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Abstract— In this paper, we first present a private distributed concerns not only user privacy, but also safety: presentzeaia
scalar product protocol that can be used for obtaining trustvalues pe used to track and profile individuals. In the meantimerethe
from private recommendations. Our protocol allows Alice toinfer 3y he emergency situations or extenuating circumstanbes w
the trustworthiness of Bob based on what Alice’s friends thak certain parties (like emergency workers) should have actes

about Bob and Alice’s confidence in her friends. In addition, his kind of inf . d friend d relati f aah
the private information of Alice and her friends are not revealed this kind of information, and iriends and relatives of a useght

during the computation. We also propose a credential-baseglust ~ Pe allowed to query his or her location information at anyetim
model where the trustworthiness of a user is computed basecho Therefore, a desirable feature of a location query systethat
his or her affiliations and role assignments. The trust models it provides different levels of precision based on the retgrs

simple to compute, yet it is scalable as it classifies large @ups  trustworthiness or the context of the query. This requiréiexible

of users. authorization model for accessing the private locatioradat
Index Terms— Private multi-party computation, trust manage- To meet the requirements of trust establishment in open sys-
ment, location privacy tems, we develop a trust model for access control based on the
credentials provided by a requester. The model computessa tr
|. INTRODUCTION value on the requester, which is used to make access control

Conventional access decisions in stand-alone systemssare {1€CISIONSs by a provider. ,
ally made based on the identity of the entity requesting a REPutation or trust models [7], [23], [46] provide an open,
resource. By comparison, in open systems such as the Interfl§Xible, and dynamic mechanism for trust establishmengreh
this approach becomes less effective. The main reason is tii reauester does not belong to the resource owner. Trudleno
there is no central authority that can make access decisions, Nave applications in distributed systems such as peee¢o-p
the resource owner and the requester typically belong torisgc N€tWOrks, e-commerce applications such as online auctaris
domains administrated by different authorities that arknown esource-sharing systems such as Grid computing. Truseisiod
to each other. For example, Alice is holding a student crialen '€ typically built on information such as recommendatians!
from an organizationd, but Bob, the resource owner, may knowpPrevious experiences of individuals. Various algorithrasehbeen
nothing about4 in terms of its trustworthiness, etc. ThereforeP™oPOSed to evaluate trust values [6], [37], in particulawh
there is a strong need for designing a flexible trust estaiisit transferred trust are computed. ,
model. In this paper, we address two aspects of computational trust

Another motivation for flexible authorization comes from fimedels:(1) how to protect the privacy of personal opinions during
nancial applications such as e-commerce. An issue that mRgMPutation, and2) how to design a scalable computational trust
dissuade consumers from fully utilizing e-commerce appiims Model- _ _
is the potential misuse of their disclosed private infoiorapy " computational trust models, the recommendations on the
vendors. In most situations, consumers do not have a gatveit Tustworthiness of users are usually assumed to be pubtie-H
measure of how much their sensitive credentials are wortt, a€V€"» 'ecommendations represent one’s personal opinfoothier
may be under-compensated when disclosing private infaomat €Ntities, and are usually considered sensitive. For exanib
in exchange for rewards. Without a quantitative model, hasd @S bad experiences doing business with Paul on an auct@n si
for consumers to make intelligent decisions on whether ortmo PUt: he does not want to publish his negative recommendation
disclose a credential in exchange for rewards. on Paul for fearing of Paul’'s revenge. Alice, who has not deal

Privacy-aware presence systems are another important afé Paul previously, would |',ke to use Bob and others’ reeom
that needs a flexible trust and authorization model. Lopatignendations to evaluate Paul's trustworthiness. In the trean
information obtained via GPS devices embedded in cellpghon@lice has her own private evaluations on Bob and others, fwhic
or cars represents private user data that should not beeguediVe Weights to '”d'V'dlfal recommendation (e.g., Alice Wiso
freely by the public. Similarly, in a workplace such as anceffi 2nd trusts Bob, so Bob's recommendation has a higher wgight.
building or hospital, the privacy of presence informatitoosid be 1he Problem is how to enable Alice to compute the weighted

protected. The management of presence data is crucialideda recommendation on Pa.ul wnhout disclosing everyonesmegs
parameters. We formalize this problem as a secure multy-par
Work supported in part by the National Science FoundatiateufiTR grant computation of scalar product, and present an efficientopobt
11S-0324846. A partial and preliminary version of this waslas published for solving it
in iTrust 2007 [45]. . " . . .
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Fig. 1. An example of trust relationships and trust values. 2)

does not know anything about Bob. However, Alice’s peerd,Car
Doug, and Ed have had previous interactions with Bob. Each of
them gives a trust score on Bob’s trustworthiness that is@&

1.0, respectively. Suppose 1 is complete trustworthy arsl ribt
trustworthy at all. In the meantime, Alice may not complgtel
trust her peers opinions and she has her own judgement on the

trustworthiness of her peers. For example, she thinks thatsC ~ 3)

opinions are more reliable than Ed’s. Thus, Ed’s opinion ab B

is discountedby Alice. Alice and her peers uses our private scalar
product protocol to compute a value of trust score on Bobdase
on all these known factors. A more complex scenario is shdwn a
the bottom of Figure 1 where Alice’s peer has indirect knalgk
about Bob rather than direct previous interactions. Fraank,
Alice’s peer, knows Greg who knows Helen who knows Bob.

no privacy concern or there is a trusted third-party, the
problem can be solved by computing the scalar product
of two vectors — one vector representins confidence
values for a set of entities, and the other vector reprasgnti
recommendations of these entities &n In real life, this
information is usually considered sensitive, efg.may not
want to disclose that he does not trusiat all, andA hopes

to conceal the fact that her confidenceBnis low. Private
two-party scalar product protocols are available [1], [14]
[38]. However, they are not suitable for our problem, where
one of the vectors in the computation is distributed among
multiple entities. We design an efficient private multi{gar
computation protocol for scalar products where individual
values of a vector can have different owners. The sensitive
information of all parties is not revealed (except the final
scalar product).

We propose a credential-based trust model for infer-
ring trustworthiness in decentralized environments. Our
credential-based trust model not only simplifies and scales
the decision-making process, but also improves the relia-
bility of computed trust scores by using role certificates.
We describe how to compute trust values from multiple
credentials, delegation credentials, and from peers’meco
mendations. Our model can also be used for computing
point values in the existing point-based authorization ehod
We also describe a location-query system for giving fuzzy
location information based on the trustworthiness of the
query issuer. This system is a practical application of
the point-based authorization model, and demonstrates the
ability to give flexible yet confident trust verdicts in open
systems. Location-aware applications are made popular by
the increasing deployment of sensor networks, RFID, and
GPS-enabled cellphone networks.

Here, the chained trust relationship reflects how truseissferred
and the computation §hou|d incorporate all t.hese factors. W outline of the paper
formalize this problem in our trust model later in the paper. ) . ) o

Our paper also describes an approach to improve the séglabil A Private multi-party computation protocol for distribdte
of trust and reputation models. Ideally, a trust model sthca¢ Scalar products is presented in Section II. This protocpbets
able to accurately and efficiently classify a group of usersrust  €fficient and privacy-preserving computation of trust esluOur
management applications with a large number of users, wchcg\edgnual-based trugt model is introduced in Secthn Iihl.
Shibboleth [32], the trustworthiness of individual useeximes S€ction IV, we describe how our trust model can be integrated
less important if the resource owner knows the home orgtiaiza With the existing point-based trust management model. tiiGe
of the individual. For example, if the user is a professonfra V» We present an application of point-based trust managetoen
reputable college, then he or she is likely to be trustworthig _the Iocayon query pr_oblem for_ sensor networks. Rela_tedkvyor
aim to improve the scalability of the typical grass-root mgeh IS dt_escrlbed in Section VI. Finally, future work is given in
of building trust. Our approach takes advantage of the gisting S€ction VII.
organizational infrastructure, in particular the credsdrased
administration model. The trustworthiness of an individis .
deduced from her digital credentials and the credentialeiss
trustworthiness.

PRIVATE DISTRIBUTED SCALAR PRODUCTPROTOCOL

In this section, we define, construct, and analyze the privat
distributed scalar product protocol. The private distiéoliscalar
product protocol has applications in privacy-preserviagadmin-
ing problems. In Section I1I-B, we show how it is used to prakg

A. Our Contributions compute trust values from peers’ recommendations.

The contributions of this paper are summarized as follows. o

1) We present a private multi-party computation protocal fd Definitions
computing weighted trust values. The problem is for In what follows, we define that all arithmetic is done 7,
to infer the trust value of an unknown entitf based for somem. A private distributed scalar product protocol is to
on what other entities think about together withA's computeX - Y, where X = (z1,z9,...,2n) € Zp, andY =
confidence in these entities. In a world where there $1,v2,...,yn) € Zy, are vectors of length.



The protocol is run by numbers of players where< ! < 2n, let each party send his share in the clear to all other partiesh
and z; andy; are disjointly partitioned among the players. Thais obviously insecure. The protocol in [2] gives a non-alvivay
is, each player knows one or more of the elements in the \&ctdo do this by requiring the participants to compute a randeuhi
and a vector is known by one and only one player. In a cengdlizprivate sum. We use the summation protocol as a black box, and
case wheré = 1, the problem is reduced to trivial scalar productefer readers to the literature for more details [2].
computation. If! = 2, i.e. a two-party private computation
problem, one can use existing private scalar product potgocC. Protocol Description
[1]. [14], [38]. If there are2n players, each party knows only Qur private distributed scalar product protocol is shown in
one element inX or Y. The goal of the protocol is for the Figure 3. Alice’s input of the protocol is a private vectar.
players to jointly computeX - Y" without disclosing each own's Each partyB; (for 1 < < n) has a private valug;. At the end
private information, i.e..r; or y; values. The security of the of the protocol, the scalar produdt - Y is learned by Alice or
protocol can be intuitively thought of as players do not gaam- py every participant, wher® = (y1, ..., yn).
negl|g|b|e knoWledge of others’ priVate information (m the Alice encrypts each e|ememi of her vector X with her
final scalar product). In particular, the property shoulddheven public key in homomorphic encryption. The ciphertext is
if players collude. The security of the protocol is furtheatyzed sent to B;, respectively. Becausé; does not know Alice’s
in Section II-D. private key, Alice’s value is safe. Because of the propertie
For our trust model in Section Ill, we are interested in g¢ homomorphic encryption, entity3; is able to compute the
specific scenario with + 1 players: Alice wants to compute ciphertext corresponding te;y;, even though he does not know
the point value for an unknown entitiy. She knowsn entities z;. The resulting ciphertext is; in Figure 3. To hidey;, B;
B1,By,...,Bn, and Alice’s point value for entityB; is x;. computes the ciphertext] corresponding tar;y; — s;, Where
Each entity B; knows entity £/, and has assigned poit t0 5 s a random number. Alice receives ciphertext from each
I, respectively. Alice and3y, By, ..., B jointly computeX .Y, B, and computes the product of alf's, which is decrypted to
which is given to Alice at the end of the protocol, but nottgah x .y _ S | s;. Next, all of B;s carry out a private multi-party
the B;s. We present our private distributed scalar product pobtocsymmation protocol that computés?, s;. At the end of the
for this special case. The protocol can be easily genethliae symmation protocol, even; learns the sum. Alice obtains the
cases wherd is anywhere between 3 arth, wheren is the sym fromB;s, and computex - Y without learning the individual

length of the vector. y; values.
o Our private distributed scalar product protocol is basedhen
B. Building Blocks private two-party scalar product protocol by Goethashl. [14],

Our private distributed scalar product protocol uses thmdiwo where each party has a vector and the protocol outputs ther sca
morphic encryption scheme and a private multi-party surionat product result of the two vectors in a split form. That is, sealar
protocol. product result is split between the two parties, and equathd

1) Homomorphic Encryption: A homomorphic encryption sum of two shares. The concept of shared private computedion
scheme has three functiori&en, Enc, Dec), where Gen gen- also be found in [1], [13]. A variant of our protocol allowsl al
erates a private kegk and a public keypk, Enc and Dec are participating parties to learn the scalar product reXult". Alice
encryption and decryption functions, respectively. Thergption with S4 and all B;s, each withs;, carry out a private multi-party
function Enc is said to be homomorphic, if the following holds:summation protocol with their inputs. Our analysis is basad
Encpk(x;r) . Encpk(y;r’) = Encpk(x + y;r - '), where z the protocol in Figure 3.
and y denote plaintext messages andand ' denote random
strings. Another property of such a scheme is Bt (w; )" = D. Analysis of the Protocol
Encpk(x -y;r¥). This means that a party can add encrypted The correctness of the protocol is obvious. Alice obtaisnfr
plaintexts by doing simple computations with ciphertetiéhout B, (for all i € [1,n]) an encryption ofz;y; — s;. Alice multiplies
having the private key. The arithmetic performed under thBen ciphertexts, and decrypts to obtain the shifft ; z;y; — s;.
encryption is modular, and the modulus is part of the publionce Alice obtainsy " ; s;, she computesX - Y = > ;| z;y;.
parameters for this system. Homomorphic schemes are dedcriThe security and efficiency of our private multi-party praabfor
in [9], [27]. We utilize homomorphic encryption schemes tthadistributed scalar product are analyzed.
are semantically secure. A homomorphic scheme is called The security of our private multi-party scalar product puoat
mantically securavhen a probabilistic polynomial-time adversaryis based on the security of the private two-party scalar yebd
cannot distinguish between random encryptions of two etésne protocol [14] and the private multi-party summation pratioc
chosen by herself. [2]. In general, the multi-party protocol among players éswge

2) Private Multi-Party Summation Protocour protocol also when the privacy and correctness are guaranteed for alerday
uses an efficient private multi-party summation protocdhich It is said that a protocol protects privacy when the infoliorat
was presented by Atallabt al. [2]. Their protocol is to make that is leaked by the distributed computation is limited he t
n parties, each with a numbér;, cooperate tasimultaneously information that can be learned from the designated outptiieo
find out )" ; V; without revealing to each other anything othecomputation [28]. In our problem, Alice’s private vectar and
than the answer. To achieve this, each party chooses a randeanh entityB;’s private valuey; are not leaked to each other,
value, which is used to hide the input. The intermediate ssimhbesides the scalar product. Note that in almost all exigimate
additively split among the participants. scalar product solutions, one player can construct a system

The summation protocol by Atallaét al. [2] is described in linear equations based on the specification of the protcuoud,
Figure 2. Note that to compute the sum, the protocol shoutd replve it for the secret values.



PRIVATE INPUTS: Every party: has a private valu#;.
PRIVATE OUTPUT: Every party learnd/ =" | V;.

1) Partyi chooses a random numbér.

2) Every party2: gives t02i + 1 his Va; + Ro;, then every2: + 1 gives to2i his
R9; 41 in a secure channel.

3) The odd-numbered parties together compute the $um R, whereV =
Sr i ViandR =>"" | R;. The even-numbered parties together compute the
sum R.
The summation of/ + R and R can be done in a tree-based approach where
the parties are organized at leaf nodes of a tree and the siimnrscomputed
in a bottom-up fashion. The root of the tree gives the final .sum

4) An odd party withV + R and an even party witlk simultaneously exchange
their quantities to obtairv.

The simultaneous exchange of secrets can be realized usitigods (se
e.g., [30]). However, as pointed out in [2], a simpler and enefficient
bit-exchange approach is suitable for the summation pobtaod does ng
compromise the security. An odd party sends one bit of hisevéd the even
party, and the even party sends one bit to the odd party. Thendlternate
until done.

11%

—

Fig. 2. Privacy-preserving summation protocol by Ataliethal [2]. Note that lying during the exchange in Step 4 cannot levgmted, yet a player can
achieve the same effect by lying about his input. In addjtiging does not let the player learn anything about the $dm

PRIVATE INPUTS: Private vectorX = (z1,...,zn) € Z7, by Alice; private values
y1 by entity By, ..., yn by entity B,,, wherey, € Z,, for all i € [1,n].
PRIVATE oUTPUTS Alice learnsX - Y mod m, wherem is a public parameter

1) Setup phase. Alice does: Generate a private and publip&ieysk, pk). Send
pk to all B;.

2) Alice does fori € {1,...,n}: Generate a random new strimg Sendc; =
EnCpk(l’i; T’i) to B;.

3) B; does: Setw; = ¢/* mod m. Generate a random plaintext and a random
noncer;. Send to Alicew; = w; - Encpy(—si; r}).

4) Alice does: Compute the product of ciphertexfs asT? ;w, mod m.
Use her private keyk to decrypt the product, and obtain the partial result
SA:X~Y—Z;L:ISZ'.

5) All B;s, each withs;, carry out a private multi-party summation protocol with
their inputs (described in Section 1I-B.2 and Figure 2). Aetend of that
protocol, eachB; obtainsSp = Y"1 ; s;.

6) Alice does: ObtainSg from (any of the)B;s. ComputeX - Y = S4 + Spg.

Fig. 3. Private Distributed Scalar Product Protoeal.is a public parameter of the homomorphic encryption scheme.

Operation Scalar Product Phase | Summation Phas¢ Total
Comp. (Alice) O(n) homomorphic op. o(1) O(n) homomorphic op.
Comm. (Alice) O(n) o(1) O(n)
Comp. B;) O(log y;) homomorphic op. o(1) O(log y;) homomorphic op.
Comm. (B;) o(1) o(1) o(1)
TABLE |

COMPUTATION (COMP.) AND COMMUNICATION (COMM.) COMPLEXITIES OF THE PRIVATE DISTRIBUTED SCALAR PRODUCT PREDCOL. WE DENOTE BY
n THE LENGTH OFALICE’S VECTORX . THE LOGARITHMIC FACTOR IS DUE TO USING MULTIPLICATIONS TO CONPUTE EXPONENTIATION IN STEP3.

Our security is in the semi-honest model, where it is assumsdalar product protocol is to prevent collusions among griay
that all players follow the protocol, but they are also cusio In particular, during the step of summation, Alice may agem
that is, they may store all exchanged data and try to dedurecollude with a subset of player8;s to discover the private
information from it. One challenge in designing the mukliFy values of other players.

As in almost all private multi-party protocols, we assumatth



each party inputs his or her true private values. Providkeyved
values during computation can result in inaccurate resalts
wasting the computation power and bandwidth of all paréinis
including the dishonest party. In addition, the effect af\pding

modified to a protocol that is secure against malicious adwars
using standard zero-knowledge proofs showing that alligmrt
follow the protocol. At each step of the protocol, each partgs
their transcripts and zero-knowledge proofs to convineedther

skewed intermediate value by a participant can be achieyed farties that they have followed the protocol without chegat\We

raising or lowering his or her own input. This issue is stadda
multi-party protocols (both semi-honest and malicious atsyd
Supposed wants to compute the trustworthiness @fwith help
of By, ..., By, and suppose; is a friend ofC, B; may modify
the output of the protocol by raising in Figure 3. As a resultA

gets a higher value fat'. However,B; can achieve the same effectm

by choosing a different input to begin with. Therefore, tiyise of
attacks is not considered in multi-party protocols inchgdburs.
It is worth mentioning that once detected, this type of barav
could be folded back into the reputation of participantsjcivh
can provide incentives for being honest during the compmnat

Because of the intrinsic nature of the problems considenesh
if the protocol is secure in the malicious model (discusseelr),
multi-party computation such as ours is still vulnerabl@tobing
attacks. For example, it wants to learnB;’s private valuey;, A
can engage the protocol with inpat = (0,...,0,1,0,...,0) by
setting only thei-th entry to be one. After the protocal learns
X Y = y;, which is the private value oB;.

do not describe the details of how this transformation isedion
this paper.

I1l. CREDENTIAL-BASED TRUST MODEL

odel that is useful for the trust management in distributed
environments. The main idea is to convert role-based ctieden
and related information into quantitative trustworthimeslues
of a requester, which is used for making authorization detss

Quantitative authorization policies can allow fine-tunextess
decisions instead of binary (allow or deny) verdicts, anolvjate

more diversified access options for requesters. In additjoan-

titative authorization enables providers to correlate guality

of service with the qualifications of requests (e.g., moreares

or higher resolution with higher trustworthiness). Thigpegach

utilizes and leverages existing credential and role-basadage-
ment infrastructure for autonomous domains (e.qg., [35])[and

improves the accuracy of trustworthiness prediction.

The security of our protocol is summarized in the following private multi-party scalar product protocol in the poes

theorem.
Theorem 1:Assume that(Gen, Enc,Dec) is a semantically

section can be used to compute trust values from recommenda-

tions in Section IlI-B.

secure_homomorphic public-key cryptosystem. The private d \ye divide our description of the credential-based trust ehod

tributed scalar product protocol presented in this sedi@ecure
in the semi-honest model. Alice’s privacy is guaranteed mioe

all i € [1, n], entity B, is a probabilistic polynomial-time machine.

Also, for all i € [1,n], B;'s privacy is information-theoretical.

Proof: Each entityB; only sees a random ciphertext from Alice,
for which B; cannot guess the ciphertext. This is because of the

semantic security of the homomorphic encryption schemackle
B; cannot guess Alice’s value;.

During the summation protocol, eadB; only sees random
values exchanged. HencB; cannot guess the random secset
of B; for all j # i.

On the other hand, Alice only sees (1) random valyg; —

s;, (2) the sum of alls;, and (3) the final computation scalar

productX - Y. She does not gain additional information ab®ut
besides the final scalar product. In addition, the protocevgnts
collusions among Alice and a subgetof B;s to discover private

y; value of B; for B; ¢ D, because the summation protoco
guarantees that alB;s learn the sum simultaneously. Thus, Alic
obtains no information about ani; except the scalar product
X Y, and eachB; obtains no information about Alice and entity

B; for all j # i.
The overall computation and communication complexities

our protocol are the same as the private two-party scalat-pr

uct protocol by Goethal®t al. [14]. The private multi-party

summation protocol is efficient, as it does not require arpety

e

into the following topics.
1) Derive the trust value of an affiliated role credential jaith
is defined next.
2) Compute the trust value of a delegation role credential,
which is defined next.

which is described in Section V.

Terminology: In our model, we define thadministratorof a
role as the organization that creates and manages thefraleole
credential of an entity is signed and issued by the administrator
of the role, that role is said to be affiliated role of D (this
type of role is usually obtained through the affiliation wiin
organization, and thus the name). If a role credentialDois
instead issued through delegation and signed by entities ttan
the administrator of the role, that role is calledlelegated role

f D. We define arentity to be an organization or an individual.
An entity may issue credentials. Also, an entity may have ane
more affiliated roles or delegated roles, which are autbat&d
by role credentials. Araffiliated role credentials the credential
for an affiliated role, and is signed by the administrator lof t
r?le. Similarly, adelegated role credentiak the credential for

g)roving a delegated role. privilege can be a role assignment

or an action on a resource. A roleadministered by entityd
is denoted asA.r. A role defines a group of entities who are
members of this role.

of encryption schemes. The summation step does not inteoduc

significant overhead. Details of complexities are sumnealrin
Table 1.

Security in a malicious modelMalicious adversaries, unlike

semi-honest ones, can behave arbitrarily without follgvthe
protocol. They may refuse to participate the protocol, alioe
protocol without finishing it, and tamper with intermediasdues.
Any protocol secure against honest-but-curious advessaan be

A. Definitions in Credential-Based Trust Model

A trust value in the credential-based trust model reprasent
what an entity thinks about the trustworthiness of anothmitye
or a role in another entity. More specifically, trust valgd, B) in
the credential-based trust model represents what entitizinks
about the trustworthiness of entify, trust valuet(A, B.r) in the

In this section, we present a simple credential-based trust

3) Integration with point-based trust management system,



credential-based trust model represents what edtityinks about FE; has formed her trust valug E;, B) on the target entityB.
the trustworthiness of rolés.r administered by entityB. For (In case no one in the system knows about enfitya default
example, a Grid Computing faciliteCLab assigns trust values trust value can be assigned ®to indicate this situation.) The
to types of users, such as ropgofessorand rolestudentin a formula for computing (A4, B) is shown as follows, where weight
universityU, and roleresearcherfrom a research centef. When w(A, E;) =t(A, E;)/MAX_TRUST.
a user holding a certain role credential requests for adceti®e
grid computing facility, his or her privileges are specifieased
on the trust value of that role. Note that the credentiabHasust t(A,B) =
model is different from existing trust models that generating
certificates, which are signed certificates of one’s trugtioess Value w(A, E;) represents the weight df;'s recommendation
generated by one’s peers [29]. (trust value) onB for A. Variants of weighted average computa-
Ideally, an entity A maintains a trust value for each role intion have been used in other reputation systems, such asedrde
organizationB. For exampleGCLab gives different trust value to weighted average [40]. The above description also applissnw
role studentand roleprofessorin a university. Hence, a requesterthe target to be evaluated is a role, for example, instead of
with a professoirole credential may be granted a different level oén entity.
access privileges from a requester witlstadentrole credential. Application of private distributed scalar product protocol.
Definition 1: If an entity A gives a roleB.r in B a trust Equation (1) is useful forA only when all the trust values
valuet(A, B.r), then any individual who has a valid affiliatedrolet(E;, B) are available. However, trust valugE;, B) is private
credential of roleB.r issued byB has the trust value(A, B.r). information of E;, who has the incentive to hide it, especially
In case a resource owner does not know the trust value ofvlen E; thinks negatively abouB3. Similarly, A may consider
role in an organization, the trust value of that organizatoused her trust values(A, E;) sensitive too. The problem is how to
as a guideline for the trustworthiness of the role. In gdneva compute the weighted average in (1) without leaking theapeiv
define that any requester who has a valid role credentiakissunformation of each entity. Our protocol for private mubigrty
by organizationB has the same trust value &s scalar product in Section Il solves this problem and satidfie
There are two main approaches for an entityto obtain the privacy requirement. Note that our model ri®t based on the
trust value ofB. One is based orl’s previous direct interactions assumption of two degrees of separation between any twibesnti
with B. The other approach is to derive from other entitiesthat is, we do not need to assume that a new entity is known by
trust values onB, which can be thought of as recommendationan existing peer. If an entity is not known to the community, i
The two approaches can be combined to bring a more precisénitialized with trust value zero, which may increase vided
judgement. In this paper, we do not address the first approatiat the entity behaves well with other peers. Recall thaust t
namely, how to directly derive trust values from previousns- value can be based on previous experience of interactiotis wi
actions with an entity or its roles, because the specific austh an entity.
to be used depend highly on the applications. For examp#® TrCombining trust values for access.If a requester presents
et al. proposed how to derive trust scores in a P2P file-sharimgultiple role credentials, then the trust values of the entidls
systems [39]. We focus on techniques for computing trusiesl are to be combined. For example, one simple method is to sum
from other entities’ recommendations and on how to carry otlie trust values. This means that the requester with meltipl
the computation in a privacy-preserving fashion. In wh#ibfes, credentials of low trust values can gain the same accesteges
we usetrust value of a credentialo mean the trust value of theas a requester with one credential of a high trust value. This
credential issuer. combination method is intuitive and is used in point-basedtt
management model [43], which will be discussed in Section IV

S|

Zw(A7 Ei)t(Ei7B) (l)
1=1

B. Derive Trust Value From Recommendations

We describe aveighted averagemethod for an entityA to C. Generalization of our computational model
compute a trust value on entify or role B.r. This computation is ~ The trust relationships of our trust model described so far
useful whenA does not have any previous interaction experien@ssumes thatd’'s peers directly knowB. However, a more
with B or B.r, and A wants to combine others’ opinions &f general scenario is wher€ indirectly knowsB through multiple
or B.r in forming her trust value. peers, e.g., the scenario depicted at the bottom of Figuklel.

In the credential-based trust model, fleeommendatioy an generalize our trust model to incorporate this aspect dswisl
entity £ on B is the trust value/(E, B) that £ gives toB. A We model the trust relationships of entities in the systenaas
confidence valueepresents how mucH trusts the judgement of directed grapltz, where there is a weighted directed edge between
a recommender, and is defined as the trust valuel ain the entity X andY, if X knowsY and the weight of the edge is the
recommender. trust valuet(X,Y). The distance betweeR andY depends on

Above definitions mean that recommendations are weightdte directed path chosen, e.g., in Figure 1, the distancecest
by A’s confidence on the recommenders. Formally, we defidice and Bob is four if the bottom path is chosen. We refer the
the weighted average computation of trust value as folldWs. directed path connecting two entitiesand B as a trust path.
denoten as the number of recommenders, afg represents  Our model for computing trust values can be generalized to
the i-th recommender. Let MAXTRUST be the public upper include long trust paths by multiplying weighted trust \esu
bound of all trust values. Without loss of generality, weumse corresponding to a trust path. To computés trust value on
a trust value is non-negative. We assume tHahas already B, A first needs to choose the trust paths connecting tdVe
obtained her trust valugsA, E1), t(A, Es), ..., t(A,E,) on the assume thatd has already knowr non-overlapping directed
recommenders. We also assume that each of the recommengaths fromA to B. Note thatA’s paths do not have to be the



complete set of such paths . However, incorporating more
paths into the computation generates a more accurate éstima
on B’s trustworthiness. For théth path (i € [1,n]) betweenA
and B, let m; be the number of entities on the path besides
and B. Denote such a node & ; wherej € [1,m;]. Trust value
t(A, B) is computed as Equation 2.

Member_Of

Cpany

t(A: B) = w(A7 Ei,l)w(Ei,h Ei,2) .- -t(Ei,mi: B) (2) niversity

SRS

n
=1

In Equation 2,t(A, B) is computed by incorporating the Fig. 4. The schematic drawing of a role-based delegatiomclashows that
weighted paths betweetand B. The computation does not favora }:ﬂe?‘ﬂbe& Olf a UnivehfSity delegates permiSSti)OHS ftO ?S?I_mrc?fnpany,

. : who then eegatest € permission to a member of a lab. tal arrows

longer path_s .m that the longer the path, Fhe more weigts .indicate delegation of permissions. The vertical arrowdiciate membership
1) are multiplied that may lower the resulting trust value. sThirelationship.
trend is consistent with the intuition that direct recomufegion
is more trustworthy than indirect one. Because the weights a
normalized by MAXTRUST, more paths (i.e., higher do not Next, we briefly introduce role-based cascaded delegation
necessarily give a higher trust value. However, considentore model.
paths in the computation does produce a more accurate i@fiect 1) Role-Based Cascaded DelegatiofRole-based Cascaded
on B'’s trustworthiness by the community. How to choose the noiBelegation [35] model supports administrator-free deiega It

overlapping paths may depend ers preferences. This topic is enables flexible and dynamic authorization in a decengdliz

out of the scope of this paper and is not discussed here. environment. It comprises four operationBiitiate, Extend,
Prove, and Verify. Initiate and Extend are used by a resource
D. Delegation Chain and Trust Computation owner and an intermediate delegator, respectively, togd&tea

In this section, we describe how our trust model is furthd'Vilege to a role.Prove is used by a requester to produce a
generalized to support delegation credentials. Delegd4ip [35], proof of a deleggtlon ch_aln that connects the resource owitler
[44] is important for transferring trust in decentralizeavieon- the requesteNerify decides whether the requester is granted the
ments. Associating trust values with delegation credentia 2CC€SS based on the proof. _ o
different from role credentials because the values shoolonly !N the RBCD protocol [35], a delegation credential includes
depend on the initial credential issuer, but also the inefiate role membership certificates of each intermediate delegatwl
delegators’s trustworthiness. delegation extension credentials that are proofs of détega

A delegation credential represents how a certain prvilege [@nsactions signed by delegators. Credentials assdoiwita a
transferred among multiple delegators. Intuitively, if elafjator J€l€gation chain are transmitted to delegated role menateach
on a delegation chain has low trustworthiness, then the vaige  delegation transaction. Therefore, for a delegation cbalength
of the delegation credential should be affected. If all taledators 7 the number of certificates required to verify the delegapath

are highly trustworthy, the delegation credential showddneits 'S 2n. ) ) )
holder a trust value similar to a directly-issued role crei. 2) Discounted Trust Value for Delegation Credenti&luppose

We capture these intuitions in computing the trust value of tat an individualB has a delegation credential. We denalg
delegation credential into a terdiscount factorwhich represents @S the original delegator or the resource owner. We dengte
how much the trust value of a delegated privilege is dectedse @S the role being delegated in the delegation credentiaichwh

to intermediate delegators. Before we give details of tiimitien, 1S @ role administrated by),. We denoteDy,..., Dn as the
we first introduce several important concepts of delegation ~ Intermediate delegators on the delegation credential. et

The original issueror original delegatorof privilege P is the Dy.r,.. .,D,?.r as roles of intermediate delggators. Note that in
first entity on a delegation chain, and is the owner of theuesas OUr credential-based trust model, the specific role membier w
associated with privileg®. A delegation chairof privilege P is  1SSues the delegation is not needed to participate in cangput
the path that shows the delegation sequende bétween entities., discounted trust value. The trust value that an entitgives to
The chain connects a delegated entity to the original isshiér. the credential holdeB is computed as follows, where weight

In general, there are two types of role-based delegatiased w(A, Di) = (A, D) /MAX_TRUST.
on who is allowed to issue delegation credentials. One tgpe i

that an qrgan|zat|on delegates. its permissions to roIeSFh.Bro Y(A,B) = T qw(A, Dir)i(A, Do.r) ®)
organizations [25]. The delegation is issued by the adrmnatisr
of an organization. The other type is administrator-frelegtion, In Equation 3, the trust value of a delegated credential setha

where an individual role member of an organization issues tbn the length of the delegation chain, the trust valug Dg.r) of
delegation to other roles without the participation of adistra- the delegated role, and the trust valugd, D;.r) of intermediate
tors during delegation. The latter is designed for decémt@d delegatorD; for all ¢ € [1,n]. The weightw(A, D;.r) represents
transfer of trust, and is embodied in a model called roletlasthe discount factor on the trust valugA, Dy.r). Intuitively
cascaded delegation [35], [44] as shown in Figure 4. In thfgep,  speaking, if entityA thinks that intermediate delegators are highly
we give a general method for computing discounted trustevaltrustworthy, the final result(A, B) is close to valug (A, Dg.r).

of a delegation credential for both delegations with or with Finally, to make the role-based delegation valid, the angde
administrators. holder B needs to not only possess the delegation credential, but



also have a valid affiliated role credential of the last ari#eal The point-based authorization model assumes that thennasou

role of the chain. We denot®,,;.r as the last role that the owner (or server) and the requester (or user) agree on a set of

delegation credential is issued to. For example, in Figurthi4 credential types as the universe of credent@s,...,Cr). A

corresponds to a lab membét.should be an affiliated role mem- binary vector(z1, ..., z») is defined as the unknown variable to

ber of D,,+1.r. Therefore, the complete trust value of credentidle computed, where; is one if credentialC; is selected and

holder B with role D,,,.r should combine the trust value of thezero if otherwise. Integer variable, > 0 is the sensitivity score

delegation credential with the trust valued, D, 1.r) of his or of credentialC;. It is assigned by the requesterpriori. If the

her role, as shown in Equation 4. As mentioned in Section Iltequester does not have a certain credendial the sensitivity

B, we use the summation to combine trust values from multipeorea; for that credential can be set to any integer larger than

credentials. whereT is the trust threshold for the requested resource. Integer

variablep; > 0 is the point value for releasing credential type

, C;. The requester considers all values sensitive, and the server
t'(4, B) +t(A, Dny1.7) ) considers allp; values sensitive.

= ILiw(A,Dir)t(A, Do) + (A, Dny1.7) (5)  The credential selection problem is for the requester to

The above description of computing discounted trust valué8MPUte a binary vecto(zy,...,zn) Such that the sum of
of a delegation credential applies to both types of roleetiasP2Nts > iy wip; satisfiesT, and the sum of sensitivity scores

delegations: delegation with or without administrators. 2 i=1 ziai is minimized. This is captured in the following min-
imization problem. Compute a binary vectory, ..., z,) such

that the following holds:

t(A, B)

IV. INTEGRATIONWITH POINT-BASED TRUST MANAGEMENT

Our proposed private multi-party protocol and trust model a .
usefgl for general access contrql in a decentralized emnemt. . min Z 250 (6)
In this paper, we describe how it can be used for deriving tpoin =
values in the existing point-based trust management ma®3) [ n
which was proposed for the privacy protection of sensitive i subject to inpi >T ©)
formation in open environments. We briefly introduce thenpoi i=1

based model next. The above minimization problem can be rewritten into a knap-

sack problem, which can be solved by dynamic programming. A
A. Point-Based Trust Management private two-party computation protocol was given in [43] the

In the point-based trust management model [43], the authénamic programming problem with sensitiye and a; values.
rization policies of a resource owner define arcess threshold The protocol in [43] is different from our private distrileat scalar
for each of its resources. The threshold is the minimum numbiroduct protocol, as we aim to solve how point values can be
of points required for a requester to access that resourme. Privately computed in a reputation model.
example, accessing a medical database might require fiftyspo
The resource owner also definespaint value for each type
of credential, which denotes the number of points or credlits
requester obtains if a type of credential is disclosed. kanple, Previous work on the point-based trust management modgl [43
a valid ACM membership might have ten points. This mearfecused on the privacy protection of sensitive informatemd
that a user can disclose his or her ACM membership credentisisumes that the point value associated with each creldigpiga
in exchange for ten points. (This is called a trust managémeaf the requester has already been determined by the seRkr [4
model as opposed to an access control model, because Ithdoes not describe how point values are obtained or how to
resource owner does not know the identities or role assigtsnesystematically derive points corresponding to credesitidlhe
of requesters priori as in conventional access control settingsimechanism for determining the point value of a credential is
Each user defines sensitivity scordfor each of their creden- crucial to the applicability of the trust management modeid
tials. The sensitivity score represents the unwillingrtesdisclose needs to be formalized. In cases where the credential issuer
a credential. For example, Alice may give a sensitivity scof a requester is not previously recognized by the resourcesgwn
ten to her college ID, and give fifty to her credit card. Therusave need a protocol to compute an appropriate point value for
is granted access to a certain resource if the access thiteéshothe credential held by the requester. The credential-basest
met and all of the disclosed credentials are valid. Otherwtise model presented in Section Il answers this question. Utiieg
access is denied. From the requester’'s point of view, ongatendescribed methods, a resource owner computes the trusisvafu
guestion is how to fulfill the access threshold while disitigghe credential issuers and their roles. The resulting trusieshbre to
least amount of sensitive information. be used as point values of a resource owner in point-based tru
The credential selection problem in the point-based trugstanagement.
management model is to determine an optimal combination ofFor delegation credentials presented by a requester, aroeso
requester’s credentials to disclose to the resource owseh owner can use the trust model to compute the discounted trust
that the minimal amount of sensitive information is diseldsand value of the credential. The trust value can only be computed
the access threshold of the requested resource is satisfitebb exactly when the delegation credential is revealed. Howéhies
disclosed credentials. A private two-party dynamic pragrang information is private to the requester in the credentid&ct®on
protocol has been proposed to solve the credential satectmomputation in point-based trust management. To mitighi® t
problem [43]. problem, a resource owner can use an approximate trust value

B. Derivation of Point Values



during the credential selection computation, and then naake over her own personal presence data. The allowable answers a

justments when credentials are exchanged later. determined by querying Alice’s access system, which usggso
The credential-based trust model completes the desariptio in several ways.

an important aspect in point-based authorization. Nextgive 1) Advisors and Point-Based Decisionalice’s proxy chooses

a concrete application for point-based authorization tatmn- access decisions through a set of domain-specific entitibsdc

query systems. advisors. Each advisor provides input on possible decis&on
sponses based on its domain of expertise (e.g., reputatiopose
V. APPLICATIONS TOLOCATION QUERY SYSTEMS of the query, context of the exchange, value of the requekit).

These inputs are then aggregated to determine the overatlead

Privacy is an_important concern in system_s that USE€ Presentsbut a possible response. The idea is to provide a flexibtdme
and other real-time user data. Presence provides gredy, iilt anism that more accurately represents a user’s decisiaegso

also has the potential for abuse. Managing security ancGgyiv Our credential-based trust model and point-based autitiie

preferences n thesg systems can .be complex. Qne approac@arr? be used to implement a flexible advisor system. For this
protect the privacy is to apply distributed anonymity altuns example, we focus just on reputation, but the point-basedefno

to sensor n(_etv_vorks [1.7]’ [18]. Another type of squUon_s % tean generally be applied to a number of these domain-specific

augment existing routing protocols to enhance sourceditota problems

privacy in ser;150r anq c.onventllorllal networks [21,]’ l£I34]f - Alice’s proxy contains her policies and preferences, idirlg
However, these existing solutions are not suitable for rséve o st values of credentials that may be used for auttediun.

types of apphca(t;opj. In many scen?rlo(sszléch as;) |9%jl OLﬂZd'ﬁlice also defines the precision associated with certairsttru
emergency, road-side emergency of a SF>-enabled vet + Qalues. For example, if the trust value of the query issuer is
police enforcement agents, the location information of kjesit twenty, then she might release her location informatiorcebyalf

IS crmcal,_ an_d S_hOU|d not be h_|dden Oor anonymous. AI_SO f%e trust value is five, then she might releagazzy interpretation
example, in distributed collaboration applications susiigeting of her location, for example, the building or city where she

Ce”ntgal [41], ‘?e'gg ‘?blsl to share presence information ustéd is currently. Phrased more concretely, if Alice’s closestnd,
collaborators is desirable. Bob, queries about her location, a precise answer is reduife

_ Generally, sharing presence information implies shareWss  , gyanger queries her location, nothing about Alice shduld
tive personal data such as computer activity, physicatiosalM  jis j0sed

SFatUS' phone use,.and other. real-time _attrlbutes as.edomt.h a The reputation advisor computes the trust value of eachyquer
given user. Managing the privacy of this data requires camu issuer, based on their credential information. The trustievas

the users preferences and concerns, which are typicalite qunen compared to Alice’s policies, and the correspondirgtion
individualistic. Some users feel comfortable sharing aesspnal result is returned. The advisors reside in Alice’s proxyt isaa
details, but most want at least some control over what 'Se‘hartamper-resistant system in order to prevent the leakingivéie

and with w.hom. ) . trust values. Note that this model makes it easy to use ths tru
We are interested in how to manage access to private PrGSiue not just in deciding what to share, but in determining t

ence information in a way that makes users feel that th%gstem’s confidence that the right decision is made. A highttr

preferences are met. In this section, we describe how poily e represents high confidence and can be executed without

based authorization can be used as a key component for 8exifilnering Alice. A low trust value represents low confideiite
privacy management in presence systems. The point-basstl tf yeision, and if low enough, may warrant interrupting Alic
.man.age.ment IS |n.tU|t|ve.enougi_1 .to let the user understaed f§ check that the right decision is being made for her. This
implications of their sharing decisions. confidence metric is then fed back into the system for use the

next time a similar query from the same entity arrives, aretus
A. A Location-Query Service to provide an aggregate sense of past confidence.

As an application of point-based trust management, we haye ©F location-query systems, the main advantages of usimg-po
started to prototype a presence system that applies pantsPgSed rust management as opposed to conventional acogss co
access control. A presence system can provide a service trlpgﬁhanlsms. are the flexibility of making access controlsiens
runs on behalf of each user, acting as that user’s alwaylflaennlv‘”t an. arbltrary. degree Of, precision and the ab',l'ty to eri
proxy. Through this proxy, the user has ultimate control roysome 5|.mple notion of confidence. In order to ach|ev§ the same
all their associated data. The proxy is resolvable basedhen FXPressiveness, a boolean-based access control polidy \beu_
user's identity, and can expose services that can be quby’edvery |_neff_|C|ent, as one ne_eds to enumerate all of the passibl
other entities in the system. One such service providespees COMpinations of authorizations.
querying.

Entities in the system can pose questions to Alice’s prokg li VI. RELATED WORK
where is Alice nowhis is handled by Alice’s presence service, Secure Multi-party Computation (SMC) was introduced in a
which must first find valid answers to the question, and theseminal paper by Yao [42], which contained a scheme for secur
determine which answers, and to what degree of specificity, wcomparison. Suppose Alice (with inpu) and Bob (with input
be returned. The answers are generated by interpretingimeal b) desire to determine whether or net< b without revealing
presence data (GPS coordinates, keyboard and mouse yactigty information other than this result (this is known ¥&o0'’s
current calendar appointments, etc.) associated witreAlich  Millionaire Problem). More generally, SMC allows Alice and
may be captured from arbitrary locations but which flows exBob with respective private inputsandb to compute a function
clusively into her proxy, thereby giving Alice ultimate &otity f(a,b) by engaging in a secure protocol for public functign



Furthermore, the protocol is private in that it reveals nditahal

10

weighted average. For example, the ordered-weightecgeenp-

information. This means that Alice (resp. Bob) learns naghi erator allows the user to weight the input values in relatiotheir

other than what can be deduced fram(resp.b) and f(a,b).

relative ordering [40]. Another promising direction is tesign

Elegant general schemes are given in [5], [8], [15], [16] foprivate multi-party protocols for other desirable functdities in

computing any functiory privately.

a trust model. For example, an entity wants to find out who else

Besides the generic work in the area of SMC, there hasthe system has a similar profile of trust values as his oother
been extensive work on the privacy-preserving computatibn — other entities who have similar likes and dislikes. Thebpem

various functions. For example, computational geometly[1D],
privacy-preserving computational biology [3], and prevdivo-

becomes how to privately compute the distance between two se
of trust values according to certain metrics. As part of feitu

party dynamic programming for the knapsack problem [43Jvorks, we also plan to evaluate the effectiveness of crélent

Compared to existing private scalar product protocols [14],

based trust model in answering fuzzy location queries. This

[38], our protocol is designed for general privacy-presegv experimentation involves an implementation of the poiasdd
distributed scalar product computation, where vector eslare authorization model, the weighted scalar protocol contpmria
distributed among multiple players. The protocol has peamgi and the comparison tests with conventional trust models.

applications in the information discovery of reputatiorstgyns.
Our security is efficient, and is comparable to the private-tw
party scalar product of Goethalgh al. [14].

Recently, there are also solutions for privacy-presenantp-
mated trouble-shooting [19], privacy-preserving disttéadl data
mining [20], private set operations [12], [22], and equatitsts
[26]. We do not enumerate other private multi-party compoita
work as their approaches are significantly different fromsou

There has been much work on the privacy-awareness for ubig-
uitous computing environments [17], [21], [24], [33]. Anisting (3]
approach to protect the location-privacy in sensor nete/dsk
through distributed anonymity algorithms that are appliad [4]
a sensor network, before service providers gain accesseto th
data [17]. Another category of solutions is to augment @gst
routing protocols to enhance source-location privacy insee
and conventional networks [21], [34]. A more fine-grained ap
proach for managing the access to location data is based on
privacy-policies [24], [33], which is closer to our solutioUsing [6]
point-based authorization, we are able to support morebflexi
trust establishment mechanism without rigid boolean-tbasdicy
specifications.

Our trust model work is related to the existing work on rec-
ommendation or reputation systems in decentralized mofgls
[23]. Trust evidences that are generated by recommendatind
past experiences have been used for trust establishmeoithimd-
hoc and ubiquitous computing environments [11], [31], [3&]jis
type of trust evidence is flexible and straightforward tolesl
The notion of uncheatable reputation was proposed in recerkt [10]
by Carbunar and Sion [7], who developed a reputation meshani
that prevents untruthful reputation information usingneises. [11]
In comparison, the main property of our trust model is the use
of role-based organizational infrastructure to derivesttvalues, [12]
which aims to improve the scalability of trust computation.

(1]

(2]

(5]

(7]
(8]

El

VII. CONCLUSIONS ANDFUTURE WORK (23]

In this paper, we have developed a general protocol for gyiva
preserving multi-party scalar product computation. Thistgcol
can be used for peers to jointly compute a weighted trustescor
from private recommendations argtivate weights. We have also
presented a simple credential-based trust model for eiadua [15]
trustworthiness based on role and delegation credentéaid, [16]
recommendations. Finally, we have described the architecif a
location-query system for giving fuzzy location infornmtibased
on the trust score of a requester.

There are several interesting areas to explore for futunk.wo
One is to evaluate other types of trust computation besides
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