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Abstract— In this paper, we first present a private distributed
scalar product protocol that can be used for obtaining trustvalues
from private recommendations. Our protocol allows Alice toinfer
the trustworthiness of Bob based on what Alice’s friends think
about Bob and Alice’s confidence in her friends. In addition,
the private information of Alice and her friends are not revealed
during the computation. We also propose a credential-basedtrust
model where the trustworthiness of a user is computed based on
his or her affiliations and role assignments. The trust modelis
simple to compute, yet it is scalable as it classifies large groups
of users.

Index Terms— Private multi-party computation, trust manage-
ment, location privacy

I. I NTRODUCTION

Conventional access decisions in stand-alone systems are usu-
ally made based on the identity of the entity requesting a
resource. By comparison, in open systems such as the Internet,
this approach becomes less effective. The main reason is that
there is no central authority that can make access decisions. Thus,
the resource owner and the requester typically belong to security
domains administrated by different authorities that are unknown
to each other. For example, Alice is holding a student credential
from an organizationA, but Bob, the resource owner, may know
nothing aboutA in terms of its trustworthiness, etc. Therefore,
there is a strong need for designing a flexible trust establishment
model.

Another motivation for flexible authorization comes from fi-
nancial applications such as e-commerce. An issue that may
dissuade consumers from fully utilizing e-commerce applications
is the potential misuse of their disclosed private information by
vendors. In most situations, consumers do not have a quantitative
measure of how much their sensitive credentials are worth, and
may be under-compensated when disclosing private information
in exchange for rewards. Without a quantitative model, it ishard
for consumers to make intelligent decisions on whether or not to
disclose a credential in exchange for rewards.

Privacy-aware presence systems are another important area
that needs a flexible trust and authorization model. Location
information obtained via GPS devices embedded in cellphones
or cars represents private user data that should not be queried
freely by the public. Similarly, in a workplace such as an office
building or hospital, the privacy of presence information should be
protected. The management of presence data is crucial, because it
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concerns not only user privacy, but also safety: presence data can
be used to track and profile individuals. In the meantime, there
may be emergency situations or extenuating circumstances when
certain parties (like emergency workers) should have access to
this kind of information, and friends and relatives of a usermight
be allowed to query his or her location information at any time.
Therefore, a desirable feature of a location query system isthat
it provides different levels of precision based on the requester’s
trustworthiness or the context of the query. This requires aflexible
authorization model for accessing the private location data.

To meet the requirements of trust establishment in open sys-
tems, we develop a trust model for access control based on the
credentials provided by a requester. The model computes a trust
value on the requester, which is used to make access control
decisions by a provider.

Reputation or trust models [7], [23], [46] provide an open,
flexible, and dynamic mechanism for trust establishment, where
the requester does not belong to the resource owner. Trust models
have applications in distributed systems such as peer-to-peer
networks, e-commerce applications such as online auctions, or in
resource-sharing systems such as Grid computing. Trust models
are typically built on information such as recommendationsand
previous experiences of individuals. Various algorithms have been
proposed to evaluate trust values [6], [37], in particular how
transferred trust are computed.

In this paper, we address two aspects of computational trust
models:(1) how to protect the privacy of personal opinions during
computation, and(2) how to design a scalable computational trust
model.

In computational trust models, the recommendations on the
trustworthiness of users are usually assumed to be public. How-
ever, recommendations represent one’s personal opinions of other
entities, and are usually considered sensitive. For example, Bob
has bad experiences doing business with Paul on an auction site,
but, he does not want to publish his negative recommendation
on Paul for fearing of Paul’s revenge. Alice, who has not dealt
with Paul previously, would like to use Bob and others’ recom-
mendations to evaluate Paul’s trustworthiness. In the meantime,
Alice has her own private evaluations on Bob and others, which
give weights to individual recommendation (e.g., Alice knows
and trusts Bob, so Bob’s recommendation has a higher weight.)
The problem is how to enable Alice to compute the weighted
recommendation on Paul without disclosing everyone’s sensitive
parameters. We formalize this problem as a secure multi-party
computation of scalar product, and present an efficient protocol
for solving it.

Figure 1 gives a simple example of trust relationships and
values. Suppose Alice wants to buy somethings from Bob but
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Fig. 1. An example of trust relationships and trust values.

does not know anything about Bob. However, Alice’s peers Carl,
Doug, and Ed have had previous interactions with Bob. Each of
them gives a trust score on Bob’s trustworthiness that is 0.8, 0.6,
1.0, respectively. Suppose 1 is complete trustworthy and 0 is not
trustworthy at all. In the meantime, Alice may not completely
trust her peers opinions and she has her own judgement on the
trustworthiness of her peers. For example, she thinks that Carl’s
opinions are more reliable than Ed’s. Thus, Ed’s opinion on Bob
is discountedby Alice. Alice and her peers uses our private scalar
product protocol to compute a value of trust score on Bob based
on all these known factors. A more complex scenario is shown at
the bottom of Figure 1 where Alice’s peer has indirect knowledge
about Bob rather than direct previous interactions. Frank,an
Alice’s peer, knows Greg who knows Helen who knows Bob.
Here, the chained trust relationship reflects how trust is transferred
and the computation should incorporate all these factors. We
formalize this problem in our trust model later in the paper.

Our paper also describes an approach to improve the scalability
of trust and reputation models. Ideally, a trust model should be
able to accurately and efficiently classify a group of users.In trust
management applications with a large number of users, such as
Shibboleth [32], the trustworthiness of individual users becomes
less important if the resource owner knows the home organization
of the individual. For example, if the user is a professor from a
reputable college, then he or she is likely to be trustworthy. We
aim to improve the scalability of the typical grass-root approach
of building trust. Our approach takes advantage of the pre-existing
organizational infrastructure, in particular the credential-based
administration model. The trustworthiness of an individual is
deduced from her digital credentials and the credential issuers’
trustworthiness.

A. Our Contributions

The contributions of this paper are summarized as follows.

1) We present a private multi-party computation protocol for
computing weighted trust values. The problem is forA

to infer the trust value of an unknown entityX based
on what other entities think aboutX together withA’s
confidence in these entities. In a world where there is

no privacy concern or there is a trusted third-party, the
problem can be solved by computing the scalar product
of two vectors – one vector representingA’s confidence
values for a set of entities, and the other vector representing
recommendations of these entities onX. In real life, this
information is usually considered sensitive, e.g.,B may not
want to disclose that he does not trustX at all, andA hopes
to conceal the fact that her confidence inB is low. Private
two-party scalar product protocols are available [1], [14],
[38]. However, they are not suitable for our problem, where
one of the vectors in the computation is distributed among
multiple entities. We design an efficient private multi-party
computation protocol for scalar products where individual
values of a vector can have different owners. The sensitive
information of all parties is not revealed (except the final
scalar product).

2) We propose a credential-based trust model for infer-
ring trustworthiness in decentralized environments. Our
credential-based trust model not only simplifies and scales
the decision-making process, but also improves the relia-
bility of computed trust scores by using role certificates.
We describe how to compute trust values from multiple
credentials, delegation credentials, and from peers’ recom-
mendations. Our model can also be used for computing
point values in the existing point-based authorization model.

3) We also describe a location-query system for giving fuzzy
location information based on the trustworthiness of the
query issuer. This system is a practical application of
the point-based authorization model, and demonstrates the
ability to give flexible yet confident trust verdicts in open
systems. Location-aware applications are made popular by
the increasing deployment of sensor networks, RFID, and
GPS-enabled cellphone networks.

B. Outline of the paper

A private multi-party computation protocol for distributed
scalar products is presented in Section II. This protocol supports
efficient and privacy-preserving computation of trust values. Our
credential-based trust model is introduced in Section III.In
Section IV, we describe how our trust model can be integrated
with the existing point-based trust management model. In Section
V, we present an application of point-based trust management to
the location query problem for sensor networks. Related work
is described in Section VI. Finally, future work is given in
Section VII.

II. PRIVATE DISTRIBUTED SCALAR PRODUCT PROTOCOL

In this section, we define, construct, and analyze the private
distributed scalar product protocol. The private distributed scalar
product protocol has applications in privacy-preserving data min-
ing problems. In Section III-B, we show how it is used to privately
compute trust values from peers’ recommendations.

A. Definitions

In what follows, we define that all arithmetic is done inZm

for somem. A private distributed scalar product protocol is to
computeX · Y , whereX = (x1, x2, . . . , xn) ∈ Z

n
m and Y =

(y1, y2, . . . , yn) ∈ Z
n
m are vectors of lengthn.



3

The protocol is run byl numbers of players where1 ≤ l ≤ 2n,
and xi and yi are disjointly partitioned among the players. That
is, each player knows one or more of the elements in the vectors,
and a vector is known by one and only one player. In a centralized
case wherel = 1, the problem is reduced to trivial scalar product
computation. If l = 2, i.e. a two-party private computation
problem, one can use existing private scalar product protocols
[1], [14], [38]. If there are2n players, each party knows only
one element inX or Y . The goal of the protocol is for the
players to jointly computeX · Y without disclosing each own’s
private information, i.e.,xi or yi values. The security of the
protocol can be intuitively thought of as players do not gainnon-
negligible knowledge of others’ private information (besides the
final scalar product). In particular, the property should hold even
if players collude. The security of the protocol is further analyzed
in Section II-D.

For our trust model in Section III, we are interested in a
specific scenario withn + 1 players: Alice wants to compute
the point value for an unknown entityE. She knowsn entities
B1, B2, . . . , Bn, and Alice’s point value for entityBi is xi.
Each entityBi knows entity E, and has assigned pointyi to
E, respectively. Alice andB1, B2, . . . , Bn jointly computeX ·Y ,
which is given to Alice at the end of the protocol, but not to any of
theBis. We present our private distributed scalar product protocol
for this special case. The protocol can be easily generalized to
cases wherel is anywhere between 3 and2n, where n is the
length of the vector.

B. Building Blocks

Our private distributed scalar product protocol uses the homo-
morphic encryption scheme and a private multi-party summation
protocol.

1) Homomorphic Encryption: A homomorphic encryption
scheme has three functions(Gen, Enc, Dec), where Gen gen-
erates a private keysk and a public keypk, Enc and Dec are
encryption and decryption functions, respectively. The encryption
function Enc is said to be homomorphic, if the following holds:
Encpk(x; r) · Encpk(y; r′) = Encpk(x + y; r · r′), where x

and y denote plaintext messages andr and r′ denote random
strings. Another property of such a scheme is thatEncpk(x; r)y =

Encpk(x · y; ry). This means that a party can add encrypted
plaintexts by doing simple computations with ciphertexts,without
having the private key. The arithmetic performed under the
encryption is modular, and the modulus is part of the public
parameters for this system. Homomorphic schemes are described
in [9], [27]. We utilize homomorphic encryption schemes that
are semantically secure. A homomorphic scheme is calledse-
mantically securewhen a probabilistic polynomial-time adversary
cannot distinguish between random encryptions of two elements
chosen by herself.

2) Private Multi-Party Summation Protocol:Our protocol also
uses an efficient private multi-party summation protocol, which
was presented by Atallahet al. [2]. Their protocol is to make
n parties, each with a numberVi, cooperate tosimultaneously
find out

Pn
i=1

Vi without revealing to each other anything other
than the answer. To achieve this, each party chooses a random
value, which is used to hide the input. The intermediate sum is
additively split among the participants.

The summation protocol by Atallahet al. [2] is described in
Figure 2. Note that to compute the sum, the protocol should not

let each party send his share in the clear to all other parties, which
is obviously insecure. The protocol in [2] gives a non-trivial way
to do this by requiring the participants to compute a randomized
private sum. We use the summation protocol as a black box, and
refer readers to the literature for more details [2].

C. Protocol Description

Our private distributed scalar product protocol is shown in
Figure 3. Alice’s input of the protocol is a private vectorX.
Each partyBi (for 1 ≤ i ≤ n) has a private valueyi. At the end
of the protocol, the scalar productX · Y is learned by Alice or
by every participant, whereY = (y1, . . . , yn).

Alice encrypts each elementxi of her vector X with her
public key in homomorphic encryption. The ciphertextci is
sent to Bi, respectively. BecauseBi does not know Alice’s
private key, Alice’s value is safe. Because of the properties
of homomorphic encryption, entityBi is able to compute the
ciphertext corresponding toxiyi, even though he does not know
xi. The resulting ciphertext iswi in Figure 3. To hideyi, Bi

computes the ciphertextw′

i corresponding toxiyi − si, where
si is a random number. Alice receives ciphertextw′

i from each
Bi, and computes the product of allw′

is, which is decrypted to
X · Y −

Pn
i=1

si. Next, all of Bis carry out a private multi-party
summation protocol that computes

Pn
i=1

si. At the end of the
summation protocol, everyBi learns the sum. Alice obtains the
sum fromBis, and computesX ·Y without learning the individual
yi values.

Our private distributed scalar product protocol is based onthe
private two-party scalar product protocol by Goethalshet al. [14],
where each party has a vector and the protocol outputs the scalar
product result of the two vectors in a split form. That is, thescalar
product result is split between the two parties, and equals to the
sum of two shares. The concept of shared private computationcan
also be found in [1], [13]. A variant of our protocol allows all
participating parties to learn the scalar product resultX ·Y . Alice
with SA and allBis, each withsi, carry out a private multi-party
summation protocol with their inputs. Our analysis is basedon
the protocol in Figure 3.

D. Analysis of the Protocol

The correctness of the protocol is obvious. Alice obtains from
Bi (for all i ∈ [1, n]) an encryption ofxiyi − si. Alice multiplies
then ciphertexts, and decrypts to obtain the sum

Pn
i=1 xiyi−si.

Once Alice obtains
Pn

i=1
si, she computesX · Y =

Pn
i=1

xiyi.
The security and efficiency of our private multi-party protocol for
distributed scalar product are analyzed.

The security of our private multi-party scalar product protocol
is based on the security of the private two-party scalar product
protocol [14] and the private multi-party summation protocol
[2]. In general, the multi-party protocol among players is secure
when the privacy and correctness are guaranteed for all players.
It is said that a protocol protects privacy when the information
that is leaked by the distributed computation is limited to the
information that can be learned from the designated output of the
computation [28]. In our problem, Alice’s private vectorX and
each entityBi’s private valueyi are not leaked to each other,
besides the scalar product. Note that in almost all existingprivate
scalar product solutions, one player can construct a systemof
linear equations based on the specification of the protocol,and
solve it for the secret values.



4

PRIVATE INPUTS: Every partyi has a private valueVi.
PRIVATE OUTPUT: Every party learnsV =

Pn
i=1 Vi.

1) Partyi chooses a random numberRi.
2) Every party2i gives to2i + 1 his V2i + R2i, then every2i + 1 gives to2i his

R2i+1 in a secure channel.
3) The odd-numbered parties together compute the sumV + R, where V =

Pn
i=1

Vi andR =
Pn

i=1
Ri. The even-numbered parties together compute the

sumR.
The summation ofV + R andR can be done in a tree-based approach where
the parties are organized at leaf nodes of a tree and the summation is computed
in a bottom-up fashion. The root of the tree gives the final sum.

4) An odd party withV + R and an even party withR simultaneously exchange
their quantities to obtainV .
The simultaneous exchange of secrets can be realized using methods (see
e.g., [30]). However, as pointed out in [2], a simpler and more efficient
bit-exchange approach is suitable for the summation protocol and does not
compromise the security. An odd party sends one bit of his value to the even
party, and the even party sends one bit to the odd party. Then they alternate
until done.

Fig. 2. Privacy-preserving summation protocol by Atallahet al [2]. Note that lying during the exchange in Step 4 cannot be prevented, yet a player can
achieve the same effect by lying about his input. In addition, lying does not let the player learn anything about the sumV .

PRIVATE INPUTS: Private vectorX = (x1, . . . , xn) ∈ Z
n
m by Alice; private values

y1 by entity B1, . . ., yn by entity Bn, whereyi ∈ Zm for all i ∈ [1, n].
PRIVATE OUTPUTS: Alice learnsX · Y mod m, wherem is a public parameter.

1) Setup phase. Alice does: Generate a private and public keypair (sk, pk). Send
pk to all Bi.

2) Alice does fori ∈ {1, . . . , n}: Generate a random new stringri. Sendci =

Encpk(xi; ri) to Bi.
3) Bi does: Setwi = cyi

i mod m. Generate a random plaintextsi and a random
noncer′i. Send to Alicew′

i = wi · Encpk(−si; r
′

i).

4) Alice does: Compute the product of ciphertextw′

is as Πn
i=1w′

i mod m.
Use her private keysk to decrypt the product, and obtain the partial result
SA = X · Y −

Pn
i=1 si.

5) All Bis, each withsi, carry out a private multi-party summation protocol with
their inputs (described in Section II-B.2 and Figure 2). At the end of that
protocol, eachBi obtainsSB =

Pn
i=1 si.

6) Alice does: ObtainSB from (any of the)Bis. ComputeX · Y = SA + SB .

Fig. 3. Private Distributed Scalar Product Protocol.m is a public parameter of the homomorphic encryption scheme.

Operation Scalar Product Phase Summation Phase Total
Comp. (Alice) O(n) homomorphic op. O(1) O(n) homomorphic op.
Comm. (Alice) O(n) O(1) O(n)

Comp. (Bi) O(log yi) homomorphic op. O(1) O(log yi) homomorphic op.
Comm. (Bi) O(1) O(1) O(1)

TABLE I

COMPUTATION (COMP.) AND COMMUNICATION (COMM.) COMPLEXITIES OF THE PRIVATE DISTRIBUTED SCALAR PRODUCT PROTOCOL. WE DENOTE BY

n THE LENGTH OFALICE’ S VECTORX . THE LOGARITHMIC FACTOR IS DUE TO USING MULTIPLICATIONS TO COMPUTE EXPONENTIATION IN STEP3.

Our security is in the semi-honest model, where it is assumed
that all players follow the protocol, but they are also curious:
that is, they may store all exchanged data and try to deduce
information from it. One challenge in designing the multi-party

scalar product protocol is to prevent collusions among players.
In particular, during the step of summation, Alice may attempt
to collude with a subset of playersBis to discover the private
values of other players.

As in almost all private multi-party protocols, we assume that
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each party inputs his or her true private values. Providing skewed
values during computation can result in inaccurate results, and
wasting the computation power and bandwidth of all participants
including the dishonest party. In addition, the effect of providing
skewed intermediate value by a participant can be achieved by
raising or lowering his or her own input. This issue is standard in
multi-party protocols (both semi-honest and malicious models).
SupposeA wants to compute the trustworthiness ofC with help
of B1, . . . , Bn, and supposeBi is a friend ofC, Bi may modify
the output of the protocol by raisingsi in Figure 3. As a result,A
gets a higher value forC. However,Bi can achieve the same effect
by choosing a different input to begin with. Therefore, thistype of
attacks is not considered in multi-party protocols including ours.
It is worth mentioning that once detected, this type of behaviors
could be folded back into the reputation of participants, which
can provide incentives for being honest during the computation.

Because of the intrinsic nature of the problems considered,even
if the protocol is secure in the malicious model (discussed later),
multi-party computation such as ours is still vulnerable toprobing
attacks. For example, ifA wants to learnBi’s private valueyi, A

can engage the protocol with inputX = (0, . . . , 0, 1, 0, . . . , 0) by
setting only thei-th entry to be one. After the protocolA learns
X ∗ Y = yi, which is the private value ofBi.

The security of our protocol is summarized in the following
theorem.

Theorem 1:Assume that(Gen, Enc, Dec) is a semantically
secure homomorphic public-key cryptosystem. The private dis-
tributed scalar product protocol presented in this sectionis secure
in the semi-honest model. Alice’s privacy is guaranteed when for
all i ∈ [1, n], entityBi is a probabilistic polynomial-time machine.
Also, for all i ∈ [1, n], Bi’s privacy is information-theoretical.
Proof: Each entityBi only sees a random ciphertext from Alice,
for which Bi cannot guess the ciphertext. This is because of the
semantic security of the homomorphic encryption scheme. Hence,
Bi cannot guess Alice’s valuexi.

During the summation protocol, eachBi only sees random
values exchanged. Hence,Bi cannot guess the random secretsj

of Bj for all j 6= i.
On the other hand, Alice only sees (1) random valuexiyi −

si, (2) the sum of allsi, and (3) the final computation scalar
productX ·Y . She does not gain additional information aboutY

besides the final scalar product. In addition, the protocol prevents
collusions among Alice and a subsetD of Bis to discover private
yj value of Bj for Bj /∈ D, because the summation protocol
guarantees that allBis learn the sum simultaneously. Thus, Alice
obtains no information about anyBi except the scalar product
X ·Y , and eachBi obtains no information about Alice and entity
Bj for all j 6= i. �

The overall computation and communication complexities of
our protocol are the same as the private two-party scalar prod-
uct protocol by Goethalset al. [14]. The private multi-party
summation protocol is efficient, as it does not require any type
of encryption schemes. The summation step does not introduce
significant overhead. Details of complexities are summarized in
Table I.

Security in a malicious modelMalicious adversaries, unlike
semi-honest ones, can behave arbitrarily without following the
protocol. They may refuse to participate the protocol, abort the
protocol without finishing it, and tamper with intermediatevalues.
Any protocol secure against honest-but-curious adversaries can be

modified to a protocol that is secure against malicious adversaries
using standard zero-knowledge proofs showing that all parties
follow the protocol. At each step of the protocol, each partyuses
their transcripts and zero-knowledge proofs to convince the other
parties that they have followed the protocol without cheating. We
do not describe the details of how this transformation is done in
this paper.

III. C REDENTIAL-BASED TRUST MODEL

In this section, we present a simple credential-based trust
model that is useful for the trust management in distributed
environments. The main idea is to convert role-based credentials
and related information into quantitative trustworthiness values
of a requester, which is used for making authorization decisions.
Quantitative authorization policies can allow fine-tuned access
decisions instead of binary (allow or deny) verdicts, and provide
more diversified access options for requesters. In addition, quan-
titative authorization enables providers to correlate thequality
of service with the qualifications of requests (e.g., more rewards
or higher resolution with higher trustworthiness). This approach
utilizes and leverages existing credential and role-basedmanage-
ment infrastructure for autonomous domains (e.g., [35], [44]) and
improves the accuracy of trustworthiness prediction.

Our private multi-party scalar product protocol in the previous
section can be used to compute trust values from recommenda-
tions in Section III-B.

We divide our description of the credential-based trust model
into the following topics.

1) Derive the trust value of an affiliated role credential, which
is defined next.

2) Compute the trust value of a delegation role credential,
which is defined next.

3) Integration with point-based trust management system,
which is described in Section IV.

Terminology: In our model, we define theadministratorof a
role as the organization that creates and manages the role. If a role
credential of an entityD is signed and issued by the administrator
of the role, that role is said to be anaffiliated role of D (this
type of role is usually obtained through the affiliation withan
organization, and thus the name). If a role credential ofD is
instead issued through delegation and signed by entities other than
the administrator of the role, that role is called adelegated role
of D. We define anentity to be an organization or an individual.
An entity may issue credentials. Also, an entity may have oneor
more affiliated roles or delegated roles, which are authenticated
by role credentials. Anaffiliated role credentialis the credential
for an affiliated role, and is signed by the administrator of the
role. Similarly, adelegated role credentialis the credential for
proving a delegated role. Aprivilege can be a role assignment
or an action on a resource. A roler administered by entityA
is denoted asA.r. A role defines a group of entities who are
members of this role.

A. Definitions in Credential-Based Trust Model

A trust value in the credential-based trust model represents
what an entity thinks about the trustworthiness of another entity
or a role in another entity. More specifically, trust valuet(A,B) in
the credential-based trust model represents what entityA thinks
about the trustworthiness of entityB; trust valuet(A, B.r) in the
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credential-based trust model represents what entityA thinks about
the trustworthiness of roleB.r administered by entityB. For
example, a Grid Computing facilityGCLab assigns trust values
to types of users, such as roleprofessorand rolestudent in a
universityU , and roleresearcherfrom a research centerC. When
a user holding a certain role credential requests for accessto the
grid computing facility, his or her privileges are specifiedbased
on the trust value of that role. Note that the credential-based trust
model is different from existing trust models that generaterating
certificates, which are signed certificates of one’s trustworthiness
generated by one’s peers [29].

Ideally, an entityA maintains a trust value for each role in
organizationB. For example,GCLab gives different trust value to
role studentand roleprofessorin a university. Hence, a requester
with a professorrole credential may be granted a different level of
access privileges from a requester with astudentrole credential.

Definition 1: If an entity A gives a roleB.r in B a trust
valuet(A,B.r), then any individual who has a valid affiliatedrole
credential of roleB.r issued byB has the trust valuet(A, B.r).

In case a resource owner does not know the trust value of a
role in an organization, the trust value of that organization is used
as a guideline for the trustworthiness of the role. In general, we
define that any requester who has a valid role credential issued
by organizationB has the same trust value asB.

There are two main approaches for an entityA to obtain the
trust value ofB. One is based onA’s previous direct interactions
with B. The other approach is to derive from other entities’s
trust values onB, which can be thought of as recommendations.
The two approaches can be combined to bring a more precise
judgement. In this paper, we do not address the first approach,
namely, how to directly derive trust values from previous trans-
actions with an entity or its roles, because the specific methods
to be used depend highly on the applications. For example, Tran
et al. proposed how to derive trust scores in a P2P file-sharing
systems [39]. We focus on techniques for computing trust values
from other entities’ recommendations and on how to carry out
the computation in a privacy-preserving fashion. In what follows,
we usetrust value of a credentialto mean the trust value of the
credential issuer.

B. Derive Trust Value From Recommendations

We describe aweighted averagemethod for an entityA to
compute a trust value on entityB or roleB.r. This computation is
useful whenA does not have any previous interaction experience
with B or B.r, andA wants to combine others’ opinions ofB

or B.r in forming her trust value.
In the credential-based trust model, therecommendationby an

entity E on B is the trust valuet(E,B) that E gives toB. A
confidence valuerepresents how muchA trusts the judgement of
a recommender, and is defined as the trust value ofA on the
recommender.

Above definitions mean that recommendations are weighted
by A’s confidence on the recommenders. Formally, we define
the weighted average computation of trust value as follows.We
denoten as the number of recommenders, andEi represents
the i-th recommender. Let MAXTRUST be the public upper
bound of all trust values. Without loss of generality, we assume
a trust value is non-negative. We assume thatA has already
obtained her trust valuest(A,E1), t(A,E2), . . ., t(A,En) on the
recommenders. We also assume that each of the recommenders

Ei has formed her trust valuet(Ei, B) on the target entityB.
(In case no one in the system knows about entityB, a default
trust value can be assigned toB to indicate this situation.) The
formula for computingt(A,B) is shown as follows, where weight
w(A,Ei) = t(A,Ei)/MAX TRUST.

t(A,B) =
1

n

n
X

i=1

w(A,Ei)t(Ei, B) (1)

Value w(A,Ei) represents the weight ofEi’s recommendation
(trust value) onB for A. Variants of weighted average computa-
tion have been used in other reputation systems, such as ordered
weighted average [40]. The above description also applies when
the target to be evaluated is a role, for exampleB.r, instead of
an entity.
Application of private distributed scalar product protoco l.
Equation (1) is useful forA only when all the trust values
t(Ei, B) are available. However, trust valuet(Ei, B) is private
information of Ei, who has the incentive to hide it, especially
when Ei thinks negatively aboutB. Similarly, A may consider
her trust valuest(A,Ei) sensitive too. The problem is how to
compute the weighted average in (1) without leaking the private
information of each entity. Our protocol for private multi-party
scalar product in Section II solves this problem and satisfies the
privacy requirement. Note that our model isnot based on the
assumption of two degrees of separation between any two entities,
that is, we do not need to assume that a new entity is known by
an existing peer. If an entity is not known to the community, it
is initialized with trust value zero, which may increase provided
that the entity behaves well with other peers. Recall that a trust
value can be based on previous experience of interactions with
an entity.
Combining trust values for access.If a requester presents
multiple role credentials, then the trust values of the credentials
are to be combined. For example, one simple method is to sum
the trust values. This means that the requester with multiple
credentials of low trust values can gain the same access privileges
as a requester with one credential of a high trust value. This
combination method is intuitive and is used in point-based trust
management model [43], which will be discussed in Section IV.

C. Generalization of our computational model

The trust relationships of our trust model described so far
assumes thatA’s peers directly knowB. However, a more
general scenario is whereA indirectly knowsB through multiple
peers, e.g., the scenario depicted at the bottom of Figure 1.We
generalize our trust model to incorporate this aspect as follows.
We model the trust relationships of entities in the system asa
directed graphG, where there is a weighted directed edge between
entity X andY , if X knowsY and the weight of the edge is the
trust valuet(X,Y ). The distance betweenX and Y depends on
the directed path chosen, e.g., in Figure 1, the distance between
Alice and Bob is four if the bottom path is chosen. We refer the
directed path connecting two entitiesA andB as a trust path.

Our model for computing trust values can be generalized to
include long trust paths by multiplying weighted trust values
corresponding to a trust path. To computeA’s trust value on
B, A first needs to choose the trust paths connecting toB. We
assume thatA has already knownn non-overlapping directed
paths fromA to B. Note thatA’s paths do not have to be the
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complete set of such paths inG. However, incorporating more
paths into the computation generates a more accurate estimation
on B’s trustworthiness. For thei-th path(i ∈ [1, n]) betweenA

and B, let mi be the number of entities on the path besidesA

andB. Denote such a node asEi,j wherej ∈ [1, mi]. Trust value
t(A,B) is computed as Equation 2.

t(A,B) =
1

n

n
X

i=1

w(A, Ei,1)w(Ei,1, Ei,2) . . . t(Ei,mi
, B) (2)

In Equation 2,t(A,B) is computed by incorporating then
weighted paths betweenA andB. The computation does not favor
longer paths in that the longer the path, the more weights(≤

1) are multiplied that may lower the resulting trust value. This
trend is consistent with the intuition that direct recommendation
is more trustworthy than indirect one. Because the weights are
normalized by MAXTRUST, more paths (i.e., highern) do not
necessarily give a higher trust value. However, considering more
paths in the computation does produce a more accurate reflection
onB’s trustworthiness by the community. How to choose the non-
overlapping paths may depend onA’s preferences. This topic is
out of the scope of this paper and is not discussed here.

D. Delegation Chain and Trust Computation

In this section, we describe how our trust model is further
generalized to support delegation credentials. Delegation [4], [35],
[44] is important for transferring trust in decentralized environ-
ments. Associating trust values with delegation credentials is
different from role credentials because the values should not only
depend on the initial credential issuer, but also the intermediate
delegators’s trustworthiness.

A delegation credential represents how a certain prvilege is
transferred among multiple delegators. Intuitively, if a delegator
on a delegation chain has low trustworthiness, then the trust value
of the delegation credential should be affected. If all the delegators
are highly trustworthy, the delegation credential should earn its
holder a trust value similar to a directly-issued role credential.
We capture these intuitions in computing the trust value of a
delegation credential into a termdiscount factor, which represents
how much the trust value of a delegated privilege is decreased due
to intermediate delegators. Before we give details of the definition,
we first introduce several important concepts of delegation.

The original issueror original delegatorof privilege P is the
first entity on a delegation chain, and is the owner of the resources
associated with privilegeP . A delegation chainof privilege P is
the path that shows the delegation sequence ofP between entities.
The chain connects a delegated entity to the original issuerof P .

In general, there are two types of role-based delegations, based
on who is allowed to issue delegation credentials. One type is
that an organization delegates its permissions to roles in other
organizations [25]. The delegation is issued by the administrator
of an organization. The other type is administrator-free delegation,
where an individual role member of an organization issues the
delegation to other roles without the participation of administra-
tors during delegation. The latter is designed for decentralized
transfer of trust, and is embodied in a model called role-based
cascaded delegation [35], [44] as shown in Figure 4. In this paper,
we give a general method for computing discounted trust value
of a delegation credential for both delegations with or without
administrators.

University
University
University
University
 Company
Company
 Lab
Lab


Member_Of
Member_Of
Member_Of
Member_Of
 Member_Of
Member_Of


Fig. 4. The schematic drawing of a role-based delegation chain. It shows that
a member of a university delegates permissions to a member ofa company,
who then delegates the permission to a member of a lab. The horizontal arrows
indicate delegation of permissions. The vertical arrows indicate membership
relationship.

Next, we briefly introduce role-based cascaded delegation
model.

1) Role-Based Cascaded Delegation:Role-based Cascaded
Delegation [35] model supports administrator-free delegation. It
enables flexible and dynamic authorization in a decentralized
environment. It comprises four operations:Initiate , Extend,
Prove, and Verify . Initiate and Extend are used by a resource
owner and an intermediate delegator, respectively, to delegate a
privilege to a role.Prove is used by a requester to produce a
proof of a delegation chain that connects the resource ownerwith
the requester.Verify decides whether the requester is granted the
access based on the proof.

In the RBCD protocol [35], a delegation credential includes
role membership certificates of each intermediate delegator, and
delegation extension credentials that are proofs of delegation
transactions signed by delegators. Credentials associated with a
delegation chain are transmitted to delegated role membersat each
delegation transaction. Therefore, for a delegation chainof length
n, the number of certificates required to verify the delegation path
is 2n.

2) Discounted Trust Value for Delegation Credential:Suppose
that an individualB has a delegation credential. We denoteD0

as the original delegator or the resource owner. We denoteD0.r

as the role being delegated in the delegation credential, which
is a role administrated byD0. We denoteD1, . . . , Dn as the
intermediate delegators on the delegation credential. We denote
D1.r, . . . , Dn.r as roles of intermediate delegators. Note that in
our credential-based trust model, the specific role member who
issues the delegation is not needed to participate in computing
discounted trust value. The trust value that an entityA gives to
the credential holderB is computed as follows, where weight
w(A,Di) = t(A,Di)/MAX TRUST.

t′(A, B) = Πn
i=1w(A,Di.r)t(A, D0.r) (3)

In Equation 3, the trust value of a delegated credential is based
on the length of the delegation chain, the trust valuet(A, D0.r) of
the delegated role, and the trust valuest(A,Di.r) of intermediate
delegatorDi for all i ∈ [1, n]. The weightw(A, Di.r) represents
the discount factor on the trust valuet(A,D0.r). Intuitively
speaking, if entityA thinks that intermediate delegators are highly
trustworthy, the final resultt(A,B) is close to valuet(A,D0.r).

Finally, to make the role-based delegation valid, the credential
holderB needs to not only possess the delegation credential, but
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also have a valid affiliated role credential of the last authorized
role of the chain. We denoteDn+1.r as the last role that the
delegation credential is issued to. For example, in Figure 4, this
corresponds to a lab member.B should be an affiliated role mem-
ber of Dn+1.r. Therefore, the complete trust value of credential
holderB with role Dn+1.r should combine the trust value of the
delegation credential with the trust valuet(A,Dn+1.r) of his or
her role, as shown in Equation 4. As mentioned in Section III-
B, we use the summation to combine trust values from multiple
credentials.

t(A, B) = t′(A, B) + t(A, Dn+1.r) (4)

= Πn
i=1w(A,Di.r)t(A,D0.r) + t(A,Dn+1.r) (5)

The above description of computing discounted trust values
of a delegation credential applies to both types of role-based
delegations: delegation with or without administrators.

IV. I NTEGRATION WITH POINT-BASED TRUST MANAGEMENT

Our proposed private multi-party protocol and trust model are
useful for general access control in a decentralized environment.
In this paper, we describe how it can be used for deriving point
values in the existing point-based trust management model [43],
which was proposed for the privacy protection of sensitive in-
formation in open environments. We briefly introduce the point-
based model next.

A. Point-Based Trust Management

In the point-based trust management model [43], the autho-
rization policies of a resource owner define anaccess threshold
for each of its resources. The threshold is the minimum number
of points required for a requester to access that resource. For
example, accessing a medical database might require fifty points.
The resource owner also defines apoint value for each type
of credential, which denotes the number of points or creditsa
requester obtains if a type of credential is disclosed. For example,
a valid ACM membership might have ten points. This means
that a user can disclose his or her ACM membership credential
in exchange for ten points. (This is called a trust management
model as opposed to an access control model, because the
resource owner does not know the identities or role assignments
of requestersa priori as in conventional access control settings.)

Each user defines asensitivity scorefor each of their creden-
tials. The sensitivity score represents the unwillingnessto disclose
a credential. For example, Alice may give a sensitivity score of
ten to her college ID, and give fifty to her credit card. The user
is granted access to a certain resource if the access threshold is
met and all of the disclosed credentials are valid. Otherwise, the
access is denied. From the requester’s point of view, one central
question is how to fulfill the access threshold while disclosing the
least amount of sensitive information.

The credential selection problem in the point-based trust
management model is to determine an optimal combination of
requester’s credentials to disclose to the resource owner,such
that the minimal amount of sensitive information is disclosed and
the access threshold of the requested resource is satisfied by the
disclosed credentials. A private two-party dynamic programming
protocol has been proposed to solve the credential selection
problem [43].

The point-based authorization model assumes that the resource
owner (or server) and the requester (or user) agree on a set of
credential types as the universe of credentials(C1, . . . , Cn). A
binary vector(x1, . . . , xn) is defined as the unknown variable to
be computed, wherexi is one if credentialCi is selected and
zero if otherwise. Integer variableai ≥ 0 is the sensitivity score
of credentialCi. It is assigned by the requestera priori. If the
requester does not have a certain credentialCi, the sensitivity
scoreai for that credential can be set to any integer larger thanT ,
whereT is the trust threshold for the requested resource. Integer
variable pi ≥ 0 is the point value for releasing credential type
Ci. The requester considers allai values sensitive, and the server
considers allpi values sensitive.

The credential selection problem is for the requester to
compute a binary vector(x1, . . . , xn) such that the sum of
points

Pn
i=1

xipi satisfiesT , and the sum of sensitivity scores
Pn

i=1
xiai is minimized. This is captured in the following min-

imization problem. Compute a binary vector(x1, . . . , xn) such
that the following holds:

min
n

X

i=1

xiai (6)

subject to
n

X

i=1

xipi ≥ T (7)

The above minimization problem can be rewritten into a knap-
sack problem, which can be solved by dynamic programming. A
private two-party computation protocol was given in [43] for the
dynamic programming problem with sensitivepi and ai values.
The protocol in [43] is different from our private distributed scalar
product protocol, as we aim to solve how point values can be
privately computed in a reputation model.

B. Derivation of Point Values

Previous work on the point-based trust management model [43]
focused on the privacy protection of sensitive informationand
assumes that the point value associated with each credential type
of the requester has already been determined by the server [43].
It does not describe how point values are obtained or how to
systematically derive points corresponding to credentials. The
mechanism for determining the point value of a credential is
crucial to the applicability of the trust management model,and
needs to be formalized. In cases where the credential issuerof
a requester is not previously recognized by the resource owner,
we need a protocol to compute an appropriate point value for
the credential held by the requester. The credential-basedtrust
model presented in Section III answers this question. Usingthe
described methods, a resource owner computes the trust values of
credential issuers and their roles. The resulting trust values are to
be used as point values of a resource owner in point-based trust
management.

For delegation credentials presented by a requester, a resource
owner can use the trust model to compute the discounted trust
value of the credential. The trust value can only be computed
exactly when the delegation credential is revealed. However, this
information is private to the requester in the credential selection
computation in point-based trust management. To mitigate this
problem, a resource owner can use an approximate trust value
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during the credential selection computation, and then makead-
justments when credentials are exchanged later.

The credential-based trust model completes the description of
an important aspect in point-based authorization. Next, wegive
a concrete application for point-based authorization in location-
query systems.

V. A PPLICATIONS TOLOCATION QUERY SYSTEMS

Privacy is an important concern in systems that use presence
and other real-time user data. Presence provides great utility, but
also has the potential for abuse. Managing security and privacy
preferences in these systems can be complex. One approach to
protect the privacy is to apply distributed anonymity algorithms
to sensor networks [17], [18]. Another type of solutions is to
augment existing routing protocols to enhance source-location
privacy in sensor and conventional networks [21], [34].

However, these existing solutions are not suitable for several
types of applications. In many scenarios such as 911 or medical
emergency, road-side emergency of a GPS-enabled vehicle, and
police enforcement agents, the location information of a subject
is critical, and should not be hidden or anonymous. Also for
example, in distributed collaboration applications such as Meeting
Central [41], being able to share presence information to trusted
collaborators is desirable.

Generally, sharing presence information implies sharing sensi-
tive personal data such as computer activity, physical location, IM
status, phone use, and other real-time attributes associated with a
given user. Managing the privacy of this data requires capturing
the user’s preferences and concerns, which are typically quite
individualistic. Some users feel comfortable sharing any personal
details, but most want at least some control over what is shared
and with whom.

We are interested in how to manage access to private pres-
ence information in a way that makes users feel that their
preferences are met. In this section, we describe how point-
based authorization can be used as a key component for flexible
privacy management in presence systems. The point-based trust
management is intuitive enough to let the user understand the
implications of their sharing decisions.

A. A Location-Query Service

As an application of point-based trust management, we have
started to prototype a presence system that applies points to
access control. A presence system can provide a service that
runs on behalf of each user, acting as that user’s always-online
proxy. Through this proxy, the user has ultimate control over
all their associated data. The proxy is resolvable based on the
user’s identity, and can expose services that can be queriedby
other entities in the system. One such service provides presence
querying.

Entities in the system can pose questions to Alice’s proxy like
where is Alice now?This is handled by Alice’s presence service,
which must first find valid answers to the question, and then
determine which answers, and to what degree of specificity, will
be returned. The answers are generated by interpreting real-time
presence data (GPS coordinates, keyboard and mouse activity,
current calendar appointments, etc.) associated with Alice, which
may be captured from arbitrary locations but which flows ex-
clusively into her proxy, thereby giving Alice ultimate authority

over her own personal presence data. The allowable answers are
determined by querying Alice’s access system, which uses points
in several ways.

1) Advisors and Point-Based Decisions:Alice’s proxy chooses
access decisions through a set of domain-specific entities called
advisors. Each advisor provides input on possible decisionre-
sponses based on its domain of expertise (e.g., reputation,purpose
of the query, context of the exchange, value of the requesteddata).
These inputs are then aggregated to determine the overall advice
about a possible response. The idea is to provide a flexible mech-
anism that more accurately represents a user’s decision process.
Our credential-based trust model and point-based authorization
can be used to implement a flexible advisor system. For this
example, we focus just on reputation, but the point-based model
can generally be applied to a number of these domain-specific
problems.

Alice’s proxy contains her policies and preferences, including
the trust values of credentials that may be used for authentication.
Alice also defines the precision associated with certain trust
values. For example, if the trust value of the query issuer is
twenty, then she might release her location information exactly. If
the trust value is five, then she might release afuzzy interpretation
of her location, for example, the building or city where she
is currently. Phrased more concretely, if Alice’s closest friend,
Bob, queries about her location, a precise answer is returned. If
a stranger queries her location, nothing about Alice shouldbe
disclosed.

The reputation advisor computes the trust value of each query
issuer, based on their credential information. The trust value is
then compared to Alice’s policies, and the corresponding location
result is returned. The advisors reside in Alice’s proxy that is a
tamper-resistant system in order to prevent the leaking of private
trust values. Note that this model makes it easy to use the trust
value not just in deciding what to share, but in determining the
system’s confidence that the right decision is made. A high trust
value represents high confidence and can be executed without
bothering Alice. A low trust value represents low confidencein
a decision, and if low enough, may warrant interrupting Alice
to check that the right decision is being made for her. This
confidence metric is then fed back into the system for use the
next time a similar query from the same entity arrives, and used
to provide an aggregate sense of past confidence.

For location-query systems, the main advantages of using point-
based trust management as opposed to conventional access control
mechanisms are the flexibility of making access control decisions
with an arbitrary degree of precision and the ability to derive
some simple notion of confidence. In order to achieve the same
expressiveness, a boolean-based access control policy would be
very inefficient, as one needs to enumerate all of the possible
combinations of authorizations.

VI. RELATED WORK

Secure Multi-party Computation (SMC) was introduced in a
seminal paper by Yao [42], which contained a scheme for secure
comparison. Suppose Alice (with inputa) and Bob (with input
b) desire to determine whether or nota < b without revealing
any information other than this result (this is known asYao’s
Millionaire Problem). More generally, SMC allows Alice and
Bob with respective private inputsa andb to compute a function
f(a, b) by engaging in a secure protocol for public functionf .
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Furthermore, the protocol is private in that it reveals no additional
information. This means that Alice (resp. Bob) learns nothing
other than what can be deduced froma (resp. b) and f(a, b).
Elegant general schemes are given in [5], [8], [15], [16] for
computing any functionf privately.

Besides the generic work in the area of SMC, there has
been extensive work on the privacy-preserving computationof
various functions. For example, computational geometry [1], [10],
privacy-preserving computational biology [3], and private two-
party dynamic programming for the knapsack problem [43].
Compared to existing private scalar product protocols [1],[14],
[38], our protocol is designed for general privacy-preserving
distributed scalar product computation, where vector values are
distributed among multiple players. The protocol has promising
applications in the information discovery of reputation systems.
Our security is efficient, and is comparable to the private two-
party scalar product of Goethalshet al. [14].

Recently, there are also solutions for privacy-preservingauto-
mated trouble-shooting [19], privacy-preserving distributed data
mining [20], private set operations [12], [22], and equality tests
[26]. We do not enumerate other private multi-party computation
work as their approaches are significantly different from ours.

There has been much work on the privacy-awareness for ubiq-
uitous computing environments [17], [21], [24], [33]. An existing
approach to protect the location-privacy in sensor networks is
through distributed anonymity algorithms that are appliedin
a sensor network, before service providers gain access to the
data [17]. Another category of solutions is to augment existing
routing protocols to enhance source-location privacy in sensor
and conventional networks [21], [34]. A more fine-grained ap-
proach for managing the access to location data is based on
privacy-policies [24], [33], which is closer to our solution. Using
point-based authorization, we are able to support more flexible
trust establishment mechanism without rigid boolean-based policy
specifications.

Our trust model work is related to the existing work on rec-
ommendation or reputation systems in decentralized models. [6].
[23]. Trust evidences that are generated by recommendations and
past experiences have been used for trust establishment in both ad-
hoc and ubiquitous computing environments [11], [31], [36]. This
type of trust evidence is flexible and straightforward to collect.
The notion of uncheatable reputation was proposed in recentwork
by Carbunar and Sion [7], who developed a reputation mechanism
that prevents untruthful reputation information using witnesses.
In comparison, the main property of our trust model is the use
of role-based organizational infrastructure to derive trust values,
which aims to improve the scalability of trust computation.

VII. C ONCLUSIONS ANDFUTURE WORK

In this paper, we have developed a general protocol for privacy-
preserving multi-party scalar product computation. This protocol
can be used for peers to jointly compute a weighted trust score
from private recommendations andprivateweights. We have also
presented a simple credential-based trust model for evaluating
trustworthiness based on role and delegation credentials,and
recommendations. Finally, we have described the architecture of a
location-query system for giving fuzzy location information based
on the trust score of a requester.

There are several interesting areas to explore for future work.
One is to evaluate other types of trust computation besides

weighted average. For example, the ordered-weighted-average op-
erator allows the user to weight the input values in relationto their
relative ordering [40]. Another promising direction is to design
private multi-party protocols for other desirable functionalities in
a trust model. For example, an entity wants to find out who else
in the system has a similar profile of trust values as his or herown
— other entities who have similar likes and dislikes. The problem
becomes how to privately compute the distance between two set
of trust values according to certain metrics. As part of future
works, we also plan to evaluate the effectiveness of credential-
based trust model in answering fuzzy location queries. This
experimentation involves an implementation of the point-based
authorization model, the weighted scalar protocol computation,
and the comparison tests with conventional trust models.
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