
ProRace: Practical Data Race Detection for Production Use

Tong Zhang Changhee Jung Dongyoon Lee
Virginia Tech

{ztong, chjung, dongyoon}@vt.edu

Abstract
This paper presents PRORACE, a dynamic data race detector
practical for production runs. It is lightweight, but still offers
high race detection capability. To track memory accesses,
PRORACE leverages instruction sampling using the perfor-
mance monitoring unit (PMU) in commodity processors.
Our PMU driver enables PRORACE to sample more mem-
ory accesses at a lower cost compared to the state-of-the-art
Linux driver. Moreover, PRORACE uses PMU-provided ex-
ecution contexts including register states and program path,
and reconstructs unsampled memory accesses offline. This
technique allows PRORACE to overcome inherent limita-
tions of sampling and improve the detection coverage by per-
forming data race detection on the trace with not only sam-
pled but also reconstructed memory accesses. Experiments
using racy production software including apache and mysql
shows that, with a reasonable offline cost, PRORACE incurs
only 2.6% overhead at runtime with 27.5% detection proba-
bility with a sampling period of 10,000.

1. Introduction
In the manycore era, concurrency errors are more common
than ever in multithreaded software [15, 37]. They are a
frequent source of persistent errors in many production ap-
plications, and they have caused many serious real-world
problems including the Northeast blackout [51], mismatched
Nasdaq Facebook share prices [44], and security vulnerabil-
ities [59].

Towards addressing this problem, the development of ef-
ficient dynamic data race detectors has been a focus of re-
searchers in industry [19, 52, 61] and academia [12, 14, 45].
However, precise data race detection requires monitoring ev-
ery memory operation at runtime, leading to high perfor-
mance overhead. For instance, FastTrack incurs a 8.5x slow-
down for Java programs [14] and a 57x slowdown for C/C++

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org or Publications
Dept., ACM, Inc., fax +1 (212) 869-0481.

ASPLOS ’17 April 8–12, 2017, Xi’an, China.
Copyright c© 2017 ACM 978-1-4503-4465-4/17/04. . . $15.00
DOI: http://dx.doi.org/10.1145/3037697.3037708

programs [11]. In industry, Intel’s Inspector XE with dy-
namic binary instrumentation incurs a 200x slowdown [50],
and Google’s ThreadSanitizer with static instrumentation in-
curs a 12x slowdown [63]. The high runtime overhead pro-
hibits the use of these dynamic race detectors in production
runs, relegating them to pre-deployment testing only.

Unfortunately, despite undergoing extensive in-house
testing, races often exist in deployed software and mani-
fest in customer usage [29, 52, 53]. These test escapes occur
because data races are highly sensitive to thread interleav-
ings, program inputs, and other execution environments that
testing cannot completely cover [2, 63]. For the same rea-
sons, data races are notoriously difficult to reproduce and
fix after being observed in a production run. Consequently,
there is an urgent need for a lightweight data race detector
that can monitor production runs.

In production settings, it makes sense to trade off sound-
ness (may miss data races) for performance. Sampling [3,
13, 40, 53] has been proposed as a promising technique to
address the problem. However, LiteRace [40] and Pacer [3]
still incur unaffordable slowdown for some applications
(e.g., Pacer [3] adds 86% overhead at the 3% sampling ratio)
due to code instrumentation based runtime checks. Though
DataCollider [13] uses hardware breakpoint support instead,
their detection coverages are limited to sampled accesses
only. RaceZ [53] pioneered the use of hardware performance
monitoring unit (PMU) to sample memory accesses, but it
has to keep the low sampling frequency for performance
thereby compromising the detection coverage.

This paper presents PRORACE, a new practical sampling-
based data race detector for production runs. PRORACE is
lightweight, minimally affecting the application execution;
transparent, requiring neither recompilation nor static anal-
ysis; and effective, ensuring high race detection coverage.

PRORACE consists of online program tracing and offline
trace-based data race analysis. Though offline analysis is
required, the principal advantage of PRORACE is that very
low runtime overhead of the online part enables PRORACE
to monitor real-time, interactive, or internetworked applica-
tions at nearly full speed.

PRORACE makes use of the hardware PMU in com-
modity processors to monitor an unmodified program at
a very low overhead. To be specific, PRORACE samples

memory accesses using Intel’s Precise Event Based Sam-
pling (PEBS) [20]. PRORACE’s newly designed PEBS driver
avoids unnecessary kernel-to-user copying and sampled data
processing, reducing overhead by more than half compared
to the latest Linux PEBS driver. This allows PRORACE to
take much more samples for a given performance budget,
enhancing its detection coverage.

During the offline phase, PRORACE reconstructs unsam-
pled memory accesses to overcome the inherent limitation
of sampling and to increase data race detection coverage fur-
ther. The key idea is to replay the program from each sam-
ple and reconstruct the addresses of other memory instruc-
tions. Over the sampling, PEBS provides not only the sam-
pled instruction but also its architectural execution context
(e.g., register states) at sample time. PRORACE re-executes
the program binary starting from each sampled instruction
with the register states, and re-calculates the addresses of
unsampled memory operations while emulating register and
memory states.

Furthermore, to recover more memory accesses around
each sample, PRORACE collects the complete control-flow
trace using Intel’s Processor Trace (PT) [21], a new feature
in the Intel processor’s PMU, at runtime. The control-flow
information guides which path to take during the offline re-
play, enabling PRORACE to reproduce many other unsam-
pled memory operations preceding and following each sam-
ple along the observed program path.

Finally, PRORACE analyzes the recovered memory trace
and the synchronization trace, to detect data races using the
happens-before based race detection algorithm [14].

This paper makes the following contributions:
• PRORACE presents a lightweight, transparent, and effec-

tive data race detector that can be easily deployed to mon-
itor production runs.

• PRORACE proposes a new methodology to reconstruct
unsampled memory addresses using the control-flow
trace collected at runtime. To the best of our knowledge,
PRORACE is the first software scheme that demonstrates
how commodity hardware support for control-flow trac-
ing can be used to enable the forward and backward re-
construction of unsampled memory trace. The proposed
solution can benefit future research on runtime monitor-
ing beyond race detection.

• This paper describes a PEBS driver that is many more
efficient than the state-of-the-art Linux PEBS driver.

• The experiments using production software including
apache and mysql show that PRORACE can detect sig-
nificantly more races than RaceZ, a PEBS based race
detector, at a much lower overhead.

2. Motivation
This section discusses the limitations of recent sampling-
based and static-analysis-combined dynamic data race de-

tection techniques when used in production environments,
and motivates the need for a new approach.

LiteRace [40] and Pacer [3] pioneered the use of sam-
pling for reducing the overhead of dynamic data race de-
tection. LiteRace focuses on sampling more accesses in
infrequently-exercised code regions, based on the heuris-
tic that for a well-tested application, data races are likely to
occur in such a cold region. On the other hand, Pacer uses
random sampling and thus its coverage is approximately
proportional to the sampling rate used. However, these code
instrumentation-based race detectors cause an unaffordable
slowdown for some applications, and their detection cover-
age is limited to the sampled accesses only. For example,
though LiteRace shows low 2-4% overhead for Apache, it
makes CPU-intensive applications 2.1-2.4x slower, and in-
curs 1.47x slowdown on average for their tested applications.
Similarly, Pacer also reports the average of 1.86x overhead
at the 3% sampling frequency.

DataCollider [13] and RaceZ [53] avoid code instrumen-
tation and thus incur a very low overhead, but suffer from
low detection coverage. DataCollider [13] makes use of
hardware debug breakpoints. After sampling a code/memory
location, it sets a data breakpoint and inserts a time delay.
A trap during this delay indicates a conflicting access from
another thread. Though longer timing delays increase the
likelihood of overlapping data races, they also increase the
overhead. In addition, hardware restrictions limit the number
of concurrently monitored memory locations to four in the
latest x86 hardware [22].

RaceZ leverages Intel’s PEBS to sample memory ac-
cesses. However, due to its reliance on the inefficient Linux
PEBS driver, RaceZ has to use a low sampling frequency for
performance, thereby compromising the detection coverage.
RaceZ also attempts to reconstruct unsampled memory ac-
cesses, but its scope is limited to a single basic block. This
work shows that PRORACE has much less overhead, but de-
tects significantly more data races compared to RaceZ.

Another line of work takes a hybrid static-dynamic ap-
proach. RaceMob [29], a recent low-overhead solution, em-
ploys static analysis [56] to compute potential data races,
and crowdsources runtime race checks across thousands of
users. To limit the overhead each user may experience, Race-
Mob requires a large number of runs to distribute checks,
and the number of runs required depends on the precision
of the static analysis. Elmas et al. [12] and Choi et al. [6]
are other examples that make use of static data race analysis
to reduce runtime cost. In spite of its benefits, static anal-
ysis often suffers from precision and scalability issues for
large-scale applications, and the recompilation requirement
is often not a viable option in production settings.

In summary, each of the current dynamic data race detec-
tors lacks one or more of the critical criteria for production
run monitoring: performance (low overhead), transparency

Hardware & OS

Application
Binary

Library

PT
Control Flow

Trace

PEBS Memory Trace

& Arch. Status

Sync. Ops
Trace

Decode &
Synthesis

Memory Ops
Reconstruction

(Section 5)

Extended

Memory

Trace

Data Race
Detector

Data
Race

Report

Section 4.1

Runtime Offline

Section 4.2

Section 4.3

Figure 1: Overview of the PRORACE Architecture.

(no recompilation), and effectiveness (high detection cover-
age).

3. Overview
The goal of PRORACE is to provide lightweight yet effec-
tive race detection for practical use in a production envi-
ronment. We envision a production environment similar to
Google/Facebook’s real-world datacenter in which various
traces of production applications are already collected for
monitoring purposes, and dedicated analysis machines ex-
ist in the datacenter to process the collected trace [26, 48].
In such environment, runtime monitoring overhead is much
more critical concerns than the size of trace and offline anal-
ysis overhead. Production and analysis machines share a
separate network, and thus writing a trace has a minimal
impact on the QoS of production applications that use an-
other network. Analysis machines can periodically process
the trace to delete the ones analyzed in prior periods.

Figure 1 shows an overview of PRORACE’s two-phase
architecture: online program tracing and offline data race
detection. The online stage leverages the hardware PMU
to trace a program execution at low overhead. Specifically,
PEBS is used to collect the sampled memory access trace.
PEBS provides both the sampled instruction and the archi-
tectural execution context (e.g., register states) at the sample
time. PT is used to obtain the complete control-flow trace.
The online stage also tracks the synchronization operations
for later use in data race detection.

The offline stage first combines the memory access and
control flow traces into a time-synchronized trace. Next it
reconstructs unsampled memory operations. This is the crit-
ical step that allows PRORACE to achieve higher detection
coverage than other sampling-based approaches. Using the
sampled instruction, register states, and control-flow infor-
mation, PRORACE replays the program and recomputes the
addresses of unsampled memory accesses around each sam-
ple. The unsampled memory instructions whose target ad-
dresses can be reconstructed during this step are included in
an extended memory access trace. Combining this with the
synchronization trace, PRORACE performs happens-before
based data race detection using the FastTrack [14] algorithm
to detect data races.

PRORACE improves existing PMU-sampling-based data
race detection in three ways. First, PRORACE presents a
PEBS driver much more efficient than the latest Linux PEBS
driver. The improved design allows PRORACE to take more
samples for a given performance budget, enhancing its race
detection coverage. Second, PRORACE recovers unsampled
memory accesses. PRORACE re-executes the program bi-
nary starting from each sampled instruction with the PEBS-
provided register states reconstructing the unsampled mem-
ory accesses while emulating register and memory states.
Third, PRORACE uses the PT-collected control-flow trace
to choose which path to take during the offline binary re-
execution. This permits PRORACE to recover many other un-
sampled memory operations around each sample along the
observed program path.

4. Lightweight Program Tracing
This section presents how PRORACE traces a program exe-
cution at low overhead. At runtime, PRORACE collects three
type of traces: memory access samples, control-flows, and
synchronization operations.

4.1 PEBS-based Memory Access Sampling
PRORACE samples memory accesses using PEBS [20].
PEBS users can specify types of events to monitor such as
retired memory instructions and taken branches, as well as
whether to sample user-level or both user- and kernel-level
events. PRORACE tracks only the user-level retired load and
store instruction events because of its interests in application
memory accesses for data race detection.

PEBS enables users to set a sampling period k for each
monitored event type. After every k events of a given type,
PEBS delivers the sampled event along with its architectural
execution context at the sample time such as register values,
the time stamp counter (TSC)1, but not memory states, to the
corresponding listener.

Care must be taken when choosing the sampling period.
Small values of k yield more samples but higher performance

1 In old Intel processors, the PEBS samples did not include the time stamp,
and the OS interrupt handler logged its wall-clock time during the process-
ing. As a result, there was a small timing gap between the actual hardware
sample time and the interrupt handler logging time. However, this is no
longer an issue in recent processors such as Skylake and Broadwell.

PMU

DS Area

Record 0

Record 1

Record n

perf.data

Hardware

+

2

1

OS

perf tool

3

4

Wall clock time

sample period

…

Interrupt Handler

Ring Buffer

Figure 2: The vanilla Linux PEBS driver

PMU

DS Area

Record 0

Record 1

Record n

perf.data

Hardware 1

OS

perf tool 4

Interrupt Handler

Ring Buffer

Figure 3: The ProRace PEBS driver

overhead. In addition, samples may be dropped if the kernel
finds that too much time has been spent on the interrupt
handling.

4.1.1 The Current Linux PEBS Driver
While the previous version of the Linux PEBS driver deliv-
ered every event using an overflow interrupt, a mechanism
called Debug Store (DS) was added in the 4.2 Linux ker-
nel to reduce the interrupt frequency. Figure 2 illustrates the
interactions between the hardware PEBS, the OS interrupt
handler, and the user-level perf tool.

DS permits PEBS to automatically store samples in a
kernel-space buffer referred to as the DS save area whose
default size is 64 KB (step ¬). The interrupt is delivered only
when the DS buffer is nearly full, reducing the frequency of
interrupts.

On each interrupt, the OS interrupt handler processes the
raw ‘PEBS events’, adding additional information such as
wall-clock time, sample size, and sample period (step),
and yielding ‘perf events’. It then copies the perf events into
another buffer, a ring-buffer shared with the user-land perf
tool, resetting the DS save area for further PEBS events (step
®).

Finally, the perf tool polling on the ring-buffer commits
the perf events to a file (step ¯). Since the user-land perf tool
may be configured to monitor incoming data from different
cores, and store them into the same file, the events in the
file may not be ordered sequentially. Thus, it reads the entire
file later before its exit to sort all events and include other
information.

Though DS support reduces the runtime overhead in us-
ing PEBS compared to the naive interrupt-per-sample mech-
anism, our experimental results show that a sampling period
more frequent than 10K-100K will still incur slowdowns ap-
proaching 10%.

4.1.2 PRORACE’s New PEBS Driver
PRORACE presents a new PEBS driver that significantly
lowers the performance overhead in using PEBS. The new
design makes it possible to collect more samples for the

same performance cost. Figure 3 shows our new design
incorporating the following changes:

First, PRORACE eliminates expensive kernel-to-user copy-
ing by maintaining a single ring buffer named aux-buffer.
The ring buffer is partitioned into multiple 64 KB segments.
Initially, PRORACE provides PEBS with one segment of the
ring buffer; when PEBS finds it full and raises an interrupt,
the OS interrupt handler simply proffers the aux-buffer’s
next available segment. The user-level perf tool eventually
comes into play, dumping the segment filled with records
into the file and making it available for further tracing. In this
design, the interrupt handler need only swap the segment lo-
cations for PEBS similar to conventional double-buffering.
The Linux driver for (newer) Intel’s PT incorporates a simi-
lar single buffer design, but it is not used in the PEBS driver.

Second, PRORACE skips data processing irrelevant to
data race detection during PEBS sample handling. Specifi-
cally, PRORACE does not add the metadata information (step
 in Figure 2).

Lastly, given a sampling period P, the sampling period is
initially set to a random value between one and P. At the
first event the sampling period is changed to P. This enables
PRORACE to start sampling at a random location per thread
on each run, increasing its sampling diversity to ultimately
improve its race detection capability.

Experimental results in Section 7.2 show that the new
driver reduces runtime overhead significantly, making it pos-
sible for applications to use a small sampling period.

4.2 PT-based Control-flow Tracing
PRORACE uses Intel’s PT [21] to collect program control
flows. PT is an extension to the PMU architecture for In-
tel’s Broadwell and Skylake processors. At runtime, PT
records the executed control-flow of the program in a highly-
compressed format. Unlike event-based PEBS, PT keeps
track of complete control-flow information including (indi-
rect) branch target and call/return information without loss
of precision. Nonetheless, PT incurs only a very small over-
head because the tracking is done off the critical path and
by hardware. This is significant improvement over previous
(relatively) high overhead and limited tracking features such

as Branch Trace Store (BTS) and Last Branch Record (LBR)
in old processors.

PRORACE’s PT driver also implements the code-region
based control-flow tracing feature. The PT hardware allows
users to specify four memory regions of interest from which
to collect the program control-flow. PRORACE is configured
to monitor only main executable memory regions because
of its interests in detecting application data races (assuming
no Just-In-Time compilation). Depending on use cases, dy-
namic library code regions may be included, or static library
code regions may be excluded, by examining the symbol ta-
ble.

The memory access trace collected by PEBS and the
control flow trace collected by PT can be easily combined
for offline processing because both traces include the per-
core TSC value.

4.3 Synchronization Tracing
PRORACE uses happens-before based data race detection [14]
for precision (no false positives), but offloads the expensive
vector-clock processing to the offline phase. At runtime,
PRORACE collects per-thread synchronization logs along
with its type (e.g, lock/unlock), variable (e.g., lock variable
address), and TSC value. The per-thread logs can be easily
synchronized offline because recent processors support in-
variant TSC [18] that is synchronized among cores and runs
at a constant rate.

For transparency, PRORACE uses LD_PRELOAD to redi-
rect standard pthread functions to PRORACE instrumented
functions. In addition, PRORACE tracks dynamic memory
allocation/deallocation. Suppose that one object is freed, and
another object happens to be allocated to the same memory
location. There can be no race condition between two differ-
ent objects, but a data race detector may falsely report one
as their memory addresses are the same. To avoid this kind
of false positive, many data race detection tools keep track
of malloc and free, and so does PRORACE.

5. Recovering Unsampled Memory Accesses
PRORACE leverages PMU-based instruction sampling to
collect memory accesses. As with all the sampling-based
race detectors, it might end up with false negatives due
to unsampled memory accesses. To overcome the inherent
limitation of sampling, PRORACE reconstructs unsampled
memory accesses offline by re-executing the program binary
around each PEBS-sampled instruction with forward replay
(Section 5.1) and backward replay (Section 5.2). In addition,
PRORACE leverages full control-flow information recorded
by PT to guide which path to execute during both replays.

For each PEBS sample, PRORACE alternates forward and
backward replays following the observed program path as
shown in Figure 4. Basically, the forward replay corresponds
to the re-execution of the unsampled instructions between
the current and the next samples, while the backward replay

Instructions

Over PT Trace

Path

Forward

Replay

Backward

Replay

1 2

3

4

5

6

PEBS
Sample

Figure 4: Forward and Backward Replays.

to that of those preceding the current sample for dealing with
the instructions missed by the forward replay. PRORACE
repeats the replays until there is no more PEBS sample to
be processed. The rest of this section details the path-guided
binary re-execution and how it can reconstruct unsampled
memory accesses.

5.1 Forward Replay
When an event is sampled, PEBS not only offers precise in-
struction location of the event, but also provides the archi-
tectural states such as the entire register file contents at the
sample time. By leveraging such execution contexts as in-
puts, PRORACE re-executes the program binary from each
PEBS sample point over the program path reconstructing
the addresses of the memory operations. Such path-guided
binary re-execution is called forward replay.

For each PEBS-sampled instruction, PRORACE restores
the register file contents, and attempts to execute every
following instruction over the program path until the next
PEBS-sample point is reached. For each instruction being
executed, PRORACE checks if the operands are available
at the time of the instruction execution. For this purpose,
PRORACE keeps track of the architectural status by book-
keeping all the register and memory values in a special hash
table called program map.

PRORACE simply treats every memory location as un-
available in the first place. The destination register of load
instructions becomes unavailable when they read from un-
available memory locations. If all the operands of an in-
struction being replayed are not available, PRORACE sim-
ply skips the instruction setting all its outputs as unavailable.
Otherwise, PRORACE executes the instruction updating the
resultant architectural status such as registers and memory
locations in the program map. Note that the memory emu-
lation requires a special care for correctness, and thus it is
used in a limited fashion. By default, when any available
register is written to a certain memory location, PRORACE
bookmarks the value for a later access during the replay in
the program map and treats the location as available. How-
ever, when PRORACE hits a system call or an unavailable
instruction, it conservatively invalidates emulated memory

0: mov %rax,0x18(%rsp)
1: movslq 0x0(%rbp,%rbx,4),%rdx
2: mov (%r15,%rbx,8),%rsi
3: mov 0x8(%rsi),%rax
4: mov %r10,%rdi
5: mov 0x8(%r14),%rax
6: add %rax,%r13
7: xor %eax,%eax
8: mov %r13,0x8(%r14)
9: mov 0x18(%rsp),%rcx
10: mov (%r15,%r12,8), %rsi

Figure 5: Example for Forward and Backward Re-
play

states. Moreover, the memory emulation might lead to in-
correct memory address reconstruction after the racy access
(i.e., conflicting write) from other threads. To address this
problem, when a race is detected on the emulated memory
location in a later phase, PRORACE invalidates the memory
location and regenerates the trace from that racy point (i.e.,
conflicting read) with the unavailable register value. Thus,
PRORACE is safe as it never uses racy memory location dur-
ing the trace regeneration.

While the forward replay progresses further, more reg-
isters become unavailable by the load instructions reading
from unavailable memory locations. Thus, at some point,
PRORACE may end up with a situation where no register
is available. One might think that the forward replay can-
not proceed anymore because no more instruction can be
executed due to the lack of available operands. However,
continuing the replay even across the point where all regis-
ters become unavailable can capture some unsampled mem-
ory accesses that would otherwise be impossible to recon-
struct. For example, if memory instructions leverage PC-
relative instructions, e.g., mov offset(%rip) in x86-64,
PRORACE can figure out the memory location by adding the
offset to %rip which is always available as an instruction
pointer (PC). By taking advantage of the full control-flow
trace recorded by PT, PRORACE performs the forward re-
play across basic block boundaries until it reaches the very
next PEBS-sampled instruction.

Figure 5 shows how PRORACE reconstructs many un-
sampled memory accesses using forward replay with a real-
world example extracted from Apache. Suppose PRORACE
sampled the mov at a line 0 and recorded the register states
at the sample time. After restoring all the register values,
PRORACE performs the forward replay for the following in-
structions. Here, the forward replay can successfully recon-
struct the memory addresses of the instructions at line 1, 2,
5, 8, 9 and 10 since their registers used for the address cal-
culation are all available.

However, the memory address of the instruction at line
3, i.e., mov 0x8(%rsi),%rax, cannot be reconstructed
because %rsi reads from memory location that is cur-

rently unavailable by the instruction at line 2, i.e., mov
(%r15,%rbx,8),%rsi. To solve this problem, PRORACE
performs the backward replay right after the forward replay.

5.2 Backward Replay
Forward replay cannot reconstruct the address of memory
operations if the register operand of memory instructions is
unavailable, or if the address is not obtained by PC-relative
addressing. This motivates PRORACE to leverage two forms
of backward replay to reconstruct the memory addresses
skipped by the forward replay: backward propagation and
reverse execution.

5.2.1 Backward Propagation
The key observations is that many of unavailable registers
can be recovered by consulting the next PEBS-provided
execution contexts where all the register values are avail-
able. More precisely, the backward replay can reconstruct
the memory access whose register operand became unavail-
able during the forward replay, provided the register has
not been updated before the next PEBS-sampled instruc-
tion. Fortunately, according to empirical results, the registers
used for memory address calculation often have a long live-
range [41] after they become unavailable during the forward
replay.

In light of this, PRORACE back-propagates all the register
values restored at the very next PEBS sample to the instruc-
tions where each register has been most recently updated.
For this purpose, the forward replay marks such instruc-
tions checkpointing the register file at the time the register
is updated. In addition, the forward replay keeps track of the
youngest one among the instructions as an entry point of the
later backward replay. Once all the register back-propagation
is performed, PRORACE simply jumps to the youngest in-
struction and resumes the re-execution there. In a sense, the
backward replay can be considered as yet-another forward
replay starting from a different location, i.e., the youngest
instruction, not the current PEBS-sampled instruction.

Figure 5 also shows how the backward replay recon-
structs an unsampled memory access that the forward replay
cannot deal with. Suppose PRORACE sampled the instruc-
tion at line 10. This allows PRORACE’s backward analysis
to restore the value of %rsi, which is not possible for the
forward replay to deal with. In this way, PRORACE can suc-
cessfully reconstruct the memory address of the instruction
at line 3 using the restored register.

5.2.2 Reverse Execution
The second type of PRORACE’s backward replay is based
on reverse execution [4, 8, 35]. In its simplest form such
as register-to-register copy, the reverse execution can re-
store both register values based on the equality as long as
at least one of them is known. It is also possible to restore
the register used as an operand of arithmetic instructions
provided the other operand (register) is known during the

Thread Workload
apache 14 ApacheBench. 100K requests,

8 clients, 128KB file size
cherokee 38 ApacheBench. 100K request, 8 clients,

128KB file size
mysql 20 SysBench. 10K requests, 32 clients,

10 million records
memcached 5 YCSB. 200K requests,

all ABCDE workload
transmission 4 1.48GB file

pfscan 4 6.8GB file
pbzip2 4 1GB file

aget 4 2.1GB file

Table 1: Evaluation Setup

backward replay. For example, the reverse execution can re-
store the %rdx operand of an instruction (%rax = %rdx
+ $offset), if the other operand (%rax) is already avail-
able by subtracting the $offset from %rax. PRORACE’s
backward replay engine currently supports reverse execution
of integer arithmetic instructions such as additions and sub-
tractions.

Note that once an unavailable register is restored by the
reverse execution, PRORACE can restore others that have a
dependence on that register. As PT provides the program
path, PRORACE only needs to track the data dependencies,
and triggers forward and backward replays iteratively until
they reach the fixed point [41] where no further restoration
is found. This simple yet effective technique allows the back-
ward replay to go backward further possibly reconstructing
more unsampled memory accesses.

6. Implementation
The online tools for PRORACE consists of two parts: kernel-
level PMU drivers and user-land perf tool. The new PEBS
driver is implemented based on the Linux kernel version
4.5.0. The four PT hardware filter is added to collect branch
traces only from the regions of interest.

The offline tool is comprised of four parts: 1) the dynamic
standard C library (glibc version 2.21) to intercept synchro-
nization and memory allocation operations; 2) the modi-
fied perf tool to decode raw PT data; 3) the forward-and-
backward replay engine that reconstructs memory traces,
implemented using Intel’s PIN [39] dynamic binary instru-
mentation tool; and 4) the FastTrack-based data race detec-
tor.

The PMU drivers and perf tool includes 4579 lines of C
and assembly codes. The offline tools contain 7024 lines of
C/C++ code, 793 lines of perl code, 105 lines of python
code, and 623 lines of bash code. The implementation of
PRORACE can be downloaded from https://github.
com/lzto/ProRace.

7. Evaluation
This section evaluates PRORACE’s runtime overhead, trace
size, data race detection effectiveness, memory reconstruc-
tion ratio, and offline analysis overhead.

7.1 Methodology
We ran experiments on a 4.0GHz quad-core Intel CoreTMi7-
6700K (Skylake) processor, with 16GB of RAM, running
Gentoo Linux Kernel 4.5.0. PRORACE was evaluated us-
ing (1) PARSEC benchmark suite; and (2) seven real-world
applications including apache web server, mysql database
server, cherokee web server, pbzip2 parallel compressor, pfs-
can parallel file scanner, transmission BitTorrent client, and
aget parallel web downloader. We use simlarge input for all
the applications in the PARSEC suite and set the thread num-
ber to be four (equal to the number of cores). The evaluation
setup for the real-world applications is listed in Table 1. All
network and database applications were tested using the lo-
cal area network which has a gigabit connection.

For data race detection analysis, PRORACE was evaluated
using 12 data race examples in real-world applications from
previous study [60]. The 12 cases include three data races
in apache, three races in mysql, two races in cherokee, two
races in pbzip2, one race in pfscan, and the last one in aget.
Some other cases in [60] are excluded because they do not
include a data race, or are not well documented.

7.2 Performance Overhead
Figure 6 shows the performance overhead of PRORACE for
PARSEC benchmarks, with the varying PEBS sampling pe-
riod from 10 to 100K. As expected, a small sampling pe-
riod results in more samples, leading to high overhead. The
geometric mean of performance overhead over all 13 appli-
cations in the PARSEC suite goes up from 4%, 7%, 31%,
2.85x, to 7.52x for the decreasing sampling period of 100K,
10K, 1K, 100, and 10, respectively. There are four applica-
tions bodytrack, canneal, dedup, streamcluster that incurs
small 5-9% runtime overhead for the sampling period of 1K.
Setting the sampling period to 10K makes 12/13 applica-
tions’ overhead less than 10%. The user of PRORACE can
perform similar sensitivity analysis to find the lowest sam-
pling period, given a performance overhead budget. Assum-
ing the 10% budget, our experiment shows that the sampling
period should be set between 1K and 10K for such CPU-
intensive applications.

Figure 7 shows the performance overhead of PRORACE
for real world applications, with the varying PEBS sampling
period from 10 to 100K. Some applications including mysql,
transmission, pfscan, pbzip2 showed a similar trend of high
overhead for a small sampling period. However, the other
applications shows negligible (<1%) overhead even with the
very small sampling period of 10. The applications belong-
ing to this second category are indeed network I/O domi-
nant applications (with not much file I/O). The runtime over-

19.869 7.762 16.1 25.141 6.536 24.695 7.587 15.969 7.525.477 7.089 5.403

0

1

2

3

4

5
N
or
m
al
ize

d	
O
ve
rh
ea
d

10 100 1000 10000 100000

Figure 6: Performance overhead for PARSEC benchmarks

9.13

0
1
2
3
4
5

N
or
m
al
ize

d	
O
ve
rh
ea
d

10 100 1000 10000 100000

Figure 7: Performance overhead for real applications

1

10

100

1000

10000

Tr
ac
e	
Ge

ne
ra
tio

n	
(M

B/
s)

10 100 1000 10000 100000

Figure 8: Space overhead for PARSEC benchmarks

0.01
0.1
1

10
100

1000

Tr
ac
e	
Ge

ne
ra
tio

n	
(M

B/
s)

10 100 1000 10000 100000

Figure 9: Space overhead for real applications

49.92 7.8

PARSEC

7.52

Real	Applications

0

1

2

3

4

5

N
or
m
al
ize

d	
O
ve
rh
ea
d

Vanilla ProRace

Figure 10: Performance overhead comparison

head of PRORACE can be hidden by network I/O. However,
PRORACE apparently cannot hide its overhead with file I/O
well because it has to perform many writes to a file during
tracing. On geometric average, the runtime overhead goes up
from 0.8%, 2.6%, 8%, 34%, to 80% for the decreasing sam-
pling period of 100K, 10K, 1K, 100, and 10, respectively.
Assuming the 10% budget, our experiment shows that the
sampling period may be set to smaller than 1K (even 10) for
real (I/O-bound) applications.

The next study focuses on evaluating the efficiency of
PRORACE’s new PEBS driver over the vanilla Linux driver.
Figure 10 shows side-by-side runtime overhead comparing
for each sampling period from 10 to 100K. For clarity, the
figure only presents the geometric mean of PARSEC and
real applications, respectively. As can be seen in the figure,
PRORACE’s new driver outperforms the vanilla Linux driver.
For an extreme case of the period of 10, the vanilla driver
incurs 50x slowdown, but PRORACE shows 7.5x slowdown
for PARSEC benchmarks. As another data point, with rela-
tively large period of 100K, the vanilla driver incurs 20%,
whereas the PRORACE reports only 4% slowdown for the
same benchmarks.

The overhead of RaceZ can be estimated to be around the
same because it depends on the stock Linux driver. RaceZ
also reports similar performance figures: 2.8% for the sam-
pling period of 200K and 30% for 20K. The experimental
result shows that PRORACE has much less overhead than
RaceZ. For example with the period 1K, RaceZ results in a
3.4x slowdown, whereas PRORACE only incurs 31% over-
head for the PARSEC suite.

As the last experiment for performance evaluation, we
study a breakdown of runtime overhead among PEBS over-
head, PT overhead, synchronization tracing overhead. We
find that the PT overhead is very small contributing only 3%
slowdown at most, respectively. The results show the ben-
efits of PT’s hardware supports for trace compression and
memory range based filtering. Similarly, the synchroniza-
tion tracing overhead also has a very small impact on per-
formance (<1%). Finally, the PEBS overhead dominates the
overall PRORACE performance ranging from 97% to 99%.
The result makes sense because PEBS events (memory oper-

ations) are much more frequent than PT records (branches),
and PEBS events require rich information collection such as
register states.

7.3 Trace Size
PRORACE uses PEBS and PT to collect memory access sam-
ples and control-flow information at runtime. Figure 8 shows
the trace size generated per a second during program ex-
ecution of PARSEC benchmarks, with the varying PEBS
sampling period from 10 to 100K. The PT trace size re-
mains constant across different PEBS configurations, and its
size is measured before decompression. As PT records are
highly compressed by hardware, the PEBS trace dominates
the overall trace size (∼99%). As expected, a small sam-
pling period results in more samples, leading to large trace
size. Note that the y-axis is logarithmic. On geometric av-
erage, the trace size per second (in MB/s) goes up from 26,
69, 321, 597, to 463 for the decreasing sampling period of
100K, 10K, 1K, 100, and 10, respectively. One outlier is that
the trace size for the sampling period of 10 turns out to be
less than that of 100 (though it incurs higher overhead as
shown in the above experiment). Further investigations show
that with a very low sampling period, though the hardware
may sample more, these samples may be dropped if the ker-
nel finds that too much time has been spent on the interrupt
handling. This implies that there is no benefit of setting the
sampling period smaller than a certain (application-specific)
threshold.

Figure 9 shows the trace size per second (in MB/s) for
real-world applications, with the varying PEBS sampling pe-
riod from 10 to 100K. The result shows the similar trend
but much less space overhead compared to PARSEC bench-
marks. On geometric average, the trace size per second (in
MB/s) goes up from 0.2, 1.2, 7.9, 40.8, to 99.5 for the de-
creasing sampling period of 100K, 10K, 1K, 100, and 10,
respectively.

7.4 Race Detection
To evaluate the PRORACE’s effectiveness in data race detec-
tion, we used 12 real-world data race bugs [60]. For each
race bug, we fed a buggy input as documented in the pre-
vious study [60], and did not control the thread schedules.
We collected 100 traces for each PEBS sampling period:
100, 1K and 10K; and counted how many times PRORACE
can report the data race among the 100 traces. In effect, the
resulting number can be regarded as an approximate detec-
tion probability. For comparison, we also measured the num-
ber of data races detected by RaceZ. Note that RaceZ en-
ables memory trace reconstruction within one basic block,
and for backward replay, it only supports a trivial form of
backward propagation within that single basic block. On the
other hand, PRORACE includes PT-based full forward-and-
backward replay across basic blocks; and supports backward
propagation and reverse execution based backward replay.

Bug manifestation Access Type RaceZ ProRace
Period:100 Period:1000 Period:10000 Period:100 Period:1000 Period:10000

apache-21287 double free memory indirect 6 0 0 50 3 0
apache-25520 corrupted log register indirect 14 3 0 57 52 15
apache-45605 assertion register indirect 0 0 0 60 11 1
mysql-3596 crash memory indirect 0 0 0 5 1 0
mysql-644 crash memory indirect 20 1 0 21 6 1
mysql-791 missing output memory indirect 12 0 0 59 2 0
cherokee-0.9.2 corrupted log register indirect 43 11 2 63 29 8
cherokee-bug1 corrupted log register indirect 7 3 0 57 19 5
pbzip2-0.9.4-crash crash memory indirect 0 0 0 0 0 0
pbzip2-0.9.4-benign - pc relative 2 0 0 100 100 100
pfscan infinite loop pc relative 0 0 0 100 100 100
aget-bug2 wrong record in log pc relative 0 0 0 100 100 100

(average) 8.7 1.5 0.2 56 35.3 27.5

Table 2: Data Race Detection

Table 2 shows the summary of PRORACE’s data race de-
tection effectiveness. The first column corresponds to the ap-
plication name and its bug-tracking number, if exists, while
the second refers to how the bug manifests during a program
execution. The third column describes its characteristics that
we analyzed manually. The next six columns show the num-
ber of traces where RaceZ and PRORACE detect data races
out of 100 traces (i.e., representing the detection probability)
for each sampling period of 100, 1K and 10K, respectively.

It is important to note that PRORACE does detect a data
race. As expected, in general, the detection probability in-
creases as the sampling period decreases. On the other hand,
some race bugs in pbzip2-0.9.4, pfscan, and aget-bug2 are
detected every time (100%). Examining the results, we see
that the address of the racy variable uses PC-relative address-
ing in the program. Thus, reproducing the address of such
racy memory accesses is easy because the %rip register is
always available as PC, i.e., an instruction pointer. Here, to
detect such race bugs, PRORACE only needs to know what
basic blocks contain the racy memory accesses, which is ob-
tained by PT’s control-flow trace, without understanding the
PEBS-provided execution contexts.

As can be seen, for a given sampling period, PRORACE
detects many more data races than RaceZ. For example,
PRORACE improves the detection probability from 0.2% to
27.5% on average (arithmetic mean) for the sampling pe-
riod of 10K, which only incurs 2.6% runtime overhead (Fig-
ure 7). For the low sampling period of 100, PRORACE can
detect almost all cases (11/12), but RaceZ misses many. It
also turns out that RaceZ cannot effectively detect races on
simple PC-relative addressing cases because RaceZ requires
sampling at the exact basic block containing the racy ac-
cess. Overall, the results show that PRORACE’s PT-guided
forward-and-backward replays are very helpful in detecting
data races.

7.5 Memory Operation Reconstruction
PRORACE leverages the forward and backward replays to
reconstruct unsampled memory operations. RaceZ also tries
to recover other memory accesses, but its scope is limited

to one basic block that the sampled instruction belongs to.
This section shows the benefit of using PRORACE’s forward
and backward replays in terms of the memory reconstruction
ratio.

Figure 11 shows the memory instruction recovery ratio
(i.e., the number of recovered and sampled memory opera-
tions normalized to the number of original PEBS-sampled
instructions) for the six buggy applications with the sam-
pling period of 10K.

The first left-most bar shows how many more memory
operations can get reconstructed within one basic block
(equivalent to RaceZ’s approach). The results show that the
basic-block granularity recovery scheme can reconstructs
only 1.3x-11.9x memory operations, with the average (arith-
metic mean) of 5.4x ratio. Upon further investigation, we
found out that apache, which shows a good 9.53x recovery
ratio, has a lot of simple memory instructions that use PC-
relative addressing in a basic block. However, that was not
the case for other applications like mysql, which shows only
a 1.6x recovery ratio.

The next two bars show the benefit of forward replay only
and forward+backward replays in PRORACE. On average,
the forward replay recovers 134x more memory accesses
compared to the baseline (PEBS samples). The backward
replay provides additional benefits, and when the backward
replay is combined with the forward replay, they achieve
a higher recovery ratio of 164x on average. The results
shows that PRORACE’s race detection coverage (which is
approximately proportional to the number of recovered and
sampled memory operations) is more than 30 times better
than RaceZ’s limited basic-block level reconstruction.

7.6 Offline Analysis Overhead
Lastly, Figure 12 shows the offline analysis overhead when
traced with the sampling period of 10K. The results shows
that to analyze one second of program execution, offline
analysis takes 54.5 seconds for apache and 35.3 seconds
for mysql. Pfscan shows the worst analysis overhead as it
generates a very large trace for a short amount of program
execution time.

1

10

100

1000

N
or
m
al
ize

d	
M
em

or
y

Re
co
ve
ry
	R
at
e

Basicblock	Replay Forward	Replay Forward/Backward	Relpay

Figure 11: Memory Recovery Ratio

1

100

10000

O
ve
rh
ea
d	
pe

r	O
ne

	S
ec
on

d	
Pr
og
ra
m
	E
xe
cu
tio

n

PT	Decoding Trace	Reconstruction	 Data	Race	Detection	

Figure 12: Offline analysis overhead

We also present the breakdown of offline analysis over-
head, including 1) PT trace decoding; 2) memory trace re-
construction; and 3) data race detection, each of which takes
33.7%, 64.7%, and 1.6% of the total offline analysis cost,
respectively (note the logarithmic y-axis). Note that we con-
ducted this experiment using a single machine. However, the
PT trace decoding and trace reconstruction parts, which con-
tributes >98% of the total cost, can be easily parallelized. PT
records are independent each other, and the forward-and-
backward replay can be also performed region by region,
making it suitable for using multiple analysis machines.
Moreover, the result includes the overhead of PIN-based dy-
namic binary instrumentation. The same features can be im-
plemented using static instrumentation tools [30, 62] for bet-
ter performance.

8. Related Work
The commodity data race detectors such as FastTrack [14]
and ThreadSanitizer [54] do not only incur high runtime
overhead but also require instrumenting original program.
Thus, they would be more appropriate for early testing phase
as long as there are many effective test cases. When a pro-
gram gets mature and used in production, PRORACE would
be more useful as it minimally perturbs the program exe-
cution thereby observing the real execution characteristics
which lead to data races. This is particularly important be-
cause data races are highly sensitive to execution environ-
ments [2, 63], that testing cannot completely cover, as with
other bugs [25, 26, 34]. Section 2 discusses the limitation of
other sampling-based dynamic race detectors that cannot be
used for production runs.

Several strategies other than sampling have been ex-
plored to reduce the overhead of dynamic data race detec-
tion. Overlap-based data race detectors [2, 11, 38] focus on
detecting races only when racy instructions or code regions
overlap at runtime. Wester et al. [57] parallelizes data race
detection. Frost [55] compares multiple replicas of the pro-
gram running in different schedules. Greathouse et al. [16]
monitor cache miss events using PEBS and uses them to
turn on race detection in an on-demand manner. TxRace [63]
uses hardware transactional memory support. Custom hard-
ware [10, 42, 46, 47, 64] has been proposed as well.

The idea of using separate low-cost tracing and high-cost
(offline) analysis has been used for program runtime moni-
toring [5, 7], especially in deterministic replay domain [1,
17, 31, 32, 43]. To the best of our knowledge, there is
no software-based record-and-replay solution that achieves
(configurable) low overhead equivalent to PRORACE. In ad-
dition to input logging, record-and-replay solutions typically
require checkpointing support (even fork-based solution) to
monitor a long-lived execution. The lowest-overhead solu-
tion would be recording only synchronizations and program-
input as in RecPlay [49], which guarantees detecting the first
race. With additional offline analysis, ProRace can provide
higher detection capability beyond the first race. In the con-
text of deterministic replay, PRORACE addresses an impor-
tant but unanswered question of how much program states
can be reconstructed when a PEBS trace is used to start a
replay from; and when a PT trace is used to guide the re-
play. Moreover, PRORACE does not require program input
logging.

There are a large body of works that leverage PMU to
reduce the runtime overhead of program monitoring for var-
ious purposes. For debugging, Gist [28] uses Intel’s PT to
track the program execution paths for root cause diagnosis
of failures, while CCI [23] uses Intel’s Last Branch Record
(LBR) to collect the branch trace and the return values for
cooperative concurrency bug isolation. For security, Flow-
Guard [36] uses Intel’s PT to achieve transparent and effi-
cient Control Flow Integrity (CFI), while CFIMon [58] uses
Intel’s Branch Trace Store (BTS) for the same goal. For per-
formance, Brainy [27] leverages Intel’s PEBS to understand
the effect of the underlying hardware for effective selection
of data structures, while Jung et al. [24, 33] use the PEBS to
characterize the cache behavior of OpenMP [9] program for
dynamic parallelism adaptation.

9. Conclusion
PRORACE presents a novel PMU sampling-based data race
detector that can be deployed in production settings. Its
new kernel driver, that eliminates unnecessary copying and
data processing, significantly lowers the runtime overhead
of using PEBS to sample memory accesses. Furthermore,
PRORACE introduces a novel technique to reconstruct un-

sampled memory operations with the PT-guided forward and
backward replays, thereby enhancing the data race detection
coverage. The experimental results highlight PRORACE’s
high data race detection capability using the 12 real-world
data race bugs.

10. Acknowledgments
The authors would like to thank the anonymous referees for
their valuable comments. This work was in part supported
by the National Science Foundation under the grant CCF-
1527463 and Google Faculty Research Awards.

References
[1] Gautam Altekar and Ion Stoica. Odr: output-deterministic

replay for multicore debugging. In Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems principles,
pages 193–206. ACM, 2009.

[2] Swarnendu Biswas, Minjia Zhang, Michael D. Bond, and
Brandon Lucia. Efficient, software-only data race excep-
tions. In Proceedings of the 2015 ACM SIGPLAN Interna-
tional Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA ’15, 2015.

[3] Michael D. Bond, Katherine E. Coons, and Kathryn S.
McKinley. Pacer: Proportional detection of data races. In
Proceedings of the 2010 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI ’10,
pages 255–268, 2010.

[4] Christopher D. Carothers, Kalyan S. Perumalla, and
Richard M. Fujimoto. Efficient optimistic parallel simula-
tions using reverse computation. ACM Trans. Model. Comput.
Simul., 9(3):224–253, July 1999.

[5] Shimin Chen, Babak Falsafi, Phillip B. Gibbons, Michael
Kozuch, Todd C. Mowry, Radu Teodorescu, Anastassia Aila-
maki, Limor Fix, Gregory R. Ganger, Bin Lin, and Steven W.
Schlosser. Log-based architectures for general-purpose mon-
itoring of deployed code. In Proceedings of the 1st Workshop
on Architectural and System Support for Improving Software
Dependability, ASID ’06, pages 63–65, New York, NY, USA,
2006. ACM.

[6] Jong-Deok Choi, Keunwoo Lee, Alexey Loginov, Robert
O’Callahan, Vivek Sarkar, and Manu Sridharan. Efficient and
precise datarace detection for multithreaded object-oriented
programs. In Proceedings of the ACM SIGPLAN 2002 Confer-
ence on Programming Language Design and Implementation,
PLDI ’02, pages 258–269, 2002.

[7] Jim Chow, Tal Garfinkel, and Peter M. Chen. Decoupling
dynamic program analysis from execution in virtual envi-
ronments. In USENIX 2008 Annual Technical Conference,
ATC’08, pages 1–14, Berkeley, CA, USA, 2008. USENIX As-
sociation.

[8] Weidong Cui, Marcus Peinado, Sang Kil Cha, Yanick Fratan-
tonio, and Vasileios P. Kemerlis. Retracer: Triaging crashes by
reverse execution from partial memory dumps. In Proceedings
of the 38th International Conference on Software Engineer-
ing, ICSE ’16, pages 820–831, New York, NY, USA, 2016.
ACM.

[9] L. Dagum and R. Menon. OpenMP: an industry standard API
for shared-memory programming. IEEE Computer Science
and Engineering, 5(1):46–55, 1998.

[10] Joseph Devietti, Benjamin P. Wood, Karin Strauss, Luis Ceze,
Dan Grossman, and Shaz Qadeer. Radish: Always-on sound
and complete ra detection in software and hardware. In
Proceedings of the 39th Annual International Symposium on
Computer Architecture, ISCA ’12, pages 201–212, 2012.

[11] Laura Effinger-Dean, Brandon Lucia, Luis Ceze, Dan Gross-
man, and Hans-J. Boehm. Ifrit: Interference-free regions for
dynamic data-race detection. In Proceedings of the ACM In-
ternational Conference on Object Oriented Programming Sys-
tems Languages and Applications, OOPSLA ’12, pages 467–
484, 2012.

[12] Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. Goldilocks:
A race and transaction-aware java runtime. In Proceedings
of the 2007 ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’07, pages 245–
255, 2007.

[13] John Erickson, Madanlal Musuvathi, Sebastian Burckhardt,
and Kirk Olynyk. Effective data-race detection for the kernel.
In In Proceedings of the 9th USENIX conference on Operating
systems design and implementation, OSDI ’10, 2010.

[14] Cormac Flanagan and Stephen N. Freund. Fasttrack: Efficient
and precise dynamic race detection. In Proceedings of the
2009 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’09, pages 121–133, 2009.

[15] Pedro Fonseca, Cheng Li, Vishal Singhal, and Rodrigo Ro-
drigues. A study of the internal and external effects of con-
currency bugs. In Proceedings of the 2010 IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks,
DSN 2010, Chicago, IL, USA, June 28 - July 1 2010, pages
221–230, 2010.

[16] Joseph L. Greathouse, Zhiqiang Ma, Matthew I. Frank,
Ramesh Peri, and Todd Austin. Demand-driven software race
detection using hardware performance counters. In Proceed-
ings of the 38th Annual International Symposium on Com-
puter Architecture, ISCA ’11, pages 165–176, 2011.

[17] Jeff Huang, Charles Zhang, and Julian Dolby. Clap: Record-
ing local executions to reproduce concurrency failures. In Pro-
ceedings of the 34th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI ’13, pages
141–152, 2013.

[18] Intel. Intel 64 and ia-32 architec-
tures software developers manual, 2013.
http://download.intel.com/products/processor/manual/
325462.pdf.

[19] Intel. Intel inspector xe, 2015. http://software.intel.com/en-
us/intel-inspector-xe.

[20] Intel Corporation. Intel R©Microarchitecture Codename Ne-
halem Performance Monitoring Unit Programming Guide,
2010.

[21] Intel Corporation. 6th Generation Intel R©Processor
Datasheet for S-Platforms, 2015.

[22] Intel Corporation, Santa Clara, CA. Intel R©64 and IA-32
Architectures Software Developers’ Manual, 2016.

[23] Guoliang Jin, Aditya V. Thakur, Ben Liblit, and Shan Lu. In-
strumentation and sampling strategies for cooperative concur-
rency bug isolation. In William R. Cook, Siobhán Clarke, and
Martin C. Rinard, editors, OOPSLA, 2010.

[24] C. Jung, D. Lim, J. Lee, and S. Han. Adaptive execution
techniques for SMT multiprocessor architectures. pages 236–
246, 2005.

[25] Changhee Jung. Effective techniques for understanding and
improving data structure usage. Ph.D. Dissertation, Georgia
Institute of Technology, Atlanta, GA, 2013.

[26] Changhee Jung, Sangho Lee, Easwaran Raman, and Santosh
Pande. Automated memory leak detection for production
use. In Proceedings of the 36th International Conference on
Software Engineering, 2014.

[27] Changhee Jung, Silvius Rus, Brian P. Railing, Nathan Clark,
and Santosh Pande. Brainy: effective selection of data struc-
tures. In Proceedings of the 32nd ACM SIGPLAN conference
on Programming language design and implementation, PLDI
’11, pages 86–97, New York, NY, USA, 2011. ACM.

[28] Baris Kasikci, Benjamin Schubert, Cristiano Pereira, Gilles
Pokam, and George Candea. Failure sketching: A technique
for automated root cause diagnosis of in-production failures.
In Proceedings of the 25th Symposium on Operating Systems
Principles, SOSP ’15, pages 344–360, New York, NY, USA,
2015. ACM.

[29] Baris Kasikci, Cristian Zamfir, and George Candea. Race-
mob: Crowdsourced data race detection. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Prin-
ciples, SOSP ’13, pages 406–422, 2013.

[30] Michael A. Laurenzano, Mustafa M. Tikir, Laura Carrington,
and Allan Snavely. Pebil: Efficient static binary instrumen-
tation for linux. In International Symposium on the Perfor-
mance Analysis of Systems and Software, 2010.

[31] Dongyoon Lee, Mahmoud Said, Satish Narayanasamy, and
Zijiang Yang. Offline symbolic analysis to infer total store or-
der. In Proceedings of the 2011 IEEE 17th International Sym-
posium on High Performance Computer Architecture, HPCA
’11, pages 357–358, 2011.

[32] Dongyoon Lee, Mahmoud Said, Satish Narayanasamy, Zi-
jiang Yang, and Cristiano Pereira. Offline symbolic analy-
sis for multi-processor execution replay. In Proceedings of
the 42Nd Annual IEEE/ACM International Symposium on Mi-
croarchitecture, MICRO 42, pages 564–575, 2009.

[33] Jaejin Lee, Jung-Ho Park, Honggyu Kim, Changhee Jung,
Daeseob Lim, and SangYong Han. Adaptive execution tech-
niques of parallel programs for multiprocessors. J. Parallel
Distrib. Comput., 70(5):467–480, May 2010.

[34] Sangho Lee, Changhee Jung, and Santosh Pande. Detecting
memory leaks through introspective dynamic behavior mod-
elling using machine learning. In Proceedings of the 36th In-
ternational Conference on Software Engineering, 2014.

[35] Qingrui Liu, Changhee Jung, Dongyoon Lee, and Devesh
Tiwari. Compiler-directed lightweight checkpointing for fine-
grained guaranteed soft error recovery. In Proceedings of the
International Conference on High Performance Computing,
Networking, Storage and Analysis (SC), Nov 2016.

[36] Yutao Liu, Peitao Shi, Xinran Wang, Haibo Chen, Binyu
Zang, and Haibing Guan. Transparent and efficient cfi en-
forcement with intel processor trace. In Proceedings of the
2017 IEEE 23rd International Symposium on High Perfor-
mance Computer Architecture, HPCA ’17, 2017.

[37] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou.
Learning from mistakes: A comprehensive study on real world
concurrency bug characteristics. In Proceedings of the 13th
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS XIII,
pages 329–339, 2008.

[38] Brandon Lucia, Luis Ceze, Karin Strauss, Shaz Qadeer, and
Hans-J. Boehm. Conflict exceptions: Simplifying concur-
rent language semantics with precise hardware exceptions for
data-races. In Proceedings of the 37th Annual International
Symposium on Computer Architecture, ISCA ’10, pages 210–
221, 2010.

[39] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil,
Artur Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa
Reddi, and Kim Hazelwood. Pin: Building customized pro-
gram analysis tools with dynamic instrumentation. In Pro-
ceedings of the 2005 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI ’05, pages
190–200, 2005.

[40] Daniel Marino, Madanlal Musuvathi, and Satish
Narayanasamy. Literace: Effective sampling for lightweight
data-race detection. In Proceedings of the 2009 ACM SIG-
PLAN Conference on Programming Language Design and
Implementation, PLDI ’09, pages 134–143, 2009.

[41] S.S. Muchnick. Advanced Compiler Design Implementation.
Morgan Kaufmann Publishers, 1997.

[42] Abdullah Muzahid, Dario Suárez, Shanxiang Qi, and Josep
Torrellas. Sigrace: Signature-based data race detection. In
Proceedings of the 36th Annual International Symposium on
Computer Architecture, ISCA ’09, pages 337–348, 2009.

[43] Soyeon Park, Yuanyuan Zhou, Weiwei Xiong, Zuoning Yin,
Rini Kaushik, Kyu H Lee, and Shan Lu. Pres: probabilistic
replay with execution sketching on multiprocessors. In Pro-
ceedings of the ACM SIGOPS 22nd symposium on Operating
systems principles, pages 177–192. ACM, 2009.

[44] PCWorld. Nasdaq’s facebook glitch came from race con-
ditions, May 2012. http://www.pcworld.com/article/255911/
nasdaqs_facebook_glitch_came_from_race_conditions.html.

[45] Eli Pozniansky and Assaf Schuster. Multirace: Efficient on-
the-fly data race detection in multithreaded c++ programs: Re-
search articles. Concurr. Comput. : Pract. Exper., 19(3):327–
340, March 2007.

[46] Milos Prvulovic. Cord: Cost-effective (and nearly overhead-
free) order-recording and data race detection. In Proceedings
of the 2006 IEEE 12th International Symposium on High
Performance Computer Architecture, HPCA ’06, 2006.

[47] Milos Prvulovic and Josep Torrellas. Reenact: Using thread-
level speculation mechanisms to debug data races in multi-
threaded codes. In Proceedings of the 30th Annual Interna-
tional Symposium on Computer Architecture, ISCA ’03, pages
110–121, 2003.

[48] Gang Ren, Eric Tune, Tipp Moseley, Yixin Shi, Silvius Rus,
and Robert Hundt. Google-wide profiling: A continuous pro-
filing infrastructure for data centers. IEEE Micro, 30(4).

[49] Michiel Ronsse and Koen De Bosschere. Recplay: A fully in-
tegrated practical record/replay system. ACM Trans. Comput.
Syst., 17(2):133–152, May 1999.

[50] Paul Sack, Brian E. Bliss, Zhiqiang Ma, Paul Petersen, and
Josep Torrellas. Accurate and efficient filtering for the intel
thread checker race detector. In Proceedings of the 1st Work-
shop on Architectural and System Support for Improving Soft-
ware Dependability, ASID ’06, pages 34–41, 2006.

[51] SecurityFocus. Software bug contributed to blackout, Feb.
2004. http://www.securityfocus.com/news/8016.

[52] Konstantin Serebryany and Timur Iskhodzhanov. Thread-
sanitizer: Data race detection in practice. In Proceedings of
the Workshop on Binary Instrumentation and Applications,
WBIA ’09, pages 62–71, 2009.

[53] Tianwei Sheng, Neil Vachharajani, Stephane Eranian, Robert
Hundt, Wenguang Chen, and Weimin Zheng. Racez: A
lightweight and non-invasive race detection tool for produc-
tion applications. In Proceedings of the 33rd International
Conference on Software Engineering, ICSE ’11, pages 401–
410, 2011.

[54] The Clang Team. Clang 3.8 threadsanitizer, 2015.
http://clang.llvm.org/docs/ThreadSanitizer.html.

[55] Kaushik Veeraraghavan, Dongyoon Lee, Benjamin Wester,
Jessica Ouyang, Peter M. Chen, Jason Flinn, and Satish
Narayanasamy. Doubleplay: Parallelizing sequential logging
and replay. In Proceedings of the Sixteenth International Con-
ference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XVI, pages 15–26, 2011.

[56] Jan Wen Voung, Ranjit Jhala, and Sorin Lerner. Relay: Static
race detection on millions of lines of code. In Proceedings of
the the 6th Joint Meeting of the European Software Engineer-
ing Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering, ESEC-FSE ’07, pages
205–214, 2007.

[57] Benjamin Wester, David Devecsery, Peter M. Chen, Jason
Flinn, and Satish Narayanasamy. Parallelizing data race de-
tection. In Proceedings of the Eighteenth International Con-
ference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’13, pages 27–38, 2013.

[58] Yubin Xia, Yutao Liu, Haibo Chen, and Binyu Zang. Cfi-
mon: Detecting violation of control flow integrity using per-
formance counters. In Proceedings of the 2012 42Nd Annual
IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), DSN ’12, pages 1–12, Washington, DC,
USA, 2012. IEEE Computer Society.

[59] Junfeng Yang, Ang Cui, Sal Stolfo, and Simha Sethumadha-
van. Concurrency attacks. In The 4th USENIX Workshop on
Hot Topics in Parallelism, Berkeley, CA, 2012. USENIX.

[60] Jie Yu and Satish Narayanasamy. A case for an interleaving
constrained shared-memory multi-processor. In Proceedings
of the 36th Annual International Symposium on Computer
Architecture, ISCA ’09, pages 325–336, 2009.

[61] Yuan Yu, Tom Rodeheffer, and Wei Chen. Racetrack: Efficient
detection of data race conditions via adaptive tracking. In
Proceedings of the Twentieth ACM Symposium on Operating
Systems Principles, SOSP ’05, pages 221–234, 2005.

[62] Mingwei Zhang, Rui Qiao, Niranjan Hasabnis, and R. Sekar.
A platform for secure static binary instrumentation. In Pro-
ceedings of the 10th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments, VEE ’14,
pages 129–140, New York, NY, USA, 2014. ACM.

[63] Tong Zhang, Dongyoon Lee, and Changhee Jung. Txrace: Ef-
ficient data race detection using commodity hardware trans-
actional memory. In Proceedings of the Twenty-First Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’16, pages 159–
173, 2016.

[64] Pin Zhou, Radu Teodorescu, and Yuanyuan Zhou. Hard:
Hardware-assisted lockset-based race detection. In Proceed-
ings of the 2007 IEEE 13th International Symposium on High
Performance Computer Architecture, HPCA ’07, pages 121–
132, 2007.

