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Abstract

In ubiquitous computing environment, computing de-
vices may have small storage units and limited bandwidths.
A trust management system needs to be efficient in order
to keep communication and computation costs low. The
trust establishment mechanism needs to be flexible, because
credentials are usually scattered atdistributed locations.
Also, the authorization process needs to be decentralized
and support dynamic resource-sharing in order to handle
emergency situations. We discuss how to improve the effi-
ciency, flexibility, and privacy of role-based cascaded dele-
gations in a ubiquitous computing environment. Operations
for managing delegation chains in the role-based cascaded
delegation (RBCD) model are presented. These operations
significantly improve the performance of the decentralized
delegation in the RBCD model, without increasing the man-
agement overhead.

Keywords: Cascaded delegation, Decentralized trust man-
agement, Ubiquitous computing

1 Introduction

Trust management systems provide access control in en-
vironments where initially unknown entities from different
administrative domains interact and establish trust through
mutually trusted parties. A number of trust management
models have been proposed [4, 5, 7, 14, 15, 18, 20, 23,
24, 25]. Role-based decentralized trust models [18, 24]
combine trust management with role-based access control
(RBAC) [21]. In these models, privileges can be delegated
to roles, and therefore delegation is efficient and scalable.

In a ubiquitous computing environment, computing de-
vices may have small storage units and limited bandwidth.
A trust management system needs to be efficient in order
to keep communication and computation costs low. The

trust establishment mechanism needs to be flexible because
credentials are scattered at distributed locations. Most im-
portantly, the authorization process needs to be decentral-
ized and support dynamic resource-sharing in order to han-
dle emergency situations. Role-based cascaded delegation
(RBCD) [24] is a delegation model that facilitates large-
scale dynamic resource-sharing in decentralized and per-
vasive environments, and is suitable for tasks where coali-
tions are dynamically formed by role members from differ-
ent administrative domains. In this paper, we present sev-
eral credential and trust management techniques that further
improve the efficiency and flexibility of delegation transac-
tions in the RBCD model for ubiquitous computing envi-
ronments.

An interesting research topic is how to facilitate ubiqui-
tous access while protecting the user’s privacy. In particu-
lar, the physical presence of a user while accessing certain
resources may be sensitive information that the user does
not want to disclose. In this paper, we describe how cryp-
tographic schemes can be utilized to protect the user’s pri-
vacy in role-based access control models, such as RBCD,
for ubiquitous computing environments. We describe the
RBCD model next, and then summarize our contributions.

1.1 Role-Based Cascaded Delegation

The delegation-based access control model [4] sup-
ports decentralized authorization through delegations. The
RBCD model [24] generalizes this concept to role-based ac-
cess control. It supports decentralized role-based delegation
by allowing individual role members to delegate privileges
associated with their roles to others, without the participa-
tion of the administrator.

The RBCD protocol [24] comprises four operations:
INITIATE , EXTEND, PROVE, and VERIFY [24]. The INITI -
ATE and EXTEND operations are used by a resource owner
and an intermediate delegator, respectively, to delegate a



privilege to a role. The PROVE operation is used by a re-
quester to produce a proof of a delegation chain that con-
nects the resource owner with the requester. The VERIFY

operation decides whether the requester is granted access
based on the proof. Delegation credentials in RBCD are
accumulated at each delegation transaction and form a del-
egation chain. A delegation chain represents how trust or a
delegated privilege is transferred from one role to another. It
contains a sequence of delegation credentials that connects
unknown entities and resource owners. For example, a user
with role managerat Central Bank issues a delegation cre-
dentialC1 to roleclerk at a state bank to authorize the right
of accessing a documentdoc. A member of roleclerk at
the state bank delegates this right to a role at a county bank
by issuing another delegation credentialC2. CredentialsC1

andC2 form a delegation chain connecting the role at the
county bank with the Central Bank. An efficient RBCD
protocol [24] with compact delegation credentials can be
realized based on an aggregate signature scheme [10].

1.2 Requirements in Ubiquitous Computing

A decentralized trust management system in a ubiquitous
computing environment should efficiently handle dynamic
access control situations, such as an emergency room (ER)
scenario. Suppose that during an operation on a patient,
doctors find that the help of experts from several other or-
ganizations are urgently needed. These experts need to be
given temporary access to resources such as the medical
records of the patient, in order for them to make medical
decisions. Issuing authorizations through regular adminis-
trative channels may not be as fast as needed. The exist-
ing RBCD model is particularly suitable for this dynamic
delegation scenario because doctors can issue delegations
based on their credentials, without the administrator’s par-
ticipation. However, in RBCD, if a doctor wants to delegate
privileges associated with several credentials (e.g., doctor
role credential, ER access credential and medical consor-
tium membership credential), he has to generate a separate
delegation certificate for each of these credentials. Further-
more, the doctor has to repeat this delegation process for
each of the roles that will receive the delegations. There-
fore, delegation efficiency in RBCD needs to be further im-
proved for a better performance in dynamic and emergency
access control situations in a ubiquitous computing environ-
ment.

The role-based credential accumulation approach of
RBCD avoids the need for the dynamic credential chain
discovery, which may be potentially costly in terms of com-
munication overhead. However, the ability to dynamically
construct delegation chains is important for a flexible dele-
gation model. This prompts us to investigate the possibility
of integrating the credential chain discovery model with the

RBCD model. Such an integrated model can support more
flexible trust establishment than the RBCD model alone.
However, there are several security and performance con-
siderations for such an integrated model. A resource owner
should be able to control the availability of its delegations
to the credential discovery, because delegation chains con-
structed by discovery algorithms may give authorizations to
a large number of unknown users. In addition, communi-
cation costs need to be considered in the credential chain
discovery for better performance in ubiquitous computing.
We extend the RBCD model [24] to include the support of
credential chain discovery algorithms. The contributionsof
this paper are summarized next.

1.3 Our contributions

In this paper, we present several techniques to improve
the efficiency and flexibility of role-based cascaded delega-
tion in ubiquitous computing environments. Our contribu-
tions are summarized as follows.

1. We support the use of delegation predicates and con-
straints in the RBCD language model. Using these
specifications, the scope of delegation recipients can
be flexibly adjusted. In Section 2, we describe our
language model, which supports predicates and con-
straints. We describe in Section 4 how constraints
are specified in a delegation transaction and the algo-
rithm for verifying a delegation chain with constraints.
Delegation constraints in decentralized role-based trust
management systems such as RBCD can fine-tune the
delegation scope. We show in Section 6 that delega-
tion constraints improve the security of resources dur-
ing the credential chain discovery by specifying how a
delegated privilege is propagated.

2. In ubiquitous computing environments, delegations
usually take place on small devices that have low com-
putation power. To improve the delegation efficiency
of RBCD, we present a method that reduces the work-
load of a delegator in the case where there are multiple
recipient roles and multiple delegation chains to ex-
tend. In Section 5, we describe a new operation of the
RBCD protocol that reduces the number of credentials
generated by a delegator fromn×m to n+m, wheren
delegation chains are to be extended tom roles. This
is achieved through the use of local roles. An inter-
mediate delegator only needs to performn EXTEND

operations andm INITIATE operations, as opposed to
n × m EXTEND operations in the original RBCD pro-
tocol [24]. Merged credentials can be easilysplit back
into individual credential chains. This flexibility of
manipulating credentials allows an intermediate dele-
gator to extend multiple delegation chains or a portion



of merged privileges.

3. We show in Section 6 how to improve the flexibility of
the trust establishment mechanism in RBCD, by dy-
namically constructing longer delegation chains from
RBCD credentials distributed across the network. We
present thecombined RBCD(cRBCD) protocol to ef-
ficiently retrieve distributed credentials. The cRBCD
model has several advantages. The use of RBCD cre-
dentials partially reduces communication and compu-
tation costs, because portions of delegation chain are
already captured in RBCD delegation credentials. The
credential chain discovery allows the credential hold-
ers to establish trust with a larger number of resources
through the discovery. To achieve a tighter security and
better performance, we also modify the existing cre-
dential chain discovery algorithm. Our cRBCD model
improves the protection of shared resources by allow-
ing resource owners to specify attribute constraints that
fine-tune the scope of delegations. The resource own-
ers are given more control power over how discovered
delegation credentials are used for the trust establish-
ment of shared resources.

We also discuss in Section 7 how to utilize cryptographic
schemes to protect the user’s privacy in role-based access
control models for ubiquitous computing environments.

1.4 Organization of the paper

The rest of this paper is organized as follows. Defini-
tions and our language model are given in Section 2. In
Section 3, we give an example to illustrate the decentral-
ized authorization feature of RBCD in an ubiquitous com-
puting environment. In Section 4, we describe how attribute
constraints of a delegation chain are specified and verified
in RBCD, which is used in the following sections. Then,
the mergeRBCD (mRBCD) protocol is presented in Sec-
tion 5. We describe how the credential chain discovery is
combined with RBCD in Section 6. Section 7 discusses
how the user privacy of RBAC models including the role-
based cascaded delegation model can be protected using
existing anonymous authentication techniques. The related
work and conclusions are given in Section 8 and 9, respec-
tively.

2 Terminology and language model

As in the original RBCD model [24], we define anentity
to be either an organization or an individual. An entity may
issue credentials and make requests. Also, an entity may
have one or more affiliated roles or delegated roles, which
are authenticated by credentials. Anaffiliated role creden-
tial is the credential for an affiliated role, and is signed by

the administrator of the role. Adelegation credentialis the
credential for proving a delegated privilege. Aprivilegecan
be role assignment(s) or action(s) on a resource. Anex-
tension credentialor extension certificateis generated and
signed by a delegator on delegation transaction information,
such as the identities of the delegator and delegatee, and the
delegated privilege. Acomplete delegation credentialin-
cludes a signature from a requester, extension credentials,
and role credentials. It authenticates a delegation chain of
a privilege connecting a resource owner with a requester.
A partial delegation credentialis a delegation credential is-
sued to a role. It cannot be used by an individual for proving
authorization, as it lacks the identity and role information of
the requester. In this paper, we use curly brackets (for exam-
ple{C}) to refer to a set of RBCD delegation credentials.

2.1 Language model

Roler administered by entityA is denoted asA.r, as in
the original RBCD model [24]. EntityA is the administra-
tor of roleA.r. A role defines a group of entities who are
members of this role. If an entityD has an affiliated role

A.r, her role credentialis denoted byA
A.r
−−→ D, which

indicates thatD is assigned roleA.r by the role administra-
tor A. Entity D can delegate roleA.r to a roleB.s (admin-
istered byB) by issuing anextension credential, which is

denoted byD
A.r
−−→ B.s. The above delegation means that

entityA delegates to roleB.s privileges that are associated
with role A.r and are controlled by entityA. It does not
automatically grantB.s the privileges that aredelegatedto
role A.r. Any memberE of role B.s can further delegate
roleA.r to a roleC.t (administered byC). The correspond-

ing extension credential is denoted byE
A.r
−−→ C.t.

We introduce attribute constraints to role and delega-
tion credentials. Attribute constraints are assigned in role
credentials by role administrators, or in delegation creden-
tials by delegators. For example, a resource owner spec-
ifies that the number of times a delegation privilege can
be further extended is at most two. We express attribute
constraints on the arrow of a delegation expression, e.g.,

A
A.r [attr=v]∗
−−−−−−−−−→ B.s, where * is a wildcard represent-

ing that there are zero or more attribute constraints follow-
ing A.r.

In our combined RBCD (cRBCD) model, we define
boolean attributeisPropagatableand all for delegation

transactions, e.g.,A
A.r [isPropagatable=v,all=v′]
−−−−−−−−−−−−−−−−−−−−→ B.s.

• isPropagatable: a boolean attribute assigned by a re-
source owner to specify whether or not the delegated
privilege (e.g.,A.r) also applies to those who aredel-
egatedthe recipient role (e.g.,B.s). If isPropagat-
able is true, those who aredelegatedthe recipient role



(e.g.,B.s) are also entitled to the privilege (e.g.,A.r).

For example, ifA
A.r [isPropagatable=true]
−−−−−−−−−−−−−−−−−→ B.s, and

B
B.s
−−→ C.t, then members of roleC.t are also mem-

bers ofA.r.

• all: a boolean attribute assigned by a resource owner
to specify whether or not the delegated privilege (e.g.,
A.r) also includes all the privileges that are delegated
to roleA.r. If all is set to true, then all the delegations
associated with roleA.r are also given to roleB.s. For

example, ifE
E.p
−−→ A.r andA

A.r [all=true]
−−−−−−−−−→ B.s,

then members ofB.s are also members ofE.p.

isPropagatableand all define whether discovered RBCD
credentials can be accepted by a resource owner. If a se-
quence of discovered delegation credentials form a dele-
gation chain connecting a resource owner with a requester,
then for this delegation chain to be accepted by the resource
owner, isPropagatablein the delegation certificate issued
by the resource owner must be true. In addition, the rest
of delegeation credentials must haveall set to true. Note
that a credential withisPropagatablebeing false can still be
extended by running EXTEND algorithm. We discuss the
security implications brought by these attributes in Section
7.

We introduce predicates for our language model to ex-
press requirements for attributes of a delegatee or a delega-
tion chain. Each predicate restricts the scope of delegation
recipients. For example, the ranking of a delegatee’s role
should be greater than or equal tosenior engineer. We ex-
press a predicate asP (attr, v), whereattr is the name of an
attribute of delegation recipients,v is a value, andP is an
evaluation function such as greater-than and less-than. A
predicate is evaluated to either true or false. It may spec-
ify a constraint based on a literal value, as in> (attr, 3),
or on the value of another attribute, as in> (attr1, attr2).
All predicates in a credential must be satisfied in order for
the credential to be valid. Predicates are written on the right

of delegation expression as inA
A.r
−−→ B.s [P (attr, v)∗],

where * is a wildcard and represents that there is zero or
more predicates followingB.s. Delegation predicates and
constraints are used throughout this paper. In Section 4, we
define how attribute constraints and predicates of a delega-
tion chain are specified and verified in RBCD.

3 Example scenarios

In this section, we give a dynamic resource-sharing ex-
ample to illustrate the decentralized delegation feature of
RBCD in ubiquitous computing.

In an ubiquitous computing environment, the access to
the medical refrigerator at a hospitalL is controlled. Bob

is a doctor at a hospitalL, and has the access to the refrig-
erator. He has the role certificate issued byL stored in his
hand-held device.

L
L.doctor
−−−−−−→ Bob (1)

Bob and his co-workers are joined by their collaborators
from a medical centerH in an emergency operation on a
patient. The collaborators are members of rolepoison ex-
pert atH , and they carry smart cards that store their digital
credentials including their role credentials, for example:

H
H.poisonexpert
−−−−−−−−−−−→ Adam (2)

The operation requires the experts to access the medi-
cal refrigerator in the clinic. In such an emergency situa-
tion, authorizations have to be issued fast, which may not
be accomplished through the regular administrative chan-
nel. RBCD supports decentralized role-based delegation by
allowing individual role members to delegate privileges as-
sociated with their roles to others, without the participation
of the administrator. Therefore, the authorization can be is-
sued much faster. Bob uses his hand-held device to create a
delegation credential (3) that includes his role credential (1)
and a delegation extension certificate signed with his private
key.

L
L.doctor
−−−−−−→ Bob

Bob
open the refrigerator
−−−−−−−−−−−−−−−→ H.poisonexpert (3)

In credential (3), the privilege of opening the refrigerator
is delegated by Bob to members of roleH.poisonexpert.
Bob’s role credential shows that he is allowed to delegate
privileges associated with doctors. This credential (3) is
submitted to the credential server ofL. When Adam, a
member ofH.poisonexpert, wants to access the refriger-
ator, he puts his smart card containing his role credential
(2) in a card reader. His role credential and the credential
(3) retrieved from the credential server ofL are verified, and
Adam’s access is granted.

This role-based authorization is established fast, because
it does not involve the role administrators of either organi-
zation. It is scalable because of the role abstraction. And
aggregate signature [10] and short signature [11] schemes
can be used to reduce the credential size to improve the
transmission efficiency.

If the role L.doctor receives delegations of other roles
from different organizations, Bob can extend these dele-
gations to his collaborators, too. In the case where there
are multiple collaborative roles and multiple delegations
to extend, the MERGE EXTENDoperation in our proposed
mRBCD protocol can significantly reduce the computation
overhead of the delegator.



In a ubiquitous computing environment, delegation cre-
dentials are scattered across the network at distributed stor-
age locations. We improve the existing credential chain dis-
covery algorithm [19] and present a cRBCD protocol to ef-
ficiently retrieve distributed credentials. cRBCD also al-
lows resource owners to specify how their delegations are
extended, by using delegation predicates and constraints.

In our models, the public-key of the recipient’s role ad-
ministrator is needed for identifying the role in a delegation
certificate. For example, to issue credential (3), Bob needs
the public-key of the role administrator in HospitalH . We
assume that Bob obtains the public-key from a public direc-
tory, and verifies the validity and authenticity of the key.

In the following sections, we first define algorithms for
specifying and verifying predicates and constraints in role-
based cascaded delegation, then mRBCD protocol and cR-
BCD protocol are presented, respectively.

4 Predicates and constraints in RBCD

In this section, we describe the operations that specify
and verify the attribute constraints and predicates of a del-
egation chain, which are used to fine-tune the scope of a
delegation chain. We will see in Section 6 the impact of
delegation constraints on the propagation of a delegated per-
mission and as a consequence on the number of delegatees
in RBCD.

Predicates and constraints are specified on the delegation
certification issued by a delegator at the delegation transac-
tion. For example, the resource owner specifies that only
members of roledoctorwith a ranking at leastD2 at a hos-
pital can access a medical database. Role attributes are also
specified in affiliated role credentials by role administrators.
This predicate has two impacts to the delegation: only those
role members who satisfy this predicate (1) can access the
database, and (2) can generatevalid delegation extensions
of this privilege to others. The latter means that delega-
tion credentials issued by those who have lower rankings
are invalid and cannot be accepted by resource owners at
the verification. For a delegation chain to be valid, all the
predicates and constraints have to be satisfied at verifica-
tion. Because of the decentralized nature of the delegation
model, role members with lower ranks are not prevented
from issuing delegation extensions. However, at the verifi-
cation, delegation chains that contain credentials issuedby
these unauthorized role members will not be accepted by
a resource owner, and thus the delegation constraints and
predicates are enforced.

In our protocol definitions, we usePredto denote a pred-
icate, andConsto denote an constraint. All specified pred-
icates with respect to every delegation transaction must be
satisfied in order for the delegation chain to be valid.

Our role-based cascaded delegation protocol support-
ing constraints has four operations:INITIATE , EXTEND,
PROVE, andVERIFY. We define them below.

• INITIATE (PD0
, sD0

, D0.priv, A1.r1,
PA1

, [Cons]∗, [Pred]∗): This operation is run by the
administratorD0 of a privilegeD0.priv to delegate
D0.priv to an affiliated roleA1.r1. This operation
initiates a delegation chain for privilegeD0.priv. It
is similar to INITIATE operation of the original RBCD
protocol in [24]. The difference is that here a delegator
is allowed to specify predicates and constraints to
refine delegation scope in the credential.

Inputs include public keyPD0
of entity D0, cor-

responding private keysD0
, delegated privilege

D0.priv, role nameA1.r1, public keyPA1
of role ad-

ministratorA1, and zero or more constraints[Cons]∗
for the transaction and predicates[Pred]∗ for delega-
tees. Output is a partial delegation credentialC1 for
the roleA1.r1, represented as

D0
D0.priv [Cons]∗
−−−−−−−−−−−→ A1.r1[Pred] ∗ .

The statement ofC1 has the information about the del-
egation transaction, including public keyPD0

, privi-
lege D0.priv, information about roleA1.r1 such as
name and public key of administratorA1, and dele-
gation constraints and predicates. The certificate is
signed using private keysD0

.

This operation is also used by a role administratorA1

to generate an affiliated role certificate for a member
D1, if the second to the last argument is a public key of
D1. The role credential is expressed as follows, where
[Cons]* is where role attributes of an individual are
specified in the affiliated role certificate.

D0
D0.priv [Cons]∗
−−−−−−−−−−−→ D1[Pred] ∗ .

• EXTEND(sDn
, D0.priv, Cn, RDn

, An+1.rn+1,
PAn+1

, [Cons]∗, [Pred]∗):

This operation is run by an intermediate delegator
Dn to extend delegated privilegeD0.priv to role
An+1.rn+1. In role-based cascaded delegation, entity
Dn needs to prove to be a member of a roleAn that has
already been delegatedD0.priv. This operation differs
from theEXTEND of the original RBCD model [24] in
that the credentialCn+1 issued by the delegatorDn

needs to prove the satisfications of all the predicates
associated withDn’s roleAn.rn in Cn.

Inputs to this operation are private keysDn
of dele-

gator Dn, delegated privilegeD0.priv, partial dele-
gation credentialCn that gives privilegeD0.priv to



roleAn.rn, role credentialRDn
of delegatorDn, role

nameAn+1.rn+1, public keyPAn+1
of role admin-

istratorAn+1, and constraints[Cons]∗ and predicates
[Pred]∗ specified by delegatorDn. CredentialCn is
retrieved from a credential server. The partial delega-
tion credentialCn is a function of the preceding exten-
sion credential and role credentials with predicates and
constraints.

An extension credential denoted by

(Dn
D0.priv [Consn]∗
−−−−−−−−−−−→ An+1.rn+1 [Predn]∗) is

generated as an intermediate product of operation
EXTEND. Its statement contains information about
delegated privilegeD0.priv, role An+1.rn+1, and
predicates and attribute specifications. It is signed with
private keysDn

. The final output of this operation
is a partial delegation credentialCn+1, which is a
function of the credentialCn, the role credentialRDn

denoted by(An

An.rn [Cons′
n
]∗

−−−−−−−−−−→ Dn [Predn]∗), and
the extension credential described above.

CredentialCn+1 may simply be the delegation creden-
tial Cn together with the two individual credentials.
Alternatively,Dn can compute a delegation credential
for the roleAn+1.rn+1 as in the original role-based
cascaded delegation implementation [24] using aggre-
gate signatures [10]. CredentialCn+1 is placed on a
credential server.

• PROVE(sDn
, D0.priv, RDn

, Cn):

THis operation is performed by a requesterDn who
wants to exercise privilegeD0.priv. Dn is an affiliated
member of roleAn.rn. The operation produces a proof
F , which contains delegation statements and corre-
sponding signatures for verification. The private key
sDn

is for proving the authenticity of public keyPDn

that appears on role credentialRDn
of the requester.

RDn
and partial delegation credentialCn together are

to prove thatDn is authorized privilegeD0.priv.

• VERIFY(F ):

This operation is performed by resource ownerD0 to
verify that proofF produced by requesterDn cor-
rectly authenticates the delegation chain of privilege
D0.priv. It is similar to VERIFY in [24], but needs
extra work in order to check all the predicates in cre-
dentials are satisfied. This is done by evaluating pred-
icates with values of attributes, which may come from
constraint statements[Cons] specified on role creden-
tials in F . Specifically, the verifier checks whether
the signatures inF correctly authenticates the del-
egation chain. This includes the authentication of

each delegation extension(Di−1
D0.priv [Consi−1]∗
−−−−−−−−−−−−−→

Ai.ri [Predi−1]∗), and entityDi’s affiliated role mem-

bership (Ai

Ai.ri [Cons′
i
]∗

−−−−−−−−−→ Di [Pred′i]∗), for all i ∈
[1, n]. F also contains the proof of possession of pri-
vate keysDn

that corresponds to public keyPDn
. Dn

is grantedD0.priv if the verification is successful, and
denied if otherwise.

In general, delegation constraints and predicates are for
issuing fine-grained delegation credentials. We show in
Section 6 an interesting application of constraints where
they are used to control how credential chain discovery
propagates delegated privileges and restrict the scope of
resource-sharing.

Note that there are two types of delegation constraints
depending on their semantics. One type of constraints
should be enforced throughout a delegation chain. For ex-
ample, the constraint on the length of a delegation chain.
The other type is effective with respect to an individual del-
egation transaction, rather than the entire chain. For exam-
ple, the role ranking of a delegatee. Distinguishing them
depends on the semantics of attributes defined by applica-
tions, and is out of the scope of this paper.
Security The RBCD protocols in this and the two subse-
quent sections can be implemented using any valid signa-
ture schemes. The security of the protocols is based on the
unforgeability of signature scheme used to sign credentials.
We allow adversaries to observe the traffic on the network.
They can also participate delegation processes, that is, an
adversary may be a valid member of a role who can issue
delegations and submit access requests. In our RBCD pro-
tocols, an adversary cannot successfully submit access re-
quests on behalf of others, in particular, in the name of other
role members. Similarly, an adversary cannot successfully
issue delegations on behalf of others, even if she obtains
another entityE’s role credential and delegation credentials
issued toE. This is because an adversary cannot forge a
valid signature ofE. Our protocols are secure against replay
attacks, because it is infeasible for an adversary to forge a
valid signature on a verifier-chosen nonce signed with other
member’s private key. These imply that an adversary cannot
obtain or delegate privileges that are not authorized to them.
As described in [24], the RBCD protocol implemented with
aggregate signatures [10] has a compact representation of
credentials. In the next section, we present a method that
can effectively reduces the number of delegation credentials
to be issued.

5 Merging delegation chains

In ubiquitous computing, delegators may use small de-
vices that have low computation power. To improve the
delegation efficiency of RBCD, we present a method that
reduces the workload of a delegator in the case where there



are multiple recipient roles and multiple delegation chains
to extend. We introduce a new operation MERGE EXTEND

which is run by a delegatorD as follows. D first creates
a new local role, for example,D.local, and extends each
of his delegation credentials to roleD.local. This gives a
credential set{C}. ThenD delegates roleD.local to del-
egatees, by initiating a new delegation chain. Set{C} and
the credential for the new delegation chain are issued to the
delegatees. We refer this role-based delegation protocol as
the mergeRBCD (mRBCD) protocol. Details of the mR-
BCD protocol with MERGE EXTENDoperation are defined
next.

5.1 mRBCD protocol

The mRBCD protocol has five operations: INITIATE ,
EXTEND, MERGE EXTEND, PROVE, and VERIFY. Oper-
ation MERGE EXTEND is the new operation that handles
the mergingof delegation chains. All operations support
the use of delegation constraints and predicates.

• INITIATE (PD0
, sD0

, D0.priv, A1.r1,
PA1

, [Cons]∗, [Pred]∗):

This operation is the same as in Section 4.

• EXTEND(sDn
, D0.priv, Cn , RDn

, An+1.rn+1,
PAn+1

, [Cons]∗, [Pred]∗):

This operation is the same as in Section 4.

• MERGE EXTEND(sD, RD, {C}, A.r, PA, [Cons]∗,
[Pred]∗):

This algorithm is run by an entityD to delegate priv-
ileges associated with a set of credentials{C} to role
A.r. The inputs include private keysD of entity D,
a role credentialRD of D, a set of credentials{C}
that are issued to the role ofD, a delegation recipients’
roleA.r, public keyPA of role administratorA of role
A.r, and constraints[Cons]∗ and predicates[Pred]∗ of
attributes.

DelegatorD first locally creates a new roleD.local.
For each credentialCj ∈ {C}, D extends the dele-
gated privilegeprivj in Cj to the new roleD.local by
running EXTEND(sD, privj , Cj , RD, A.r, PA, null,
null) method above. (Two null arguments represent
that no constraints and predicates are defined.) EX-
TEND returns a credentialC′

j that delegates privilege
privj to roleD.local. The set of credentials returned
by EXTEND operations is denoted as{C′}. Next,
delegatorD initiates an intermediate delegation chain
that delegates roleD.local to role A.r, by running
INITIATE (PD, sD, D.local, A.r, PA, [Cons]∗, [Pred]∗)
algorithm to generate a delegation credentialCr. Cr

corresponds to a delegation chain for roleD.local,

which is called anintermediate delegation chain. The
outputs of this operation are credential set{C} and
credentialCr, which together are delegation creden-
tials for members of roleA.r.

• PROVE(sE , V.priv, RE , {C′}):

This algorithm is run by a requesterE with role cre-
dentialRE , who wants to access the privilegeV.priv

controlled by a resource ownerV . Its main difference
from PROVE of the original RBCD protocol [24] is
that a proof produced by this algorithm may be con-
structed from two or more delegation chains, as a result
of MERGE EXTENDoperations.

Inputs to this operation are private keysE of entityE,
role credentialRE , and a set of delegation credentials
{C′} that collectively form a delegation path between
the resource owner and the requesterE. {C′} contains
one delegation chain initiated by resource owner, and
zero or more intermediate delegation chains initiated
by intermediate delegators1. The operation produces
a proofF that proves: (1) the role ofE is delegated
privilegeV.priv, (2) E is a valid role member, and (3)
E can authenticate his public key.

• VERIFY(F ):

This operation is performed by a resource ownerV on
proof F , which is submitted by a requester. If proof
F does not involve any local roles, i.e. none of delega-
tion certificates inF is generated by MERGE EXTEND,
then VERIFY algorithm of the original RBCD protocol
[24] is called. Otherwise,V authenticates proofF as
follows.

V first verifies delegation credentialsC1, . . . , Cn in F ,
each of them representing a delegation chain. Role
and extension credentials that constitute each delega-
tion chain are verified, and the satisfactions of all del-
egation predicates are checked. Then, the correctlink-
agesbetween delegation chains are verified. That is,F

should contain the proof of the following: (1) creden-
tial C1 is issued by resource ownerV , delegated privi-
lege inC1 is the requested privilege, and credentialCn

is issued to requesterE’s role; (2) for i ∈ [2, n], the
delegated privilege inCi is the last role (a local role)
that receives delegation in credentialCi−1; (3) for Ci

wherei ∈ [2, n], the original delegator is a valid mem-
ber of the second to last role that receives delegation
in credentialCi−1 (for example in Figure 1, Alice is a
member ofA.doctor). Finally, the proofF also allows
the resource owner to verify the role membership and
the public key of the requester.

1The number of intermediate delegation chains equals the number of
times operation MERGE EXTENDis run.
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Figure 1. An example of a delegation credential generated by the MERGE EXTEND. Alice is a member
of role A.doctorat hospital A. The role A.doctor is delegated the role C.guest, M.member, and P.consultant
by organization C, M , and P , respectively. Alice extends these three delegations to ro le H1.expert
at hospital H1, through a local role Alice.local that she creates. The local role is delegated to role
H1.expert. The picture shows the components of the delegation credent ial received by role H1.expert.

An example of a delegation credential generated by the
MERGE EXTENDoperation is shown in Figure 1.

5.2 Efficiency Improvement

The MERGE EXTENDoperation reduces the workload of
a delegator in the case wheren delegation chains are to be
extended tom roles. The number of credentials needed to
be generated by the delegator is reduced fromn × m to
n + m. An intermediate delegator only needs to perform
n EXTEND operations andm INITIATE operations, as op-
posed ton × m EXTEND operations in the original RBCD
protocol [24]. This improvement significantly saves the
computation time of intermediate delegators that are typi-
cally individual users in our model. The mRBCD proto-
col can efficiently issue authorizations to a large number of
entities without the involvement of administrators. This is
important for forming large-scale dynamic collaborationsin
emergency medical situations.

The MERGE EXTENDoperation does not introduce any
management overhead. It can be implemented using data
structures such as a linked list. Each RBCD credential is a
linked list of individual certificates. MERGE EXTEND op-
eration first links multiple linked lists that correspond to
multiple RBCD credentials, and then extends the resulting
linked list by appending new certificates from the interme-
diate delegator. Merged credential can also be easily recon-
structed into individual delegation credentials, which isuse-
ful when the holder of the credential only wants to extend
part of the delegated privileges to others.

Next, we describe an approach that improves the flexi-
bility of role-based cascaded delegation in distributed envi-
ronment.

6 Credential chain discovery in RBCD

The role-based credential accumulation approach of
RBCD avoids the need for the dynamic credential chain dis-
covery [19], which may be potentially costly in terms of the
communication overhead. However, the ability to construct
dynamic delegation chain is important for a decentralized
delegation model. This is particularly crucial in a ubiqui-
tous computing environment, where the trust establishment
mechanism among unknown entities takes places frequently
and thus needs to be flexible. In order to improve the flex-
ibility of the RBCD model, we propose an integrated ap-
proach that combines credential chain discovery with the
RBCD protocol. When performing a verification, the cre-
dential chain discovery algorithm is used to collect RBCD
credentials to construct a longer delegation path. Through
the longer delegation path, the trust between the requester
and resource owner can be established, while this may not
be possible through individual RBCD credentials alone. An
example is shown in Figure 2. Compared to constructing
delegation chains from single credentials as in the existing
credential discovery framework [19], using RBCD creden-
tials as building blocks can greatly reduce the costs asso-
ciated with the discovery process. We call this integrated
model as thecombinedRBCD (cRBCD).

6.1 Discovery algorithm

We have modified the credential chain discovery algo-
rithm by Li, Mitchell, and Winsborough [19] to improve the
performance of discovery process and the security of shared
resources. First, we do not require credential servers of in-
termediate delegators to relay credential query results from
one server to another. They only need to response to creden-



Figure 2. A delegation chain consists of Alice’s credential
(II) and credential (I), which is retrieved by the credentia l
chain discovery. (I) states that a member of C.guestis also
a member of O.member. Because isPropagatableis true in cre-
dential (I) and all is true in credential (II), the delegated privi-
lege O.membercan be propagated to those who are delegated
role C.guest. Alice is delegated role C.guestin credential (II),
where all indicates privileges delegated to C.guestare also
authorized to A.doctor. Therefore, Alice is authorized the
role O.member.

tial queries submitted by a requester or a resource owner.
Second, an original delegator is able to specifyisPropagat-
able andall attributes to control how delegated privileges
are used in constructing valid delegation chains. These at-
tributes improve the delegation granularity of the discovery
algorithm, and can effectively control the scope of delega-
tion recipients. We further explore the security implications
of this constraint in Section 7.

Next, we give a breath-first delegation chain discovery
algorithm that is run by a requesterE. It takes an initial
set of E’s credentials{C} and a target privilegeV.priv,
and outputs a set of delegation credentials{C′} that col-
lectively authorizesV.priv to the requesterE by resource
ownerV . The algorithm assumes that credentials are stored
by delegation receivers (or their credential servers). LetX

be a global setX for storing discovered credentials.
Discover({C}, V.priv):

1. For each delegation credentialCi in {C}, let theorigi-
nal delegatorbeOi and the delegated privilege be role
Oi.ri. RequesterE queries the credential server of del-
egatorOi to retrieve any credential atOi that are issued
to roleOi.ri.

2. If nothing is retrieved by any of theOi’s servers, then
the algorithm returns an empty set since there are no
valid delegation chains connectingE’s roles.

3. Otherwise,E adds delegation credentials{C} to set
X . For each delegation credential returned by theOi’s
servers,E checks if the delegated privilege isV.priv.

• If yes, then a delegation chain is successfully
discovered. Denote the credential that delegates
privilegeV.priv asC0. FromC0 and credentials
in X , E constructs a delegation chain connect-
ing himself and the resource ownerV . This can
be done by iteratively finding the delegation cre-
dentialCi ∈ X whose delegated privilege is the
same as the last role that receives the delegation
in credentialCi−1. The iteration terminates when
the last role that receives the delegation inCi is
one of the requesterE’s. Credentials in the dele-
gation chain are returned.

• If there is no credential returned byOi’s server
delegates the privilegeV.priv, requesterE resets
{C} to be the delegation credentials retrieved
from Oi’s servers, and repeats the discovery pro-
cess by runningDiscover({C}, V.priv).

The algorithm can also be run by the resource ownerV .
The algorithm run by a requester is likely to perform better,
because it processes a smaller number of credentials. Next,
we present the cRBCD protocol that makes use of the dis-
covery algorithm.

6.2 cRBCD protocol

The cRBCD protocol has four operations: INITIATE ,
EXTEND, PROVE, and VERIFY. The MERGE EXTENDop-
eration of mRBCD in Section 5 can also be added to cR-
BCD to support the merging of delegation credentials, and
is not repeated here. In the cRBCD protocol, an origi-
nal delegator specifies boolean attributeisPropagatableand
all in operation INITIATE , and the credential chain discov-
ery algorithm is used to dynamically construct delegation
chains in operation PROVE. The cRBCD protocol is defined
as follows.

• INITIATE (PD0
, sD0

, D0.priv, A1.r1 ,
PA1

, [Cons]∗, [Pred]∗):

This operation is run by a resource ownerD0 to ini-
tiate a delegation chain. If the delegated privilege
D0.priv is authorized not only to the affiliated mem-
bers ofA1.r1 but also to the delegated members of
A1.r1, then attributeisPropagatableis set to true. If
all the privileges that aredelegatedto roleD0.priv are
also delegated to roleA1.r1, then setall to true.

• EXTEND(sDn
, D0.priv, Cn , RDn

, An+1.rn+1 ,
PAn+1

, [Cons]∗, [Pred]∗):

This operation is the same as EXTEND operation in
RBCD protocol of Section 4.

• PROVE(sE , V.priv, RE , {C}):

This algorithm is run by requesterE for proving that
he is delegated privilegeV.priv, whereV is a resource



owner. The inputs are private keysE of entityE, priv-
ilegeV.priv, a role credentialRE of E, and a set of
delegation credentials{C} issued toE’s role. For each
credential in{C}, check if any of them delegates priv-
ilege V.priv. If yes, construct and output a proofF

by running PROVE(sE , V.priv, RE , {C}) of mRBCD
protocol in Section 5. Otherwise, run algorithmDis-
cover({C}, V.priv). If Discover returns an empty
set, then no valid delegation chain can be found and an
empty set is returned. IfDiscover returns a non-empty
credential set{C′}, then output a proofF that contains
{C′}, role credentialRE , and a signature signed with
sE on a nonce chosen by the verifier.

• VERIFY(F ):

Let C1, . . . , Cn be delegation credentials in proofF ,
each of them representing a delegation chain. Dele-
gation credentialC1 is issued by resource ownerV ,
the delegated privilege inC1 is the requested privilege.
The delegation credentialCn is issued toE’s role.

Attribute isPropagatablemust be true in credential
C1, and attributeall must be true in all of credential
C2, . . . , Cn−1. Otherwise, the verification fails.V
then authenticates the delegation credentialC1 through
Cn by verifying signatures and evaluating predicates.
Then, the correctlinkagesbetween delegation chains
are checked: delegated privilege inCi (for 2 ≤ i ≤ n)
is the same as the last role receiving delegation in cre-
dentialCi−1. For example in Figure 2,C.guestis the
last role on the delegation chain in credential (I). It is
also the delegated privilege in credential (II). Finally,
the proofF also allows the resource owner to verify
the role membership and the signature of the requester.

The credential chain discovery algorithm retrieves in-
dependently issued credentials and dynamically constructs
delegation chains. It also helps to reduce the number of
credentials carried by delegatees. Next, we discuss several
features of our cRBCD protocol.

6.3 Flexibility and Security Improvements

The credential chain discovery in combination with the
cascaded delegation allows the credential holders to estab-
lish trust with a larger number of resources through the dis-
covery. This flexibility does not cause any significant man-
agement overhead because the credential infrastructure is
the same as in the RBCD model [24] and the discovery pro-
cess can be fully automated. The use of RBCD credentials
reduces communication and transmission costs in the cre-
dential chain discovery. It requires fewer queries to con-
struct a delegation chain from RBCD credentials than from
individual credentials, because some portion of a delegation

chain is already captured in an RBCD credential, and does
not need to be discovered from scratch.

In decentralized delegation systems, protection of re-
source security relies crucially on the trustworthiness ofdel-
egators. In the cRBCD model, this is particularly important
because delegation chains are constructedad-hoc. The cre-
dential chain discovery is used to give more possibilities
for an unknown requester to establish trust with a resource
owner. In the mean time, our cRBCD model provides re-
source owners a way of restricting the scope of resource-
sharing by specifying the boolean attributeisPropagatable
andall.

We improve the delegation granularity by making two
distinctions. AttributeisPropagatabledistinguishes the af-
filiated members of a recipient role from the delegated
members of the role. The existing discovery algorithm [19]
implicitly assumes a delegation can be applied to both affil-
iated members and delegated members of a recipient role.
This may give authorizations to a large number of users,
which may not be desirable by the resource owner in some
applications. We give resource owners the ability to fine-
tune the scope of recipient roles in order to improve the
protection of shared resources.

Another distinction is made on the scope of the delegated
privilege (e.g.,A.r) using attributeall. A resource owner
can restrict that only permissions associated withA.r de-
fined in organizationA are delegated. Otherwise, whenall
is true, the delegated privilege also includes all the permis-
sions that are delegated to roleA.r by other organizations
denoted byOrg. Only in the latter case, the delegation can
be used to construct a discovered delegation chain, which
gives more authorizations to the recipient role than in the
former case. The existing discovery algorithm [19] im-
plicitly assumes the latter case, which may not always be
necessary and could compromise the security of the shared
resources owned by other organizationsOrg. In compari-
son, we allow resource owners to control over the scope of
the delegated privileges. The decision made by a resource
owner can be based on factors such as the trustworthiness of
recipients, the scope of recipients, and the sensitivity ofthe
to-be-shared resources belong to other organizationsOrg.
In summary, the cRBCD model improves the granularity of
decentralized delegations, which strengthens the protection
of shared resources.

7 User Privacy in Ubiquitous Computing

An important privacy consideration in ubiquitous com-
puting is that thesmart computing environment may be-
come an intelligent surveillance system that monitors every
move of its users. One of the challenges for decentralized
trust management models in a ubiquitous computing envi-
ronment is how to protect the user privacy while maintain-



ing the security of the shared resources. In this section, we
describe how existing group signature schemes can be used
to protect theidentity of a delegator in role-based delega-
tion models for ubiquitous computing environments. The
goal is to allow an individual to delegate on behalf of her
role without disclosing her identity.

In the existing role-based decentralized trust manage-
ment models including the ones in the previous sections, the
role membership of a user is authenticated by a role certifi-
cate issued by the role administrator. The certificate usually
contains the public-key or the identity of the user. However,
a key observation is that in the role-based models what is
important to authentication is the role membership of a user,
not his identity. Therefore, a user only needs to prove to a
resource owner his role membership without disclosing his
identity. The resource owner only needs to verify the valid-
ity of a role membership, not the identity of a requester. In
the mean time, for accountability reasons, there should be a
mechanism to revoke the anonymity of the user and reveal
his identity.

The anonymous role-based authentication can be
achieved using group signature schemes. Group signatures,
introduced by Chaum and van Heijst [13], allow members
of a group to sign messages anonymously on behalf of the
group. Only a designated group manager is able to identify
the group member who issued a given signature. Further-
more, it is computational hard to decide whether two dif-
ferent signatures are issued by the same member. For the
role membership authentication in role-based models such
as RBCD, the resource owner asks the requester to produce
a group signature on a nonce. The correct verification of the
signature against the group public-key indicates the validity
of the requester’s role membership. The anonymity of the
role member can be revoked with the help of the role admin-
istrator, who acts as a group manager in the group signature
scheme.

To make authentication efficient in a distributed and
ubiquitous computing environment, the group signature
scheme has to be efficient. In early group signature schemes
[13], group public keys grew with the size of the group and
were inefficient. A group signature scheme with constant-
sized public keys was first given in [12], and followed by
a number of improvements [2, 3, 8, 9, 16, 22]. Recently,
a group signature scheme was presented by Boneh, Boyen,
and Shacham [8] that significantly shortens the signature
length, compared to the RSA-based state-of-the-art group
signature scheme by Atenieseet al. [2]. BBS group signa-
ture is under 200 bytes long and offers approximately the
same level of security as a group signature five times longer
in [2]. This improvement in the signature size significantly
reduces the signature transmission time and storage space
of mobile or small devices in a ubiquitous computing envi-
ronment.

8 Related work

In this section, we compare our work with related decen-
tralized trust management frameworks. Eschenauer, Gligor,
and Baras presented a model for trust establishment in mo-
bile ad-hocenvironment [15]. Anad-hocenvironment does
not assume any pre-established role-management infras-
tructure such as role administrators and credentials. There-
fore, the generation, issuance, and the distribution of trust
evidence such as credentials are different from the con-
text of the ubiquitous computing environment where pre-
established role-management infrastructures are possible.

Trust evidences that are generated by recommendations
and past experiences have been used for trust establish-
ment in bothad-hocand ubiquitous computing environ-
ments [6, 23, 25]. This type of trust evidences is flexible to
collect, because it does not require any pre-established ad-
ministration insfrastructure. However, it is difficult to use
the abstraction of roles in these trust establishment model
and thus the scalability of the model is low in comparison
to the role-based trust management models such as theRT
framework [18] and the RBCD model [24].

A number of trust management and distributed autho-
rization systems have been proposed, for example KeyNote
[7], delegation certificates [4], SPKI [14], Delegation Logic
(DL) [17], proof-carrying authorization (PCA) [1], andRT
framework [18]. Among them,RT framework is arole-
basedtrust management framework for distributed environ-
ments. It supports decentralized authorization [18] and role-
based delegation as in RBCD models. Our cRBCD model
in Section 6 combines the credential chain discovery algo-
rithms of theRT framework with the role-based cascaded
delegation, which gives the original RBCD model more
flexibility in constructing delegation chains.

The use of local (temporary) principal or key can be
found in existing authorization systems such as DL [17] for
controlling delegation scope. However, the main difference
between our RBCD models and distributed authorization
work [1, 17] is that RBCD allows an individual to delegate
on behalf of a role and gives a mechanism to authenticate
the delegator’s role membership and thus the delegation va-
lidity. This features are not previously supported by any
trust management or distributed authorization systems.

Although decentralized trust management systems, such
asRT, are designed for coventional distributed computing
environment, they can be adopted in ubiquitous comput-
ing environments for trust establishment across administra-
tive domains. This is possible because these models allow
the trust to be transferred through delegation chains. The
delegation process inRT requires the participation of role
administrators. This involves unnecessary communication
overhead with the administrators. Therefore, it may not
be efficient enough to accomodate the dynamic resource-



sharing in the ubiquitous computing. In comparison, our
RBCD model presented in this paper allows scalable, de-
centralized, and efficient role-based delegations withoutthe
participation of role administrators.

9 Conclusions

We have presented several credential and trust manage-
ment techniques that improve the efficiency and flexibility
of the role-based cascaded delegation model without in-
creasing the management complexity. These improvements
are important to the performance of delegation operations in
a ubiquitous computing environment. The mRBCD model
supports the merging of multiple delegation chains and im-
proves the delegation efficiency. The cRBCD model im-
proves the delegation flexibility by integrating the credential
chain discovery with the cascaded delegation. We have also
described how attribute constraints of a delegation chain are
specified and verified, which are used in the cRBCD model
to restrict the scope of the resource-sharing. Finally, we
have discussed how the privacy protection of RBAC models
in ubiquitous computing can be improved with the anony-
mous authentication of group identification techniques.
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