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Abstract
Detecting data races is important for debugging shared-
memory multithreaded programs, but the high runtime over-
head prevents the wide use of dynamic data race detec-
tors. This paper presents TxRace, a new software data
race detector that leverages commodity hardware trans-
actional memory (HTM) to speed up data race detection.
TxRace instruments a multithreaded program to transform
synchronization-free regions into transactions, and exploits
the conflict detection mechanism of HTM for lightweight
data race detection at runtime. However, the limitations of
the current best-effort commodity HTMs expose several
challenges in using them for data race detection: (1) lack
of ability to pinpoint racy instructions, (2) false positives
caused by cache line granularity of conflict detection, and
(3) transactional aborts for non-conflict reasons (e.g., ca-
pacity or unknown). To overcome these challenges, TxRace
performs lightweight HTM-based data race detection at first,
and occasionally switches to slow yet precise data race de-
tection only for the small fraction of execution intervals in
which potential races are reported by HTM. According to
the experimental results, TxRace reduces the average run-
time overhead of dynamic data race detection from 11.68x
to 4.65x with only a small number of false negatives.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming; D.2.5 [Software
Engineering]: Testing and Debugging

Keywords data race; concurrency bug detection; hardware
transactional memory; dynamic program analysis

1. Introduction
Data races are an important class of concurrency errors in
shared-memory multithreaded programs. A data race occurs
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when two threads access the same memory location, at least
one of the two accesses is a write, and their relative order
is not explicitly enforced by synchronization primitives such
as locks [8, 49, 56].

Data races often lie at the root of other concurrency bugs
such as unintended sharing, atomicity violation, and order
violation [46]. There are many real-world examples showing
the severity of data races, including the northeastern black-
out [64], mismatched Nasdaq Facebook share prices [57],
and security vulnerabilities [73]. Moreover, data races make
it difficult to reason about the possible behaviors of pro-
grams. The C/C++11 standards [8, 33, 34] give no semantics
to programs with data races, and the data race semantics for
Java programs [49] is considered to be too complex [69].

To address this problem, a variety of dynamic data race
detectors [19, 21, 32, 58, 65, 75] have been proposed to
help programmers write more reliable multithreaded pro-
grams. However, such dynamic tools often add too much
runtime overhead. For example, FastTrack, a state-of-the-
art happens-before based detector, incurs a 8.5x slowdown
for Java programs [21] and a 57x slowdown for C/C++ pro-
grams [18]. For different set of benchmarks, Intel’s Inspector
XE incurs a 200x slowdown [62], and Google’s ThreadSan-
itizer incurs a 30x slowdown [65]. Such high overhead hin-
ders the widespread use of dynamic data race detectors in
practice, despite their good detection precision.

This paper presents TxRace, a new software data race
detector that leverages commodity Hardware Transactional
Memory (HTM) to speed up dynamic data race detection.
Transactional Memory (TM) [28] was proposed to simplify
concurrent programming as a new programming paradigm,
and hardware support for transactional memory has recently
become available in commodity processors such as Intel’s
Haswell processor [29, 31]. TxRace exploits the observation
that the conflict detection mechanism of HTM can be re-
purposed for lightweight data race detection in conventional
multithreaded programs not originally developed for TM.

However, naively leveraging HTM does not automati-
cally guarantee efficient data race detection. Rather, the lim-
itations of the current commodity HTMs expose three chal-
lenges in using them for data race detection: (1) As the



Figure 1: Transactionalization. TxRace statically instruments synchronization-free regions into transactions and
leverages HTM for lightweight data race detection at runtime.

HTMs are designed to transparently guarantee atomicity and
isolation between concurrent transactions, they do not pro-
vide a way to pinpoint racy instructions or conflicting ad-
dresses; (2) Since data conflicts are detected at the cache
line granularity, false alarms could be reported due to the
false sharing; and (3) Due to the best-effort nature of exist-
ing commodity HTMs, transactions may abort for reasons
other than data conflicts, including exceeding the hardware
capacity, interrupts and exceptions.

To overcome these challenges, TxRace first instruments
a multithreaded program to transform all code regions be-
tween synchronizations (including critical sections) into
transactions (Figure 1). At runtime, TxRace then performs
a two-phase data race detection comprising fast and slow
paths. During the initial fast path, TxRace detects potential
data races using the low-overhead data conflict detection
mechanism of HTM. In this stage, the detected races are
only potential races, as the conflict might be due to false
sharing in the cache line. When a data conflict is detected,
the current HTMs do not identify the instruction that caused
the transaction to abort, the conflicting address, or the other
conflicting transaction. TxRace addresses this problem by
artificially aborting all the (in-flight) concurrent transac-
tions, rolling back them to the state before the data conflict
occurred, and then performing software-based sound1 (no
false negative) and complete (no false positive) data race
detection [21, 32, 65] for the concurrent code regions. This
work refers to the rollback and subsequent re-execution with
software-based data race detection as the slow path, which
enables TxRace not only to pinpoint racy instructions but
also to filter out any false positives. TxRace also relies on
the slow path to cover the code regions, which cannot be
monitored by transactions due to the limitations of existing
commodity HTMs. This conservative approach reduces the
chance of missing data races at the cost of runtime overhead,
and TxRace includes an optimization technique to avoid re-
peated capacity aborts.

1 In this paper, a dynamic analysis is sound if it does not incur false neg-
atives; and complete if it does not report false positives, for the analyzed
execution as in [16, 21, 22, 72]. Some [6, 9, 19] refer to a dynamic analy-
sis to be precise (instead of complete) when there is no false positive, and
others [18, 66] swap the definitions of soundness and completeness.

The experimental results show that using Intel’s Re-
stricted Transactional Memory (RTM) and Google’s Thread-
Sanitizer (TSan) for the fast and slow paths respectively,
TxRace achieves runtime overhead reduction of dynamic
data race detection from 11.68x (TSan) to 4.65x (TxRace)
on average. Using an HTM-based detector during the fast
path may lead to missing data races if they do not overlap
in concurrent transactions (and for other reasons). Neverthe-
less, TxRace incurs only a few false negatives (high recall of
0.95) for tested applications.

This paper makes the following contributions:

• To the best of our knowledge, TxRace is the first software
scheme that demonstrates how commodity hardware
transactional memory can be used to build a lightweight
dynamic data race detector.

• TxRace proposes novel solutions to address the challenge
in designing HTM-based data race detector. They enable
TxRace to pinpoint racy instructions, remove false data
race warnings caused by false sharing, and handle non-
conflict transactional aborts efficiently.

• The paper presents experimental results showing cost
effectiveness of TxRace compared to a state-of-the-art
happens-before based data race detector and its random
sampling based approach.

2. Background and Challenges
This section briefly introduces hardware transactional mem-
ory systems and discusses the challenges in using them in
data race detection.

2.1 Hardware Transactional Memory
Transactional Memory (TM) [28] provides programmers
with transparent support to execute a group of memory op-
erations in a user-defined transaction in an atomic (all or
nothing) and isolated (the partial state of a transaction is
hidden from others) manner. Hardware support for transac-
tional memory has been implemented in IBM’s Blue Gene/Q
supercomputers [26] and System z mainframes [35]; Sun’s
(canceled) Rock processor [17]; Azul’s Vega processor [14].
Recently, HTM has become available in commodity pro-



Figure 2: TxRace Overview

cessors used in desktops such as Intel’s Haswell proces-
sor [29, 31].

TxRace leverages Intel’s Transactional Synchronization
Extensions (TSX) introduced in the Haswell processors. In-
tel TSX includes Hardware Lock Elision (HLE) and Re-
stricted Transactional Memory (RTM) supports, where the
latter enables general-purpose transactional memory. Intel
RTM provides a new set of instructions comprising xbegin,
xend, xabort, and xtest to help programmers initiate, com-
plete, abort a transaction, and check its status, respectively.
Intel RTM uses the first level (L1) data cache to track trans-
actional states, and leverages the cache coherence protocol
to detect transactional conflicts [23, 74]. Intel RTM supports
strong isolation, which guarantees transactional semantics
between transactions and non-transactional code [51]. For
conflict management, Intel RTM uses a simple requester-
wins policy in which on a conflicting request, the requester
always succeeds and the conflicting transactions abort [7].

2.2 Challenges in Using HTM for Race Detection
At first glance, it might be expected that HTMs can trivially
provide lightweight data race detection. However, the com-
mercial HTMs, including Intel RTM, share limitations that
hinder their adoption for data race detection.

First, though HTMs can detect the presence of data con-
flicts and abort, HTMs including Intel RTM do not provide
programmers with the problematic instructions that caused
the transaction to abort, or with the affected memory ad-
dresses. Moreover, the concurrent transactions to which the
competing instructions belong may have been successfully
committed according to TM semantics. This implies that
programmers cannot reason about the pairs of memory ac-
cesses involved in the data race.

Second, HTMs detect data conflict by leveraging a cache
coherence mechanism. Conflicts are therefore discovered at
the cache-line granularity (64-bytes in the Intel Haswell pro-
cessor). This may produce false warnings in data race detec-
tion due to non-conflicting operations on variables that share
a cache line. By comparison, traditional dynamic data race
detectors identify data races at the word (or byte) granularity,
significantly reducing the likelihood of false positives.

Third, HTMs have bounded resources, and irrevocable
I/O operations are not supported. Intel RTM does not sup-
port arbitrarily long transactions, simply aborting any trans-
actions exceeding the capacity of the hardware buffer for
transactional states [27, 61]. Moreover, changing privilege

level always forces a transaction abort. The implication is
that a transaction should not include any system call.

Finally, a transaction in best-effort (non-ideal) commod-
ity HTMs including Intel RTM may be aborted for an un-
known reason (neither due to data conflict nor due to capac-
ity overflow). Intel’s reference manuals [29, 31] illustrate
some causes of unknown aborts, such as operating system
context switches for interrupt or exception handling. How-
ever, neither the exact abort reason nor the problematic in-
struction is provided to programmers, which makes it hard
to work around such a transaction abort.

3. Overview of TxRace
TxRace is a lightweight software dynamic data race de-
tector that leverages hardware transactional memory sup-
port in modern commodity processors. The key insight is
that TxRace can detect potential data races with a very low
runtime overhead by initially relying on the conflict de-
tection mechanism of HTM. The detected races are poten-
tial because the data conflict between transactions might be
caused by false sharing in the same cache line. When trans-
actions commit without data conflicts, TxRace incurs only
the small runtime overhead of the transactional execution. In
this sense, this HTM-based check is called fast path in which
TxRace first takes to quickly identify potential data races. To
address the aforementioned challenges of HTM-based detec-
tors, on a data conflict, TxRace artificially aborts all concur-
rent (in-flight) transactions, rolls them back to the state be-
fore the data conflict occurs, and performs software-based
sound and complete data race detection in an on-demand
manner. Such re-execution with software-based detection is
called slow path, which allows TxRace not only to pinpoint
racy instructions but also to filter out false positives caused
by false sharing.

Figure 2 shows an overview of TxRace. It consists of
a compile-time instrumentation and a two-phase data race
detection at runtime. TxRace inserts fast path transactional
codes (e.g., xbegin, xend) and slow path sound and complete
data race detection codes (e.g.,FastTrack [21], ThreadSani-
tizer [65]) into the original program at compile-time. Then,
TxRace makes use of the two-phase data race detection at
runtime. This allows TxRace to selectively perform sound
and complete (but slow) data race detection for only a small
fraction of the whole execution, leading to significant run-



Figure 3: TxRace Runtime Example

time overhead reduction compared to a traditional dynamic
data race detection.

As illustrated in Figure 1, TxRace transforms program
regions between synchronizations (synchronization-free re-
gions) into transactions. Then, TxRace performs HTM-
based race detection between program regions that overlap
in parallel at runtime. For example, for an execution where
program regions ¬ and ® overlap, TxRace checks potential
data races between those two regions. Similarly, program
regions between ­ and ®; or between ­ and ¯ are checked
when they run concurrently. On the other hand, the origi-
nal synchronization lock L prevents the program regions ¬
and ¯ (and corresponding transactions) from being over-
lapped at runtime. Therefore, the HTM will never observe
conflicting memory accesses in critical sections protected by
the same lock. In the following figures, a white circle corre-
sponds to the beginning of a transaction, a black circle to its
end.

After compile-time instrumentation, TxRace detects data
races at runtime using the fast and slow paths as follows. Fig-
ure 3 shows an example with three threads, T1, T2, and T3,
each performing one transaction. Suppose the shared vari-
able X is not protected by the common lock, so that the trans-
actions of T2 and T3 may run concurrently. During the fast
path, each transaction begins by first reading a shared global
flag named TxFail (as a part of instrumented code together
with xbegin). Then, TxRace relies on HTM to detect data
conflicts. Suppose a transaction in T3 causes another trans-
action in T2 to abort by accessing the shared variable X (step
¬). Intel RTM employs a requester-wins conflict resolution
strategy in which on a conflicting request, the requester al-
ways succeeds and the conflicting transactions abort [7].
Thus, the concurrent transactions of T1 (no conflict) and
T3 (winner) may proceed further. To pinpoint the precise
data race condition, TxRace immediately aborts the in-flight
transactions by making the aborted transaction in T2 up-
date TxFail (step ®) right after its rollback. Intel RTM sup-
ports strong isolation that guarantees transactional seman-
tics between transactions and non-transactional code [51].
Together with the requester-wins policy, the strong isolation
property in Intel RTM cause a transaction to abort if there is
a conflicting access from a non-transaction code. Therefore,
the update to TxFail causes all the concurrent transactions
to abort artificially (step ¯) as they have read TxFail at the

beginning of the transaction. When all the concurrent trans-
actions are rolled back (step °), they resume execution on
the slow path in which HTM is no longer used (step ±), but
software-based sound and complete data race detection is
performed (step ²) instead. When the slow path finishes for
the program regions where potential data races are detected,
TxRace switches back to the fast path in which HTM is used
for the next program regions.

4. Fast Path HTM-based Race Detection
This section first describes how TxRace instruments origi-
nal programs to detect potential data races as well as how it
handles different types of transactional aborts, and then dis-
cuss optimization techniques used for reducing performance
overhead.

4.1 Transactionalization
To exploit HTM for potential data race detection, TxRace
transforms a code region between synchronization opera-
tions (including a critical section) into a transaction as illus-
trated in Figure 1. To be specific, at compile-time, TxRace
inserts transaction begin instructions (xbegin) at thread entry
points and after synchronization operations; and transaction
end instructions (xend) at thread exit points and before syn-
chronization operations. System calls require special con-
sideration due to HTM limitations. Intel RTM, for example,
aborts a transaction if a change in privilege level takes place.
Consequently, TxRace ends the current transaction prior to
each system call and begins a new transaction immediately
after the system call in order to guarantee forward progress.

Furthermore, TxRace instruments each transaction to
read the shared flag TxFail immediately after xbegin. As
discussed in Section 3, Intel RTM uses the requester-wins
policy that allows the requester to succeed on a conflicting
request and aborts the conflicting transactions [7]; and sup-
ports strong isolation that guarantees transactional semantics
between transactions and non-transactional code [51]. These
two properties cause an in-flight transaction to abort on a
conflicting access from non-transaction code. As TxRace
makes transactions read TxFail when they start, when a data
conflict is detected, the aborted transaction can artificially
abort other in-flight transactions by writing to the flag Tx-
Fail. For example in Figure 3, when the aborted transaction
in T2 writes to TxFail, the concurrent in-flight transactions



Figure 4: (a) Race detected with long transactions
(b) Race missed with short transactions

in T1 and T3 which have read TxFail get aborted. Similar
techniques have been used to abort in-flight transactions in
hybrid TM systems [11, 15, 44] or to enable transactional
lock elision [2].

HTMs can only detect those data races that result in con-
flicts between concurrent transactions. This suggests that
maximizing the size of the transactions inserted at compile-
time will minimize the likelihood of false negatives. It would
be ideal to transform each synchronization-free region into
a single transaction. However, as mentioned above, TxRace
cuts transactions across systems calls inevitably. A perfor-
mance optimization called loop-cut discussed further in Sec-
tion 4.3 may also lead to cut a transaction originally formed
for a synchronization-free region.

Figure 4 (a) and (b) show that the length of transac-
tions can affect the detection of data races. Both (a) and (b)
show unsynchronized and potentially-concurrent writes to
the shared variable X from threads T1 and T2: a race condi-
tion. In (a), each thread executes a single lengthy transaction.
The long transaction length increases the likelihood that the
two transactions will overlap, and in this case the data race
on X is detected. In (b), each thread executes two transac-
tions, and the data race on X is more likely to be missed (a
false negative) as a result. As shown in (b), suppose the first
transaction in T1 includes X=1 and successfully commits
prior to the beginning of the second transaction in T2, which
includes X=2. However, if the two transactions do not over-
lap, then neither will abort. For this reason, similar to other
overlap-based data race detectors [5, 12, 18, 20], TxRace
may miss data races if they happen far apart in time. Though
perfect soundness is thus out of reach, the experimental re-
sults in Section 8 show that TxRace trades only a few false
negatives (recall of 0.95) for excellent performance.

4.2 Handling Transactional Aborts
The best-effort Intel RTM does not guarantee that a trans-
action will eventually commit and make progress. In ad-
dition to data conflicts, there are many architectural and
micro-architectural conditions that may cause a transaction
to abort. When a transaction is aborted, Intel RTM rolls
back the transaction to the point where it begins and reports
the abort type(s) in the register. TxRace handles transaction
aborts according to the abort reason as follows, while jug-
gling the competing goals of reducing false negatives, de-
creasing overhead, and offering a forward progress guaran-
tee.

Figure 5: Detecting data races between fast and slow
paths using the strong isolation property of HTM

Conflict. A transaction aborted due to a data conflict indi-
cates a potential data race. To conduct precise data race de-
tection, TxRace updates the shared flag (named TxFail) that
every transaction begins by reading, forcing all the concur-
rent (in-flight) transactions to abort and roll back (Figure 3).
TxRace then performs slow path software-based sound and
complete data race detection among the code regions that
overlapped with the aborted code region. Once a potential
data race is detected by the fast path, the software-based
slow-path detector will winnow out the false positives and
to find data races if one exists.
Retry. A transaction aborted with “retry” status might suc-
ceed if retried. If this flag is set in conjunction with the con-
flict flag described above, TxRace treats the case as a con-
flict and follows the slow path. Otherwise, TxRace retries
the transaction.
Capacity. When a transaction is aborted due to overflow,
TxRace makes only the thread that observed the capacity
abort fall back to slow path. Unlike the case for data con-
flicts, TxRace does not artificially abort the other concurrent
transactions (by not updating the shared flag TxFail) since
there is no indication of a potential data race with concur-
rent transactions. Using concurrent slow and fast path exe-
cutions minimizes performance overhead while still giving
TxRace high detection coverage (fewer false negatives) and
the guarantee of forward progress. Figure 5 demonstrates
how TxRace can detect data races when both fast and slow
paths run at the same time. Here, threads T1 and T2 are
on the fast path, while threads T3 and T4 are on the slow
path due to capacity aborts. In this case, data races between
threads T1 and T2 can be detected using HTM-based fast-
path detection, and data races between thread T3 and T4 can
be detected using precise slow-path detection. The interest-
ing case is a race condition between fast path and slow path
threads. If T2 is on the fast path and T3 is on the slow path as
shown in the example, the strong isolation property of Intel
RTM ensures that the transaction in T2 will be aborted in the
event that T3 makes the conflicting access to the variable X
that T2 has accessed. In this case, TxRace handles the con-
flict abort as described above. Because T3 is already in the
slow path, the precise data race condition can be identified
once TxRace puts T2 in the slow path.
Unknown. A transaction may abort with an unknown (un-
specified) reason. As TxRace enforces that a transaction
does not include a system call (Section 4.1), this is most



likely due to unexpected operating system context switches
to handle interrupts, exceptions, etc. To guarantee forward
progress while achieving high detection coverage (fewer
false negatives), TxRace treats this case the same as the ca-
pacity abort.
Debug/Nested. The debug bit is set when a transaction
aborts upon encountering a debug breakpoint, while the
nested bit is set when a transaction was aborted during a
nested transaction. Neither of these conditions may happen
as a result of the TxRace transactionalization process; no
debug breakpoints are used, and TxRace does not introduce
nested transactions. TxRace simply ignores this case.

4.3 Optimization
To reduce performance overhead at runtime, TxRace applies
several optimizations in the fast path. First, TxRace checks
if the program is in the single-threaded mode or not (e.g.,
in the very beginning of program execution before spawning
child threads). If so, there should be no races, thus TxRace
simply does not use HTM to monitor the program execution
to avoid unnecessary cost of transactions. If a function is
profiled to be invoked in both single-threaded and multi-
threaded modes, then at compile-time TxRace clones the
function and instruments only the version that is called in
multithreaded mode.

Second, Txrace reuses the same static analysis algo-
rithm that Google TSan uses to avoid unnecessary data race
checks. If a memory operation is statically proven to be data
race free, then TSan does not instrument it. TxRace also does
not insert transaction codes for those code regions that are
not instrumented by Google TSan to hook memory accesses
for data race detection.

Third, for regions containing a small number of memory
operations, the overhead associated with HTMs exceeds the
cost of the software-based slow path. If a code region con-
tains fewer than K memory operations, TxRace favors the
slow path. In our experiment we chose K = 5.

Finally, TxRace leverages our so-called loop-cut opti-
mization for transactions that includes loops with a large
number of iterations; these loops are a frequent cause of ca-
pacity aborts. By default, TxRace falls back to the slow path
when a transaction experience a capacity abort to obtain bet-
ter detection capability for those code regions at the cost of
some performance overhead. To reduce this overhead, the
loop-cut optimization aims to end the long transaction before
prior to a capacity abort. TxRace first profiles an application
with representative input to identify the candidate loops for
the loop-cut optimization. In this study, TxRace leverages
the Last Branch Recorder (LBR), a branch tracing facility in
Intel processors [30], which allows TxRace to identify the
last branch taken before a transaction aborts. Then, TxRace
inserts the following loop-cut logic to the end of the candi-
date loop body.

The high level idea is for TxRace to keep track of the
number of loop iteration (called loop-cut-threshold). When
the transaction experiences a capacity abort in the loop,
TxRace takes the slow path at first (default behavior), but
when the same loop is executed next time, TxRace uses this
loop-cut-threshold to cut the current transaction early in the
middle of loop iterations, placing the rest of the iterations
into another transaction to avoid capacity aborts. As dis-
cussed above, short transactions cut by loop-cut optimiza-
tion may lead to false negatives.

HTM semantics make this implementation slightly tricky.
Note that as the loop is a part of transaction, it is not possi-
ble to use a counter incremented per loop iteration to obtain
the precise loop-cut-threshold value; updates to the counter
will not survive a transaction abort. TxRace addresses this
problem by setting a small initial estimate loop-cut-threshold
(two in our experiment) and by incrementing and decrement-
ing the estimate when the transaction commits/aborts, re-
spectively (outside the transaction). This approach enables
TxRace to estimate the last largest loop-cut-threshold allow-
ing the transaction to commit. This work calls this scheme,
which dynamically learns the loop-cut-threshold at runtime,
TxRace-DynLoopcut.

As another scheme, TxRace-ProfLoopcut profiles an ap-
plication with representative input to figure out the initial
loop-cut-threshold value beforehand. This approach allows
TxRace to avoid even the very first capacity abort. Similar to
TxRace-DynLoopcut, TxRace-ProfLoopcut handles mispro-
filing by adjusting the threshold when the transaction com-
mits or aborts accordingly. Section 8.2 evaluates the effec-
tiveness of the two loop-cut optimization schemes.

5. Slow Path Software-based Race Detection
For software-based data race detection during the slow path,
TxRace uses Google’s ThreadSanitizer (TSan) [62, 65],
an open-source state-of-practice data race detector. Simi-
lar to the well-known sound and complete FastTrack algo-
rithm [21], TSan keeps track of the happens-before order
for each memory location using a shadow memory. Then,
TSan detects data races when accesses to shared locations
are not ordered. This process requires instrumenting (1) syn-
chronization operations to track the happens-before order;
and (2) memory operations to look up shadow memory
and compare their happens-before order. By design, TSan
is complete (no false positive). However, to bound memory
overhead, TSan maintains N (default 4) shadow cells per
8 application bytes, and replaces one random shadow cell
when all shadow cells are filled. This may affect soundness
(no false negative) of data race detection. Thus, this work
configured TSan to have enough number of shadow cells to
be sound as well.

The potential interplay of fast and slow path threads ne-
cessitates additional overhead during the fast path. A naive
fast path could rely solely on HTM to detect potential data



Figure 6: Tracking the happens-before order of syn-
chronizations on the fast path eliminates false warn-
ings on the slow path

races, obviating the need to track the happens-before order
imposed by synchronization operations. However, threads
may alternate between fast and slow paths for precise data
race detection. When TSan finishes in the slow path, TxRace
resumes the use of the fast path to monitor the next regions,
achieving better performance. This design requires TxRace
to keep track of the happens-before order of synchronization
operations even during the fast path to remove false warnings
during slow path. Figure 6 describes this feature in more de-
tail. Suppose that threads T1 and T2 have executed the slow
path, fast path, and slow path in turn for some reason other
than conflicting accesses to X, and that there was a happens-
before order between signal and wait that appeared during
the fast path. If TxRace does not track this happens-before
order during the fast path, the slow path data race detector
would report a data race between X=1 and X=2, which is
a false warning. The performance overhead breakdown in
Section 8.2 shows that tracking synchronization operations
is not that expensive during the fast path.

6. False Negatives
TxRace is complete (no false positive) but unsound (some
false negative). There are four main reasons why TxRace
could miss data races. First, fast-path HTMs do not de-
tect data conflicts between transactions that do not overlap
in time, as discussed in Section 4.1. This is different from
sound (happens-before based) data race detectors such as
FastTrack or Google’s TSan, which identify races by track-
ing the happens-before order of synchronization operations.
In this sense, TxRace resembles overlap-based data race de-
tectors [5, 12, 18, 20].

Second, when a transaction is aborted due to data conflict
and TxRace writes the shared flag TxFail to abort others,
there is no guarantee that some of the already-running trans-
actions will not commit before they see the write. In this
case, even though TxRace triggers the slow path, the race
will not occur again and thus cannot be detected.

Third, race detection between the fast and slow paths
(Figure 5) only works in one direction. If the slow path
thread makes a shared memory access before the fast path
thread makes a conflicting access, then the HTM’s strong
isolation guarantee does not apply. As a result, when the

opposite of the situation in Figure 5 happen, TxRace will
not trigger the slow path, and the race will not be detected.

Finally, TxRace by nature shares the limitations of the
underlying HTM system. As of now, Intel Haswell processor
does not support more concurrent transactions than the total
number of hardware threads available. This implies that the
number of threads that can be monitored by HTM during fast
path is limited.

During evaluation, the thread count was restricted to be
smaller than the hardware thread counts, ruling out the forth
reason. All of the observed false negatives were due to non-
overlapping transactions.

7. Implementation
TxRace instrumentation framework is implemented in the
LLVM compiler framework [39]. As a very first process, we
translate application source codes into LLVM IR (Intermedi-
ate Representation) and perform instrumentation as a custom
transformation pass. During this process, we do not include
external libraries such as standard libc, libc++, libm, etc.,
assuming that such libraries are thread safe, and users are
interested in detecting data races in application codes. Ex-
ternal libraries may be included into our scope when their
LLVM IR is provided. It is worthwhile to note that we in-
cluded all the internal libraries that are provided with core
application codes such as gsl, libjpeg, glib, libxml2, etc. in
PARSEC benchmark suite [3] into our analysis.

Instrumentation for fast path needs to intercept synchro-
nization operations and the program points before/after sys-
tem calls so that transaction begin/end codes can be inserted.
For example, a new transactional region starts after a new
thread starts or after each system call. As we do not include
standard C/C++ libraries into our scope, we instrument sys-
tem calls at the library call boundary; i.e., before and af-
ter calls to library functions that may invoke system calls
such as synchronization (e.g., PThread library); standard I/O
(e.g., read, write); and dynamic memory management li-
brary (e.g., malloc, free). For the third party libraries whose
source codes are not available, dynamic binary instrumen-
tation tools [10, 48, 55] can be used to profile the program
with representative input and to identify a list of external li-
brary functions invoking system calls. Misprofiling would
result in unknown aborts caused by undetected system calls.
TxRace falls back to slow path in case of unknown aborts
(by default), thus misprofiling only adds runtime overhead,
and does not harm detection coverage.

For slow path, we use off-the-shelf Google’s Thread-
Sanitizer (TSan) [62, 65], an open-source state-of-practice
happens-before based data race detector. For each mem-
ory location and synchronization variable, TSan keeps track
of happens-before order information into shadow memory.
TSan supports compile-time instrumentation for data race
detection using Clang frontend [68] and LLVM passes [39].
For simplicity, we instrument fast/slow path codes together



into the original program. For example, the same memory
access hook is instrumented for both fast/slow paths. De-
pending on the fast or slow path, the hook performs TSan
data race detection for slow path or it does nothing for fast
path. For better performance, it would be ideal to clone the
codes and have separate fast/slow path codes to remove the
redundancy similar to [38, 67]. We leave this optimization
as a future work.

The implementation of TxRace can be downloaded from
https://github.com/lzto/TxRace

8. Evaluation
Our evaluation answers the following questions:

• What is the overhead of TxRace data race detection? Is it
efficient?

• Does TxRace effectively detect data races? How many
false negatives are there?

• Is TxRace cost-effective compared to other approaches?
Is it better than a sampling-based approach, or a full
happens-before based detector?

8.1 Methodology
We ran experiments on a 3.6GHz quad-core Intel CoreTMi7-
4790 processor, with 16GB of RAM, running Gentoo Linux
(kernel 4.0.4). Intel’s Restricted Transactional Memory
(RTM) is used for HTM-based fast path data race detec-
tion. Intel Haswell processor supports the same number of
concurrent transactions as the hardware threads available,
which is four (eight with hyperthreading) in our case. On
the other hand, Google’s ThreadSanitizer (TSan) is used for
software-based slow path data race detection.

TxRace was evaluated using 1) PARSEC benchmark
suite [3] that is designed to be representative of next-
generation shared-memory programs including emerging
workloads; and 2) Apache web server [1]. We used sim-
large input for all the 13 application in PARSEC, and tested
Apache using ab (ApacheBench) by sending 300,000 re-
quests from 20 concurrent clients over a local network. Per-
formance was reported in terms of overhead with respect
to the original execution time without data race detection.
We compare our system (named TxRace in the result) with
off-the-shelf Google’s ThreadSanitizer (named TSan). All
results are the mean of five trials with four worker threads
(except the scalability analysis).

8.2 Performance Overhead
Table 1 shows the TxRace execution statistic, the number
of detected data races, and overall performance results. The
first column provides the application name. The next four
columns show transaction statistics during HTM-based fast
path data race detection: the number of total committed
transactions, the number of data conflict aborts, the number
of capacity (overflow) aborts, and the number of unknown

(unspecified) aborts. The next two columns give the number
of races detected by TSan and TxRace. The applications in
which TxRace cannot detect all the races reported by TSan
are marked with asterisk. The next three columns show the
original, TSan, and TxRace execution times. The first is the
execution time of the original application (with no trans-
actions, memory hooks, etc.); the second is the execution
time when TSan is used; the third is the execution time of
our system TxRace. The last two columns show TSan’s and
TxRace’s overhead with respect to the original execution.

Examining the results, we see that TxRace’s overhead
is generally low. On average, TxRace reduces runtime
overhead of dynamic data race detection from 11.68x to
4.65x (geometric means), showing 60% reduction ratio. For
some applications such as vips and streamcluster, TxRace
achieved more than 10 times speedup over TSan.

Figure 7 shows a breakdown of the overhead normalized
to the original execution time (baseline) for all benchmarks.
The black portion in each bar (xbegin/xend) represents the
pure fast path overhead in which transactions are executed,
but no slow path is taken even when they get aborted (simply
run untransactionalized code). For most applications, this
overhead is pretty low (the geometric mean of 17%), except
swaptions and streamcluster. Upon further investigation, we
found out that these two applications have tight loops that
have system calls in the loop body. In this case, TxRace ends
and begins new transactions around the system calls. This re-
sults in tight short transactions whose management cost now
becomes dominant. The next overhead comes from handling
aborts due to data conflicts (157%), which includes run-
ning slow path software-based data race detection. This low-
overhead result shows the benefits of using HTM-based po-
tential data race detection beforehand, which allows TxRace
to selectively perform the software-based dynamic data race
detection only for small fraction of execution intervals. Fi-
nally, the remaining performance overhead comes from han-
dling capacity and unknown aborts (126% and 66%, respec-
tively). To achieve small false negatives, TxRace takes the
conservative approach of using slow path software-based de-
tector to monitor program regions that fast path HTM cannot
cover. We envision that if there is an ideal HTM such that
a transaction aborts only if there is a data conflict and do
not have capacity/unknown aborts, then the runtime over-
head of TxRace would be improved significantly as TxRace
only falls back to slow path when necessary (only when a
data conflict occurs).

Figure 8 shows the scalability of TxRace. We varied the
number of worker threads from 2, 4 to 8, and measured the
runtime overhead normalized to the original execution time
with 2, 4, and 8 worker threads, respectively. For compar-
ison of two and four thread cases, some applications such
as swaptions and streamcluster show lower runtime over-
head for four thread cases, but most of the remaining appli-
cations show small differences in normalized runtime over-



application committed conflict capacity unknown TSan TxRace original TSan TxRace TSan TxRace
transactions aborts aborts aborts races races time(ms) time(ms) time(ms) overhead overhead

blackscholes 131105 2 0 7 0 0 253 467 460 1.85x 1.82x
fluidanimate 17778944 696789 10321 36614 1 1 539 8217 3724 15.23x 6.9x

swaptions 160640076 2599 557497 54317 0 0 868 5875 3446 6.77x 3.97x
freqmine 84 0 3 26 0 0 3973 55611 4569 14x 1.15x

vips 707547 16793 23403 14985 112 79(*) 953 1139087 60320 1195x 63.28x
raytrace 143 12 0 14 2 2 4546 23130 12203 5.09x 2.68x

ferret 208052 379 2413 4263 1 1 1060 11390 5852 10.74x 5.52x
x264 36808 245 423 5358 64 64 595 3837 3332 6.45x 5.6x

bodytrack 9950991 36004 47050 2004723 8 6(*) 503 6429 4479 12.78x 8.9x
facesim 12827334 1611 3372 38563 9 8(*) 2439 89242 28027 36.59x 11.49x

streamcluster 756908 170805 230 832 4 4 1430 39042 4253 25.9x 2.97x
dedup 2185219 106618 13889 40177 0 0 2748 13292 11513 4.84x 4.19x

canneal 3200570 25187 2896 106419 1 1 3499 15367 10375 4.39x 2.97x
apache 310781 227 446 9793 0 0 6916 21089 13600 3.05x 1.97x

geo.mean 11.68x 4.65x

Table 1: TxRace Execution Statistics and Performance.
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Figure 7: Breakdown of runtime overhead.
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Figure 8: Scalability of TxRace

head. Upon further investigation, we found out that the num-
ber of capacity aborts (geometric mean of 644 vs. 474) and
unknown aborts (geometric mean of 8377 vs. 4651) de-
creases from two to four thread cases. The reduction in ca-
pacity aborts makes sense as many applications in PARSEC
benchmark take advantage of data parallelism, and thus each
worker thread is likely to have smaller dataset with more
worker threads. On the other hand, the number of conflict
aborts (geometric mean of 244 vs. 1242) increases from two
to four thread cases (likely due to increased concurrency).
After all, the mixture of the increase and the decrease in
transactional aborts causes different applications to show
variation in performance overhead.

Another interesting result of this experiment is the high
overhead incurred for some applications with eight threads
(e.g., fluidanimate, swaptions, streamcluster, and dedup).
Examining the results, we found that the number of unknown
aborts increases significantly for eight thread case (geomet-
ric mean of 42251, which is 5x and 9x more than two and
four thread cases, respectively). As Intel Haswell processor
does not provide additional information regarding unknown
aborts, further investigation was not possible, but we suspect

that eight concurrent transactions enabled by hyperthreading
might lead to increased unkonwn aborts.

Finally, we evaluate the effectiveness of the loop-cut op-
timization discussed in the Section 4.3. Figure 9 presents
the normalized runtime overhead of TSan and three differ-
ent types of TxRace. They differ from each other based
on how they handle a transaction that includes a loop with
a large number of iterations, causing capacity aborts fre-
quently. TxRace-NoOpt stands for the basic scheme without
optimization that TxRace simply falls back to slow path ev-
ery time when a transaction gets aborted for the capacity rea-
son. TxRace-DynLoopcut represents the optimized scheme
that for a transaction including a loop, TxRace dynamically
learns the loop iteration count (called loop-cut-threshold)
that do not cause a capacity abort at runtime. When the trans-
action gets aborted, TxRace falls back to the slow path at
first. However, when the same loop is executed next time,
TxRace uses the loop-cut-threshold to terminate the transac-
tion early in the middle of loop iterations and starts a new
transaction to avoid capacity aborts. TxRace-ProfLoopcut is
similar to the above dynamic scheme, but it profiles the pro-
gram with representative input to collect the initial loop-cut-
threshold, and avoids even the very first capacity aborts. Fig-
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Figure 10: The number of detected distinct data races
across multiple runs for vips

ure 9 shows the benefits of leveraging the loop-cut optimiza-
tion. In all cases, TxRace is more efficient than TSan. On
average, TxRace-ProfLoopcut shows the best result (4.65x)
in terms of performance overhead, and TxRace-DynLoopcut
which does not require profiling the threshold also performs
better than TSan (5.34x).

8.3 False Negatives
In this section, we study false negatives of TxRace. HTMs
detect data conflicts between transactions that are concur-
rently overlapped in time. As a result, similar to other
overlap-based data race detectors [5, 12, 18, 20], TxRace
may miss data races if they happen far apart in time. The
sixth and seventh columns of Table 1 represent the aver-
age number of data races reported by happens-before based
TSan and our overlap based TxRace. Here, each race is in
a form of racy instruction pair, and we count the number of
static instances.

There are three applications (vips, bodytrack, and facesim)
that TxRace detects less data races than TSan. It turns out
that the missed three cases of bodytrack and facesim are due
to the common initialization idiom, in which a data structure
is allocated within a thread and initialized without any syn-
chronization while the structure is still local to the thread,
and then it becomes accessible to other threads, by adding it
to a global data structure. For example in facesim, a structure
is initialized when a thread pool is created at the beginning
of program execution, then it becomes shared at a later time.
TxRace missed such races because conflicting accesses do
not overlap.

On the other hand, for vips, though the number of data
race found for each test run remains about the same (aver-
age of 79), we observed that TxRace actually finds different
sets of data races across different runs. This makes sense be-
cause TxRace’s nature of the overlap-based detection makes
it sensitive to underlying OS scheduler. Figure 10 shows that
when we accumulate the distinct data races detected, TxRace
can find all the data races (112) found by TSan after seven
runs. Note that for vips, TxRace (63.3x) is order of magni-
tude faster than TSan (1195x).

8.4 Cost-Effectiveness of Data Race Detection
TxRace is complete (no false positive) but unsound (some
false negative). In essence, TxRace aims to be a cost-
effective solution that exploits a critical tradeoff of sound-
ness for performance. To quantitatively evaluate how cost-
effective TxRace is, we rely on a popular economic analysis
term called cost-effectiveness ratio where the denominator is
the effectiveness and the numerator is the cost. The original
ratio is inverted and redefined for the context of data race
detection to quantify how cost-effective it is as follows:

CostEffectiveness =
Race Detection Effectiveness

Race Detection Cost

As a metric to evaluate the data race detection effectiveness,
we use recall that is commonly used to measure the quality
of classifiers in information retrieval and bug detection com-
munities [4, 36, 43, 71]. Intuitively, high recall leads to less
false negatives (undetected data races). In the context of data
race detection, recall is defined as follows:

recall =
|Reported Data Races ∩Real Data Races|

|Real Data Races|

For comparison to TSan, Real Data Races is defined as
the data races reported by TSan. To calculate the cost ef-
fectiveness (CE), we use TxRace’s runtime overhead nor-
malized to TSan’s. Table 2 summarizes how much more
cost-effective TxRace is compared to TSan for each bench-
mark application (here TSan’s CE is 1). TxRace turns out
to be 2.38x (geometric mean) more cost-effective than TSan
across the benchmark applications. This is mainly because in
TxRace, only small portion of memory accesses are investi-
gated for software-based data race detection (slow path). On
the other hand, the majority of memory accesses are dealt
with by transactional execution (fast path) at a very low run-
time cost.

To justify such a high cost-effectiveness of TxRace, we
also compare TxRace with TSan with sampling. Sampling
memory operations is an intuitive way to reduce runtime
overhead of dynamic data race detection. However, it also
comes with false negative issues because some data races



application overhead recall cost-effectiveness
blackscholes 0.99 1 1.02
fluidanimate 0.45 1 2.21

swaptions 0.59 1 1.7
freqmine 0.08 1 12.17

vips 0.05 0.71 13.32
raytrace 0.53 1 1.9

ferret 0.51 1 1.95
x264 0.87 1 1.15

bodytrack 0.7 0.75 1.08
facesim 0.31 0.89 2.83

streamcluster 0.11 1 8.71
dedup 0.87 1 1.15

canneal 0.68 1 1.48
apache 0.65 1 1.55

geo.mean 0.38 0.95 2.38

Table 2: Cost-Effectiveness of TxRace vs. TSan
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might be missed at a low sampling rate. To study if TxRace
is more cost-effective than sampling, we vary the sampling
rate and measure the resulting runtime overhead and the re-
call of TSan for every benchmark. As a represetative ap-
plication, we present the result of bodytrack in detail. Fig-
ure 12 shows the runtime overhead normalized to 100% sam-
pling (full coverage), and Figure 13 shows the recall at dif-
ferent sampling rates while treating 100% as an oracle. As
expected, both the runtime overhead and recall increase as
the sampling rate increases. On the other hand, the normal-
ized runtime overhead and the recall of TxRace are 0.69 and
0.75, respectively. This implies that TxRace adds an over-
head equivalent to sampling about 25.5% of memory oper-
ations, but its recall is equivalent to 47.2% sampling, which
shows its cost effectiveness.

Lastly, Figure 11 presents the cost-effectiveness of TxRace
compared to TSan with sampling across nine applications in
which TxRace/TSan detect at least one data race. For some
applications such as fluidanimate, vips, and facesim, 10%
sampling turns out to be more efficient than 50% or 100%
sampling cases. It turns out that the data race in such ap-
plications manifest often at runtime, thus they get detected
even at the low sampling frequency. In other words, the num-
ber of dynamic instances of the data race is quite high even

though the number of static instance (unique race condition)
is small (e.g., one for fluidanimate), thus reaching the recall
of almost 1 (no false negative) at the low frequency. After all,
for almost all applications execpt x264, TxRace outperforms
TSan with sampling in terms of the cost-effectiveness.

9. Related Work
This section discusses closely related work comparing TxRace
with existing data race detection techniques. To the best of
our knowledge, TxRace is the first approach to leverage a
commodity HTM for speeding up data race detection.

Eraser [63] introduced lockset-based approach, which in-
fers data race through violation of locking discipline. As
lockset-based algorithms do not consider non-mutex syn-
chronization operations such as conditional variables, they
are incomplete (generate false positives) compared to the
approach that tracks happens-before order of synchroniza-
tion operations using vector clocks. FastTrack [21] is known
to be the most optimized algorithm in this category, which
reduced runtime overhead significantly compared to prior
works such as MultiRace [58]. Google’s ThreadSanitizer,
which TxRace used for its slow path, also tracks happens-
before order similar to FastTrack. However, high runtime
overhead is still a major concern.



Several strategies have been explored to reduce the over-
head of dynamic data race detection. LiteRace [50] and
Pacer [9] use sampling; RaceMob [37] crowdsources (dis-
tributes) runtime checks across different users; Wester et
al. [70] parallelizes data race detection; Lee et al. [40, 41]
uses offline symbolic analysis; and Goldilocks [19], Choi et
al. [13], and Chimera [42] leverage static analysis to remove
checks for statically proven race-free memory operations.
Matar et al. [52] exploit Intel TSX (same as ours) to speed
up data race detection, but they leveraged HTM simply to
replace locks that are used to provide atomicity in metadata
updates/checks, which is different from TxRace. We believe
that TxRace can use these techniques to further reduce the
runtime cost of the slow path.

Greathouse et al. [24] presents a demand-driven race de-
tector. They use hardware performance counters in modern
processors to monitor cache events indicating data sharing
to turn on race detection. Due to limitation in current hard-
ware, they could identify W→R data sharing events only,
and though all are presumably possible, not all cache shar-
ing causes data races. On the other hand, TxRace uses data
conflict detection mechanism in HTM to identify potential
data races and to trigger on-demand race detection.

The recent advances in overlap-based data race detec-
tors [5, 12, 18, 20] have shown their cost-effectiveness
and practical benefits by trading soundness for better per-
formance. DataCollider [20] and Kivati [12] use hardware
code/data breakpoint mechanism in processors to detect data
races. They set a data breakpoint to trap conflicting accesses
by other threads. This is similar to conflict detection mecha-
nism in HTM, which detects concurrent conflicting accesses.
After setting up the breakpoint, they insert a short amount
of time delay to the thread to increase detection probabil-
ity. The detection window in HTM spans the whole length
of a transaction, so the detection probability is likely to be
higher than the breakpoint based approach at the cost of false
positive. Moreover, the small number of breakpoints (four
for x86 hardware) limits its coverage. As another overlap-
based detector, IFRit [18] exploits compiler analysis to form
interference-free regions where data races can be detected
when they overlap. The scope of IFRit may be longer than
TxRace’s transactional region in some cases, but it could be
very short (e.g., basic block) in other cases since each region
may start after the variable is defined in the SSA form. For
performance reasons, IFRit gives up data race detection for
those short-scope regions, which TxRace may cover.

Data race detection also has been the subject of intense
research by hardware community. In general, hardware-
assisted data-race detectors store metadata (e.g., locksets,
vector-clocks) in the cache, piggyback them on coherence
protocol messages, and compare them to detect data races.

HARD [76] is a hardware-based implementation of the
lockset algorithm, whereas ReEnact [60] and CORD [59]
implement happens-before based algorithm in hardware.

RADISH [16] proposes hardware-software co-design to en-
able always-on sound and complete data race detections in
which hardware performs the vast majority of race checks
and software backs up hardware resource limitations. Con-
flict Exceptions [47] extends a standard coherence protocol
and caches to detect data conflicts between synchronization-
free regions, as TxRace does. SigRace [54] employs custom
hardware address signature where the memory addresses ac-
cessed by a processor are hash-encoded and accumulated,
and uses it do detect the outcome of potential data races
rather than the race itself. Then SigRace relies on check-
pointing/rollback to identify actual racing instructions. Sim-
ilarly, TxRace uses the same insight to use lightweight check
first, then do expensive one later only if necessary.

Perhaps RaceTM [25] is the most closely related to our
work, as it also proposes to use hardware transactional
memory in detecting data races. However, their approach is
hardware-only solution that requires additional hardware ex-
tension to conventional HTMs like LogTM [53]. For exam-
ple, RaceTM requires two additional bits (debug read/write
bits) for every cache line. They added support to provide the
conflict address and responsible racy instructions as well.

Finally, even if TxIntro [45] is not a data race detector,
it combines hardware performance counters (such as HITM,
cache miss, and PEBS) with Intel’s TSX to infer the conflict-
ing data linear address. We envision that TxRace can lever-
age such supports to design more efficient slow path if the
future generation of commodity processor provides such in-
formation to the users.

10. Conclusion
The spread of shared-memory multiprocessor architectures
has spurred development of multithreaded programs. How-
ever, such programs are subject to concurrency bugs includ-
ing data races. Unfortunately, traditional dynamic data race
detectors are too slow to use in many cases. This paper de-
scribes TxRace, a new software dynamic data race detec-
tor that exploits commodity hardware transactional memory
support to enable dynamic data race detection with a low
runtime overhead. Leveraging existing HTM support allows
TxRace to use a precise but expensive dynamic data race de-
tector only for a small fraction of the whole execution in an
on-demand manner, leading to performance improvement.
The experiment results show that TxRace achieves runtime
overhead reduction of dynamic data race detection by 60%
on average with only a few false negatives (high recall of
0.95).
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