares the master node by creating an access
key pair and a security group in Amazon EC2 cloud.
Every computation slave node is automatically created
by the master node, initialized with the access key and
placed in the appointed security group.

According to the computation power demand, the
analysis throughput requirement, and the economic bud-
get allowance, the user chooses both the type and number
of Amazon EC2 instances to fulfill the analysis task.
In our experiments, we test 1 to 8 computation slave
nodes in Amazon EC2 cloud, and we store all logs on
a single storage slave node in Amazon S3 cloud. This
configuration minimizes the SCHEDULE operation and
does not cause unfair comparison due to a complex and
bad scheduler. All these nodes are the least powerful
free tier micro instances (613 MB memory, up to 2 EC2
Compute Unit4).

In the evaluations, we use HTTP logs in three sizes,
100M, 200M and 500M. We verify the correctness of the
analysis application. And we measure the running time
of the whole process as well as the computation slave
nodes initialization overhead.

The results of the framework performance are shown
in Figure 3. Each marker on a line represents a group of
5 runs (mean and standard deviation). The y-axis shows
the overall average execution time between i) the start of
the analysis on the master node, and ii) the presentation
of the result on the master node. The execution time
is expected to decrease with respect to the increasing
number of nodes along the x-axis. In the experiments,
we find the computation power of free tier instances is

4One EC2 Compute Unit (ECU) provides the equivalent CPU capac-
ity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor.

not static. When massive instances are run by one user,
the computation power of each decreases. We also find
that the computation power and the network are not stable
for EC2 free tier instances. Outliers are removed from the
reported data.

In summary, our evaluation demonstrates the effec-
tiveness of our lightweight distributed framework in
analyzing security logs. The advantage of speedup is
more apparent on larger dataset, which is expected. The
system is designed to analyze large volume of logs.

Besides the demonstration of the analysis speedup
achieved by our distributed framework, we also measure
and analyze the overhead it introduces. The overhead is
most caused by instance initialization and data down-
loading. We measure the former one on the master node
and find it is nearly constant despite of the number of
instances launched. We use the line Average Startup Time
to illustrate this overhead in Figure 3. On the other hand,
in our experiment, every computation slave node retrieves
the log from the only storage slave node, which causes
the downloading overhead. It can be mitigated by storing
logs on multiple storage slave nodes and connecting
them with computation slave nodes with higher overall
network bandwidth.

V. RELATED WORK

Different from our lightweight distributed framework
specialized for security log analysis, general distributed
computing frameworks, e.g., MapReduce [14], are ex-
tensively investigated and developed in various big data
analysis scenarios [15]. Some of its abstract applications,
e.g., distributed data mining and distributed similarity
joins, can be further developed for security log analysis.

There are several reports on running specific se-
curity analysis tasks on general distributed computing
frameworks. MapReduce is tested with security applica-
tions such as port-breakdown [8], intrusion detection [5],
botnet detection [9], spam classification [16] and spam
detection [17]. One work is in-situ MapReduce [18],
which proposes a MapReduce variant to start processing
logs at the place where they are generated. It reduces the
amount of information for further analysis. Most of the
works conclude a significant speedup (e.g., 72% in [8],
89% in [5]) due to the use of multiple analysis nodes.

With these above evidences that general distributed
frameworks are feasible for security analysis tasks, our
lightweight framework aims at providing a practical and
easy to deploy security framework with minimized dis-
tributing overhead. We realize our entire framework in the
commercial Amazon cloud environment. We also show
the setup procedure of our framework to demonstrate its
ease of use.

In virus detection, cloud computing is adopted by
both industry and academia to construct efficient and
robust AV engines [19]. Commercial antivirus companies
release cloud-based antivirus software e.g., [20] and [21].



[22] proposes a straightforward in-cloud analysis to rein-
force the forensic power of antivirus systems. [23] goes
further to execute suspicious programs in the cloud to
help detect malware.

Our work differs from those cloud antivirus sys-
tems in terms of the analyzing objects and methods.
Executables are meaningful to antivirus systems. They
have properties (e.g., containing instructions, forming
behaviors) that can be utilized by cloud antivirus systems.
Log is a pure data type. Many sophisticated and specific
techniques proposed in antivirus scan cannot be directly
applied to distributed log analysis.

Data streaming is challenging in distributed comput-
ing framework design. [24] discovers the gap between the
conventional cloud service and the streaming property
of special applications. It proposes an idea of stream-
oriented cloud. Based on Hadoop, [25] presents an ar-
chitecture to handle multi-source streaming data analysis
in the cloud. We also take into account the streaming log
issue in our design. We utilize network connections to
segment and pull streaming data from sources to analysis
nodes.

VI. CONCLUSIONS AND FUTURE WORK

We design and implement a lightweight distributed
framework. Consisting a minimized set of components,
the framework is different from general ones and is
specifically designed for security log analysis. Features
such as streaming log analysis are efficiently provided
in the design. We realize the framework in Amazon
cloud environment demonstrating its ease of use and
the efficiency of the prototype. Our future work will
be focused on extending the framework and supporting
more complex log analysis applications for organizational
security.
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