
nAdroid: Statically Detecting Ordering Violations
in Android Applications

Xinwei Fu
Virginia Tech, USA
fuxinwei@vt.edu

Dongyoon Lee
Virginia Tech, USA
dongyoon@vt.edu

Changhee Jung
Virginia Tech, USA
chjung@vt.edu

Abstract

Modern mobile applications use a hybrid concurrency model.
In this model, events are handled sequentially by event
loop(s), and long-running tasks are offloaded to other threads.
Concurrency errors in this hybrid concurrency model can
take multiple forms: traditional atomicity and ordering viola-
tions between threads, as well as ordering violations between
event callbacks on a single event loop.
This paper presents nAdroid, a static ordering violation

detector for Android applications. Using our threadifica-
tion technique, nAdroid statically models event callbacks
as threads. Threadification converts ordering violations be-
tween event callbacks into ordering violations between threads,
after which state-of-the-art thread-based race detection tools
can be applied. nAdroid then applies a combination of
sound and unsound filters, based on the Android concur-
rency model and its happens-before relation, to prune out
false and benign warnings.
We evaluated nAdroid with 27 open source Android ap-

plications. Experimental results show that nAdroid detects
88 (at least 58 new) harmful ordering violations, and outper-
forms the state-of-the-art static technique with fewer false
negatives and false positives.

CCS Concepts · Software and its engineering → Soft-

ware testing and debugging;

Keywords Ordering violation, Data race, Use-after-free,
Static analysis, Debugging, Android, Threadification

ACM Reference Format:

Xinwei Fu, Dongyoon Lee, and Changhee Jung. 2018. nAdroid:

Statically Detecting Ordering Violations in Android Applications.

In Proceedings of 2018 IEEE/ACM International Symposium on Code

Generation and Optimization (CGO’18). ACM, New York, NY, USA,

13 pages. https://doi.org/10.1145/3168829

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

CGO’18, February 24ś28, 2018, Vienna, Austria

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5617-6/18/02. . . $15.00

https://doi.org/10.1145/3168829

1 Introduction

The mainstream mobile platforms (Android, iOS, Windows
Phone) offer a distinctive concurrent programming model.
Mobile applications are often sensor-driven (e.g. touchscreen,
GPS), and sensor data is most readily handled by the event-
driven model. On the other hand, developers want to take ad-
vantage of themultiprocessors inmodernmobile devices [32].
To accommodate these competing demands, the concurrency
model on mobile platforms is a hybrid of event loop(s) that
sequentially handle events, and background threads that
concurrently execute long-running tasks.
While this hybrid model allows developers to balance

responsiveness with performance, it also exposes mobile
applications to new classes of concurrency errors. While mo-
bile applications can of course contain conventional multi-

threaded data races due to a non-deterministic thread sched-
ule, recent studies have shown that these applications can
also contain single-thread data races resulting from a non-
deterministic event posting order [3, 9, 17, 26]. These con-
currency errors have been shown to cause issues like perfor-
mance degradation [24], unexpected termination [3], accel-
erated battery drain [33], and security vulnerabilities [6ś8].
Concurrency errors in mobile systems have been tack-

led with both dynamic and static techniques. Several works
test mobile applications dynamically, collecting execution
traces and performing offline data race detection [3, 17, 26].
Though dynamic testing has relatively few false positives,
the detection coverage is limited to the observed executions.
In contrast, static analysis can inspect program code for

all possible runtime behaviors. However, the use of static
program analysis to detect concurrency errors has not yet
been well studied in the context of mobile applications. Con-
ventional static data race detectors [11, 12, 19, 29, 35, 43] only
focus on multi-threading, making them unsuitable for event-
driven mobile applications. Recently, several new techniques
have been proposed for mobile applications [24, 33, 39], but
their scope is limited: e.g., they do not consider the happens-
before relationship between event callbacks (ğ2).
This paper presents nAdroid1, a novel static ordering

violation detector for mobile applications with hybrid con-
currency model, tailored to Android. Though nAdroid can
statically detect all types of data races, classifying data races

1
nAdroid is named after Android, but has an łordering violationž between

the first two letters.

62

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3168829
https://doi.org/10.1145/3168829


CGO’18, February 24ś28, 2018, Vienna, Austria Xinwei Fu, Dongyoon Lee, and Changhee Jung

bound=get();

bound=null;

bound.use();

Looper Thread

onServiceConnected

onServiceDisconnected

onCreateContextMenu

connected

disconnected

Service	Thread

(a) single-threaded UAF 1 in ConnectBot

hostBridge=get();

hostBridge=null;

hostBridge.use();

Looper Thread

if(hostBridge!=null)

post(runnable)

onServiceConnected connected

disconnected

run

onClick

Service	Thread

onServiceDisconnected

(b) single-threaded UAF 2 in ConnectBot

ThreadPool.run();

if(jClient!=null)	{

jClient.abort();

}

jClient =	null;

Looper Thread

onResume

onPause run

Background	Thread

(c) multi-threaded UAF in FireFox

Figure 1. Examples of harmful use-after-free (UAF) ordering violations.

as harmful or benign is hard in general [20, 30, 45]. Therefore,
this study focuses on finding use-after-free (UAF) ordering
violations (e.g., f=null vs. f.use()). A UAF ordering viola-
tion is a form of harmful read-after-write data race, because
it can lead to an unexpected NullPointerException.

The key challenge is that the event-based and thread-based
programming models have distinct patterns and dissimilar
happens-before relations [22], making it hard to statically
detect them together. nAdroid addresses this problem us-
ing our novel threadification technique (ğ4) that statically
models the event-driven aspects of Android applications as
threads. In effect, threadification converts the tricky problem
of detecting single-threaded ordering violations between
event callbacks into the well-studied problem of detecting
multi-threaded ordering violations. This allows nAdroid
to leverage existing static data race detectors developed for
multi-threaded programs (Chord [29] in our study) to de-
tect both event-driven and threaded ordering violations in a
unified manner (ğ5).
Furthermore, nAdroid introduces novel static happens-

before-based filters, crafted based on the Android concur-
rency model, to prune out false UAF warnings. It is critical
to remove false positives as they are often overwhelming
enough to make programmers unwilling to use a detection
tool. The problems specific to the Android context have not
been addressed by existing static tools. We describe sound
and unsound filters for these problems (ğ6).
We evaluated nAdroid using 27 open-source Android

applications, from which nAdroid detects 88 (at least 58
novel) true harmful ordering violations. Experimental re-
sults also show that nAdroid produces fewer false nega-
tives and fewer false positives than the state-of-the-art static
technique, DEvA [39].
This paper makes the following contributions:

• We present nAdroid, a static ordering violation detec-
tor for Android, that considers both the event-based and
the thread-based concurrency models. We model event
callbacks as threads so that ordering violations between
callbacks and threads can be detected in a unified manner.

• To the best of our knowledge, nAdroid is the first tool
that incorporates the Android concurrency model and

happens-before relations into static analysis to prune false
or benign warnings.

• Weevaluate 27Android applications and show thatnAdroid
detects true harmful ordering violations, and produces
fewer false positives and false negatives than the state-of-
the-art static technique.

2 Background and Motivation

This section introduces the Java-based Android concurrency
model, provides three examples of harmful UAF ordering vio-
lation that nAdroid found, and demonstrates the limitations
of existing techniques.

2.1 The Android Concurrency Model

AnAndroid application has a hybrid event-driven and thread-
based concurrency model to handle a mix of incoming sensor
data and user interactions (UI) best addressed with events,
and to support arbitrary processing, best addressed with
threads. A thread may attach an event queue to itself and
handle an event for execution. A thread with an event queue
is called a looper thread. It continuously checks its event
queue and processes one event at a time by executing the
corresponding event callback. Therefore, all the event call-
backs executed in one looper thread are atomic (no preemp-
tion) with respect to each other. Furthermore, the application
may create additional native threads. Since it is cumbersome
for a native thread to communicate with a looper thread,
the Android framework also provides a high-level concur-
rent construct, AsyncTask, to create a child thread that can
interact with the looper thread via events.

2.2 Examples of UAF Violations

Figure 1 shows some real examples of harmful UAF ordering
violations that nAdroid found in Android applications. The
first two cases (a) and (b) are from ConnectBot, and represent
UAF bugs between event callbacks within a single looper
thread. In this example, ConnectBot binds to a background
service. Its onServiceConnected and onServiceDisconnected

callbacks are invoked by the framework to allow it to interact

63



nAdroid: Statically Detecting Ordering Violations in Android Applications CGO’18, February 24ś28, 2018, Vienna, Austria

Modeling

(Section	4)

Ordering	Violation	

Detection

(Section	5)

Filtering

(Section	6)
Android	APK

Transformed

Program

Potential

Ordering	

Violations

Remaining

Ordering	

Violations

(Multi-thread)(		Event-driven	

&	Multi-thread	)

Programmer

Reviews

(Section	7)

Harmful

Ordering	Violations

NADROID

Figure 2. nAdroid analyzes an APK package and reports potential ordering violations between callbacks and threads.

with the service. In case (a), bound is used by the onCreateCon-
textMenu callback without ensuring that the service remains
connected. If onServiceDisconnected runs before onCreate-

ContextMenu, then the program crashes with an exception. In
case (b), onClick actually checks if the field hostBridge is not
null. Unfortunately, it then posts a Runnable to the looper
thread that will use the hostBridge later, asynchronously.
If onServiceDisconnected is triggered before the Runnable,
then hostBridge will be set to null, and the Runnable will
throw a NullPointerException. In cases (a) and (b), the Con-

nectBot developers were clearly aware of the possibility of
service disconnection ś after all, they implemented onSer-

viceDisconnected ś but they were incautious about potential
timing issues.

Case (c) from FireFox shows a UAF bug between a looper
thread and a background thread. onResume submits a Runnable
object to the thread pool, which sets jClient to null. Though
onPause checks if jClient is null, it is prone to a UAF error
due to the lack of atomicity.

2.3 Limitations of Current Techniques

Existing trace-based dynamic data race detectors [3, 17, 26]
suffer from a coverage problem. They collect execution traces
from manual [17] or automatic UI exploration [3, 26], and
then perform offline data race detection. Though these dy-
namic detectors soundly detect all races for observed traces,
their coverage is limited by their input generator. For exam-
ple, CAFA reports no harmful races between event callbacks
in ConnectBot (see Table 1 in [17]), while nAdroid found 13.

For static analysis, the state of the art is DEvA [39], which
performs whole-program static ordering violation (łevent
anomalyž) analysis for Android applications. However, DEvA
is limited by significant sources of both false positives and
false negatives. Notably, DEvA does not adequately consider
the happens before relationship between event callbacks,
resulting in many false positives. nAdroid’s happens-before
based filters (ğ6) specifically address this problem, saving
developers’ manual debugging efforts.

In addition, DEvA suffers from two sources of false nega-
tives. First, DEvA does not take into consideration the multi-
threaded aspect of the Android programming model, and
applies its if-guard and intra-allocation filters (ğ6) unsoundly,
assuming that all methods are executed atomically regardless
of whether they are invoked concurrently. Second, DEvA’s
read/write set analysis is intra-class, restricted to within each
class and its inner classes, i.e., DEvA cannot identify any

inter-class racy accesses. Thus, DEvA ignores the common
Android programming practice of putting event callbacks
and associated background threads in separate classes (e.g.
Runnable, Handler and AsyncTask classes), missing ordering
violations that frequently occur across different classes.

For other static tools, Asynchronizer [24] handles only
one particular form of thread, namely the AsyncTask; and
Pathak et al. [33] consider only the fork-join relationship.

3 Overview

Figure 2 shows an overview of nAdroid. Given an Android
APK package, nAdroid reports potential UAF violations.

An Android program is a collection of event callbacks
which are asynchronously invoked by the Android frame-
work based on UI, sensor input, Android component lifecy-
cles, and so on. Without a single entry point, static analy-
ses do not know where to begin. Like previous work [1, 4],
nAdroid introduces a łdummy mainž to create a single en-
try point so that the resulting program can be consumed by
existing analysis frameworks [21, 29, 44].

nAdroid’s dummy main is unique as it models event call-

backs as threads, which we call threadification (ğ4). nAdroid
first analyzes the APK package to identify the application’s
different entry points (event callbacks). nAdroid, at a high
level, adds one child thread to the dummymain for each entry
point. nAdroid applies this analysis recursively, repeatedly
modeling the callbacks registered and threads created by
these child threads as new child threads.
Given this transformed program, nAdroid can then ap-

ply a static data race detector developed for (conventional)
multi-threaded programs to detect data races in Android
applications. In this study, nAdroid uses Chord [29], the
state-of-the art open source static data race detector for Java
programs with some Android-specific modifications (ğ5) to
detect potential ordering violations.
nAdroid prunes out many false and benign warnings us-

ing a set of filters based on the Android concurrency model
and its happens-before relation, as well as on common An-
droid programming patterns (ğ6).
Finally, nAdroid gives programmers insight into the re-

maining ordering violation warnings so that they can deter-
mine whether they are truly harmful at runtime (ğ7).

4 Threadification

Our key insight is that, through threadification, we can con-
vert single-threaded ordering violations between unordered

64



CGO’18, February 24ś28, 2018, Vienna, Austria Xinwei Fu, Dongyoon Lee, and Changhee Jung

dummy	main	thread

onCreate

onStart
onService

Connected
onService

Disconnected

onReceive

onResume

onClick

handleMessage

run

onLocationChanged

(a)	Lifecycle	Callbacks (b)	UI/system	Callbacks (c)	Handler(d)	Service	/	Receiver

send()

post()

bind()

register	()

onPreExecute

onProgressUpdate

onPostExecute

doInBackground

(e)	AsyncTask

execute()

publish()

Thread	Creation

Native	Thread

Modeled	 Thread (Event Callback)

Modeled	Thread (Post Callback)

Figure 3. Through our threadification technique, an event-driven program is transformed into a multi-threaded program.

event callbacks into multi-threaded ordering violations be-
tween threads. After threadification, we can apply an or-
dering violation detection algorithm. This approach allows
nAdroid to incorporate both event callbacks and threads
in the analysis scope. The ability to re-use existing static
analysis tools is an ample reward (ğ5).
Figure 3 shows an example of a transformed program.

Threadification creates a dummy main thread (representing
the initial looper thread) that creates łthreadsž in response to
various application behaviors. At a high level, there are two
forms of callbacks: Entry Callbacks (EC), externally invoked
by the Android runtime, and Posted Callbacks (PC), inter-
nally triggered by other event callbacks or threads. nAdroid
models ECs as child threads of the dummy main to mimic
the way that Android lifecycle, UI, and other entry callbacks
are executed by the initial looper thread. Then, nAdroid
models PCs as child threads of the posting callbacks/threads
to preserve the causal relation between the poster and the
postee, reducing false positives. This lineage also helps pro-
grammers reason about the callback and thread sequence
associated with each potential UAF bug (ğ7).

The proposed modeling does not capture precise happens-
before orders between callbacks (e.g. lifecycle ECs), nor does
it reflect the atomic execution of callbacks. In ğ6, we discuss
introduce sound and unsound filters tomitigate these sources
of imprecision. A detailed description of our transformation
technique follows.

4.1 Entry Callbacks (EC)

Android programs use the Activity component to handle
user interactions. The Activity component frequently tran-
sitions between different states in its lifecycle. For example,
a running activity becomes paused when another activity
comes into the foreground. For each transition, the Android
framework calls a (pre-defined) lifecycle callback such as on-
Create, onStart, onResume, onPause, onStop, and onDestroy.

Because they are externally invoked by the Android runtime
(not internally by other event callbacks), nAdroid models
them as child threads spawned by the dummy main (UI)
thread. Figure 3 (a) shows an example with onCreate, on-
Start, and onResume.

Furthermore, Android programs include other (non-lifecycle)
event callbacks for coping with UI interactions (e.g., button
clicks) and system events (e.g., GPS, accelerometers). These
callbacks may be registered imperatively using Android
frameworkAPIs (e.g., a requestLocationUpdatesmethodmay
register an onLocationChanged callback) or declared in the
manifest XML files. Similar to the lifecycle case, these events
are externally posted by theAndroid runtime. Thus,nAdroid
models them as child threads of the dummy main thread.
Figure 3 (b) shows how onClick and onLocationChanged call-
backs are modeled.

4.2 Posted Callbacks (PC)

nAdroid models three forms of posted callbacks: Handler,
Service/BroadcastReceiver, and AsyncTask callbacks.
First, Android’s Handler provides two generic methods

by which a callback (or a thread) may communicate with
a looper thread. The sendMessage method delivers a Mes-

sage object to be processed by the recipient’s handleMessage
method, while the post method enqueues a Runnable object
to be executed later by the receiving looper thread2. Both of
these methods post an event to the receiving looper thread.
Since these events come from within the application itself,
nAdroid models them as threads created by the caller of
these methods. This approach allows nAdroid to establish
a happens-before order between the caller’s instructions
preceding the call and the instructions performed by the
newly-modeled thread, reducing false positives. Figure 3 (c)

2Android provides other methods to post a Runnable object, including

View’s post and Activity’s runOnUIThread methods. nAdroid ad-

dresses these in the same fashion.

65



nAdroid: Statically Detecting Ordering Violations in Android Applications CGO’18, February 24ś28, 2018, Vienna, Austria

illustrates an example in which onClick calls both sendMes-

sage and post; the resulting activities are modeled as child
threads.
Second, Service and BroadcastReceiver are the two re-

maining major components in the Android model. The Ser-

vice component handles background processing, and the
BroadcastReceiver component responds to system-wide broad-
cast announcements. After an application binds to a back-
ground service (using bindService), its onServiceConnected
and onServiceDisconnected callbacksmay be invoked. There-
fore, nAdroid models these callbacks as child threads of the
caller of the bindService method. Similarly, an application
may register a broadcast receiver (using registerReceiver).
Then, the application’s onReceive callback is executed on
subsequent broadcast deliveries. nAdroid models this call-
back in the same manner. Figure 3 (d) presents an example
in which Service and BroadcastReceiver are respectively
bound and registered by onStart and onResume.
Third, to facilitate background processing, the Android

framework provides a high-level concurrency construct, Async-
Task, by which a looper thread can create and easily commu-
nicate with a child thread. The AsyncTask can publish results
using the publishProgress method, which will trigger the
onProgressUpdate callback of its parent looper thread. In
addition, the framework invokes the parent’s onPreExecute
callback before the AsyncTask begins, and its onPostExecute
callback after it ends.
nAdroid preserves the parent-child relationship of any

AsyncTasks in the application, and models the associated on-

PreExecute and onPostExecute callbacks as children of the
AsyncTask. Figure 3 (e) shows an example in which onLoca-

tionChanged executes an AsyncTask (doInBackground), which
in turn creates the three child threads shown.
The Android framework also allows a program to cre-

ate native Java threads (java.lang.Thread). nAdroid simply
treats these as threads.

5 Detecting UAF Ordering Violations

After threadification, nAdroid uses a modified version of
Chord [29], the state-of-the-art static data race detector for
Java programs, to detect UAF ordering violations in An-
droid applications. Chord supports context-sensitive heap
object naming and alias analysis, namely k-object-sensitive-

analysis [27, 28]. Then, Chord performs static data race detec-
tion based on k-object-sensitive points-to analysis, thread es-
cape analysis, lockset analysis, and May-Happen-in-Parallel
(MHP) analysis. Modeling event callbacks as threads allows
nAdroid to take advantage of such precise analyses devel-
oped for multi-threaded programs.
nAdroidmakes three modifications to the original Chord

algorithm to focus on UAF bugs. First, we filter out data races
that cannot be a UAF violation. nAdroid defines a use as the
Java bytecode getfield retrieving the field of an object, and

if	(f	!=	null)

f.use();

f	=	new	F();

f.use();

f	=	getF();

f.use();

(b)

(c)

(a)

f	=	null;

f	=	null;

f	=	null;

onClick1 onClick2

onClick2

onService

Connected

onService

Disconnected

onClick1

sendMessage();

f.use();
f	=	null;

f	=	new	F();

f.use();

f	=	null;

f	=	null;

finish();

(f)

if	(getF()	!=	null)

(g)

f	=	null;

f.use();

(d) (e)onResume

onClick

onPause

onClick1 onClick2

onClick handleMessage

onClick1 onClick2

Sound	Filters Unsound	Filters

Figure 4. Examples of sound filters (a) MHB (b) IG (c) IA,
and unsound filters (d) RHB (e) CHB (f) PHB (g) UR

a free as the Java bytecode putfield setting a field to null.
nAdroid only considers racy pairs that consist of a use and
a free on the same field.

Second, because locks do not prevent UAF errors,nAdroid
initially ignores Chord’s lockset analysis. Though locks pro-
vide atomicity, they cannot prevent ordering violations; UAF
bugs can happen with or without locks. Therefore, nAdroid
considers all racy use/free pairs no matter the locking pattern.
Since locks may be used to prevent UAFs when combined
with other checks, we refine our algorithm in ğ6.1.

Third, nAdroid does not use Chord’s MHP analysis. For
Android applications, the MHP analysis does not add much
value because (blocking) synchronization primitives enforc-
ing a specific order are not frequently used.Moreover, Chord’s
simple MHP analysis does not support sophisticated noti-

fy/wait analysis as in [23, 31]. Nonetheless, it requires flow-
sensitive analysis which often suffers from scalability issues.
Instead, we introduce Android-specific happens-before fil-
ters in the next section to replace MHP analysis designed for
conventional multithreaded programs.

6 Filtering False Positives

To prune false UAF violations, nAdroid introduces novel
static happens-before (HB)-based filters derived from the
Android concurrency model, and non-HB filters that are
derived from common Android programming patterns. Ex-
isting dynamic tools have defined happens-before relations
in Android applications [3, 17, 26], but our use of the Android
happens-before relation in static analysis is novel.

6.1 Sound Filters

nAdroid employs three sound filters: must-happen-before
(MHB), if-guard (IG) and inter-allocation (IA).

6.1.1 Must-Happens-Before (MHB)

In Android, some event callbacks have amust-happens-before

(MHB) relation to each other; onemust always happen before
the other. When a potential UAF is detected but the use must
precede the free, it is a false UAF. nAdroid identifies three

66



CGO’18, February 24ś28, 2018, Vienna, Austria Xinwei Fu, Dongyoon Lee, and Changhee Jung

statically sound MHB relations in Android, pruning UAF
violations where they occur.

MHB-Service:When an Activity binds to a Service, the
onServiceConnected callback is always executed before the
onServiceDisconnected callback. Figure 4 (a) presents an ex-
ample of a false UAF in this context.
MHB-AsyncTask: For AsyncTask, a looper thread’s on-

PreExecute callback must happen before both the native
thread’s doInBackground method and the looper thread’s on-
ProgressUpdate callback; and all of these must happen before
the looper thread’s onPostExecute callback. nAdroid prunes
MHB races in this context.
MHB-Lifecycle: Activity obeys the framework-defined

lifecycle, which ensures that all the UI callbacks must happen
after onCreate and before onDestroy. This introduces other
MHB relations for which nAdroid accounts.

We emphasize that, statically speaking, there are no MHB
relations for onResume, onPause, and other similar UI call-
backs based on the Android lifecycle. The back edge from
onPause to onResume (i.e. the łback buttonž) introduces a cir-
cular dependency. In fact, harmful UAF transitions arising
from use of the back button are common in Android applica-
tions. Consider the sequence in Figure 4 (d), and suppose for
now that the onResume callback makes no allocation f = new

F();. When onPause occurs, it sets f = null, and the activity
becomes visible again. Then the user may trigger onClick,
leading to a UAF violation.

6.1.2 If-Guard (IG)

To prevent UAF errors, it is common practice to checkwhether
a reference is null before using it. This łif-guardž is safe as
long as atomicity between the check and the use is guar-
anteed and thus the free operation cannot be interleaved.
This is true for event callbacks that belongs to the same
looper thread. Thus, the IG filter prunes these false UAF
warnings between event callbacks (modeled threads). Fig-
ure 4 (b) shows an example where OnClick1 checks f before
using it in an atomic callback.
On the other hand, an if-guard is unsafe in the presence

of concurrency (thread-thread or event loop-thread) due
to the lack of atomicity. Therefore, the IG filter removes
UAF warnings between them only if they are protected by
the same lock, providing atomicity. nAdroid uses Chord’s
lockset analysis selectively for this purpose. We note that
previous dynamic tools [17] also use the IG and the following
IA filters that require atomicity, but the static DEvA[39] tool
applies them unsoundly without atomicity analysis, resulting
in false negatives.

6.1.3 Intra-Allocation (IA)

As shown in Figure 4 (c), if there is an allocation before use
within an atomic event callback onClick1, free operations
in other callbacks (e.g. onClick2) in the same looper thread
cannot lead to UAF violations. The same is true for warnings

between native thread protected by the same lock. The IA
filter prunes this case using an intra-procedural data-flow
analysis. If inter-procedural analysis is required to determine
the location of the allocation (e.g., getF() in Figure 4 (a)),
nAdroid conservatively does not filter out the case. The
unsound Maybe-Allocation (MA) filter (ğ6.2) assumes that
the getter method does not return null.

6.2 Unsound Filters

Without runtime information, a static analysis must conser-
vatively apply filters, and using only sound filters leads to
many false positives. Our unsound, yet effective filters are
derived from studying the UAF warnings that survive our
sound filters. We used seven of the applications evaluated in
the CAFA study [17] as a training set. By applying our sound
filters to each application andmanually determining the false
positives, we identified common may-happens-before rela-
tions and Android programming idioms. Part of our evalua-
tion (ğ8) measures the effectiveness of these unsound filters
and gives a detailed analysis on the resulting false negatives.
For users who demand soundness, these (optional) un-

sound filters serve as a ranking system that allows program-
mers to focus on the still-unpruned remaining races first as
the most likely harmful UAF violations in their application.

6.2.1 May-Happen-Before (mayHB)

nAdroid identifies three likely-true happens-before rela-
tions between event callbacks, and uses them as unsound
filters.

Resume-Happens-Before (RHB): As discussed in ğ6.1,
the MHB-Lifecycle filter is not applied to onResume, onPause,
and other UI callbacks. Given that an Activity is often paused
and resumed, careful programmers use the onResume callback
to ensure program invariants and correctness across lifecycle
transitions. Figure 4 (d) shows an example of this practice,
using an allocation in onResume to prevent a UAF violation in
onClick. To accommodate this pattern, the Resume-Happen-
Before (RHB) filter prunes out UAF warnings between a UI
event callback and onPause if there is a corresponding allo-
cation in onResume. In a sense, this filter can be viewed as
extending the IA filter (ğ6.1) across a callback boundary. The
RHB filter is unsound because nAdroid performs may anal-
ysis for identifying allocations in onResume: if any program
path in onResume allocates the object in question, the RHB
filter assumes that the corresponding use operation is safe3.

Cancel-Happens-Before (CHB): The use of Android’s
API-based cancellationmethods establishes a cancel-happens-
before (CHB) relation between the canceller and the affected
callbacks. Android programs can close an Activity (via the
finishmethod); unbind from a Service (unbindService); un-
register from a BroadcastReceiver (unregisterReceiver); or
remove any pending posts of callbacks and sent messages

3This can be dealt with by a path-sensitive analysis, but it is not scalable.

67



nAdroid: Statically Detecting Ordering Violations in Android Applications CGO’18, February 24ś28, 2018, Vienna, Austria

from a Handler (removeCallbacksAndMessages). For example,
no UI callbacks will occur after an event callback invokes the
finishmethod. The same reasoning affects service-, receiver-
, and handler-related callbacks like onServiceConnected, on-
ServiceDisconnected, and onReceive. In Figure 4 (e), we see
a false UAF violation between onClick1 and onClick2 that
can be pruned by the CHB filter. If onClick2 could happen
after onClick1, there would be a UAF violation, but onClick2
must happen before onClick1 because onClick1 calls fin-

ish. Similar to RHB, the CHB filter is unsound because of
path-insensitive may-analysis for scalability.

Post-Happens-Before (PHB): There is a post-happens-
before (PHB) order between two callbacks on the same looper
thread when one posts an event that triggers the other. Fig-
ure 4 (f) shows an example in which onClick uses sendMes-
sage to send a message to its looper thread. As callbacks on
the same looper thread are atomic, this causes the handleMes-
sage callback to be scheduled only after the completion of
onClick. The PHB filter prunes out a UAF violation warning
when there is a post-based happens-before order between
the use and free operations. The PHB filter is unsound: it
assumes that two different instances of UI event callbacks
do not share an object/field at runtime. If they do, in our
example another call to the onClick callback (user clicks the
button multiple times) may lead to a UAF error.

6.2.2 Maybe-Allocation (MA)

nAdroid applies the sound IA filter (ğ6.1) when an event call-
back allocates an object with new before using it. However,
obtaining an object reference could instead be done with
a getter method, as shown in Figure 4 (a). To avoid expen-
sive inter-procedural analysis, the unsound maybe-allocation
(MA) filter assumes that custom getter methods never return
null, thus acting like the IA filter.

6.2.3 Used-for-Return (UR)

The used-for-return (UR) filter prunes out commonly-benign
uses associated with getter methods and method invocations.
When a gettermethod, say getF(), simply returns a reference,
it leads to a use in our analysis. However, this reference is
often used safely later for comparison, as shown in Figure 4
(g), making that and any subsequent use benign. The UR
filter also prunes warnings associated with passing a field
as a parameter to a method invocation, as these are often
benign for a similar reason. Determining whether references
are used safely in these cases would require expensive inter-
procedural analysis.

6.2.4 Thread-Thread (TT)

Given that we are more interested in UAF bugs that are
unique to Android programs including single-threaded races
between callbacks, and multi-threaded races between event

callbacks (in a looper thread) and native threads, the thread-
thread (TT) filter prunes out the UAF warnings that occur
between native threads and do not involve a looper thread.
Detecting data races between two native threads has been
well studied with conventional multi-threaded race detec-
tors [12, 29, 35, 43].

7 Validating Harmful UAF bugs

The potential UAF bugs uncovered statically by nAdroid

can be confirmed as harmful with a dynamic execution that
triggers a NullPointerException. As constructing an execu-
tion to trigger a UAF bug is a project unto itself, nAdroid
simply offers programmers aids to ease a manual analysis.
The first step in these aids is to classify the UAF warnings.

nAdroid groups UAFwarnings based on the origins of the
use and free operations, based on the type of event callback
and/or thread involved. nAdroid categorizes event callbacks
(C) into Entry Callbacks (EC) and Posted Callbacks (PC). EC
includes lifecycle, UI, and other system-triggered callbacks
(Figure 3 (a) and (b)). Every other callback is a PC.We classify
any native threads created by an event callback as Reachable
Threads (RT) relative to this callback, and all other native
threads as Non-Reachable Threads (NT) relative to it. For
example, in Figure 3, doInBackground is reachable from on-

LocationChanged, but not from onClick. Thread reachability
is transitive across thread creation and event posting.
With these terms in mind, nAdroid provides two aids

to help programmers more rapidly analyze each potential
UAF bug. First, nAdroid provides programmers with the
callback and thread sequence associated with each poten-
tial UAF bug. For the example in Figure 3, suppose a UAF
warning between the handleMessage and onProgressUpdate

callbacks. Then, nAdroid can tell that the handleMessage

callback is derived from onClick callback, and that the on-

ProgressUpdate stems from the onLocationChanged callback
via the doInBackground thread.

Second, nAdroid’s potential UAF report includes whether
event callbacks are ECs or PCs, and whether threads are
RT or NT. This allows programmers to sort potential UAF
bugs based on two hypotheses we provide about common
sources of errors in the Android environment. Our intuition
is that more complex interactions are more likely to be the
source of UAF bugs. First, we suggest that true UAF bugs
will occur more frequently between PC-EC or PC-PC than
between EC-EC, because PCs are more asynchronous and
difficult to reason about. Second, we believe C-NT are more
prone to UAF bugs than C-RT because it is hard to reason
about interactions between seemingly independent callbacks
and threads. We provide some empirical support for these
hypotheses in ğ8.4.

68



CGO’18, February 24ś28, 2018, Vienna, Austria Xinwei Fu, Dongyoon Lee, and Changhee Jung

8 Evaluation

This section demonstrates our evaluation. Our evaluation
answers the following questions:

• Are nAdroid’s sound and unsound filters effective? (ğ8.3)
• Can nAdroid find harmful UAF ordering violations? (ğ8.4)
• What are the sources of false warnings? (ğ8.5)
• Does nAdroid have false negatives? (ğ8.6)
• How does nAdroid compare to DEvA? (ğ8.7)
• What is the overhead of nAdroid’s static analysis? (ğ8.8)

8.1 Implementation and Subject Systems

For threadification (ğ4), nAdroid uses the Soot [21] pro-
gram analysis framework to generate a dummymainmethod.
nAdroid uses the Android API listener-callback list from
FlowDroid [1] to identify entry callbacks. For the potential
ordering violation detection (ğ5), Chord [29], based on Data-
log and the bddbddb solver [46], is used without MHP and
lockset analyses. The sound and unsound filters (ğ6) are also
implemented based on Chord. We ran nAdroid on a quad-
core Intel i7 3.6 GHz system with 16GB of memory, running
the 3.13 Linux kernel.
Limitations The current nAdroid implementation covers
most common callbacks and threads, but does not yet sup-
port Fragment, Layout, and custom Views. In addition, the
nAdroid prototype does not keep track of a specific looper
thread on which each callback runs, and thus assumes that
each component (e.g., Activity) has exactly one looper thread,
and does not have other user-created looper threads. If a
component has multiple looper threads, they break the atom-
icity assumption between callbacks, and the IG and IA filters
should be downgraded to unsound filters. Among tested ap-
plications, the assumption holds for 17/27 applications. We
have not confirmed whether the IG and IA filters unsoundly
prune potential UAF bugs between multiple looper threads
in the rest applications. Previous work [17, 39] shares this
assumption of a single looper thread.

8.2 Tested Applications

We evaluated nAdroid with two groups of open-source An-
droid applications, 27 in total, listed in Table 1. The first
łtrainž group of 7 applications include all the applications
that were used for evaluating CAFA [17], a dynamic UAF de-
tector, except Camera, VLC, and FBReader where we could not
locate their source code or analyze them with Soot [21]. The
train group was used to learn common may-happens-before
relation and programming idioms in Android and to design
unsound filters (ğ6.2).
The second łtestž group of 20 applications consist of 6

applications evaluated in another dynamic UAF detector
DroidRacer [26], and 14 new applications randomly picked
from [13] that collects the most popular Android applica-
tions. Three applications Music, Browser, and Mytrack were

21

66

13

88

0

20

40

60

80

100

MHB IG IA All

Filtered Remaining

(a) Sound filters.

13
26 29

15

70

0

20

40

60

80

100

mayHB MA UR TT All

Filtered Remaining

(b) Unsound filters (after sound).

Figure 5. Effectiveness of sound and unsound filters. Each
filter is evaluated independently, so there is overlap.

evaluated in both CAFA and DroidRacer. Among them, My-
track has significant version/source code change and all true
UAF warnings found are different, thus is included in the test
group with a different subscript number. Except Table 1, all
the evaluation results are based on these 20 test applications.
In Table 1, the first three columns show the train/test

group, the application name, and the size of the code base,
sorted by LOC. The next EC and PC columns show the static
number of Entry Callbacks and Posted Callbacks, respec-
tively. The T column shows the static number of Threads in
an application including the dummy UI main thread, Async-
Task’s doInBackground thread, and native Java threads.

8.3 Effectiveness of Sound and Unsound Filters

Table 1 summarizes the overall results of nAdroid’s UAF
analysis. The 7th column represents the total number of
potential UAF warnings detected by static analysis (ğ5). Each
warning is a pair of free-use operations. In this section, we
first focus on the effectiveness of nAdroid filters.
The 8th and 9th columns of Table 1 show the number of

remaining races after applying all the sound filters (ğ6.1)
and unsound filters (ğ6.2) in sequence. On average, sound
filters prune out 88% of potential UAF warnings; unsound
filters suppress 70% of the remaining UAF warnings; and in
combination these filters yield a 96% reduction.
Figure 5(a) shows the effectiveness of each sound filter

when applied individually. Our novel MHB filter based on
must-happen-before relation between event callbacks prunes
out many false UAF warnings (21%). IG and IA filter are
found to be effective: 66% and 13%, respectively. Note that
there is some overlap between the sound filters. While the
IG and IA filters are independent of each other, the MHB
filter may overlap with the IG filter (5.9%) and the IA filter
(6.7%) because MHB considers happens-before order at the
event callback granularity.

Figure 5(b) shows the effectiveness of each unsound filter
when applied individually to the UAF warnings that remain
after applying the sound filters. Our novel mayHB filter based
on may-happens-before relation effectively downgrades 13%
of the remaining warnings, among which post-based PHB
contributes the most (10%). The MA, UR, and TT filters prune

69



nAdroid: Statically Detecting Ordering Violations in Android Applications CGO’18, February 24ś28, 2018, Vienna, Austria

Table 1. The result of nAdroid’s UAF analysis: filters, type of remaining UAFs, true harmful UAFs, and false UAF warnings.

Type APP LOC EC PC T
Potential
UAFs

Detected

Remaining
UAFs after
sound filters

Remaining
UAFs after

unsound filters

Type of Remaining UAFs True
harmful
UAFs

False Positives

EC-EC EC-PC PC-PC C-RT C-NT
Path
insens.

Points-
to

Not
reach.

Missing
HB

Not
analyzed

T
ra
in

ToDoList 2637 45 1 1 54 32 0 0
Zxing 6453 65 15 14 263 6 2 2 0 2
Music 10518 271 41 1 19167 2491 207 53 94 60 0 46 14 2 145

MyTracks_1 27080 280 58 38 825 173 80 1(1) 36(2) 43(26) 29 51
Browser 30675 216 47 53 34185 8077 0 0

ConnectBot 32645 105 31 19 197 33 13 12(12) 1(1) 13 4
FireFox 102658 748 28 135 16546 10004 1540 1533 7(1) 1 455 6 1078

T
es
t

SoundRecorder 1194 14 0 1 9 0 0 0
Swiftnotes 1571 32 1 1 0 0 0 0
PhotoAffix 1924 52 9 2 84 10 4 2 2 0 4
MLManager 2073 153 11 10 304 38 0 0
InstaMaterial 2248 42 29 4 6496 544 0 0
Tomdroid 2372 24 4 3 0 0 0 0

SGT Puzzles 2944 60 14 5 591 0 0 0
Aard 3684 53 20 25 216 111 48 8 40(8) 8 9 15 16

ClipStack 3948 106 18 2 4 0 0 0
KissLauncher 5210 66 7 13 264 42 36 36 0 36
DashClock 10147 67 13 1 74 1 0 0
Dns66 10423 22 4 6 99 13 13 1 12 0 10 3

CleanMaster 11014 117 38 12 7 0 0 0
OmniNotes 13720 764 19 22 10360 32 0 0
Solitaire 15478 47 70 2 48 31 1 1 0 1
Mms 27578 413 37 52 10439 3990 1207 258 139 306 504 0 196 164 3 844

MyTracks_2 37031 1029 59 52 1104 145 71 10 61 (27) 27 34 10
MiMangaNu 37827 24 9 10 10 1 0 0
QKSMS 56082 225 37 35 536 171 19 9 10(10) 10 8 1
K-9 Mail 78437 499 27 20 45336 4143 918 34 148 24 418 294 0 275 2 641

26%, 29%, and 15% of the UAF warnings, respectively. Similar
to MHB, we also found fine-grained filters MA and UR have
overlapped coverage with the other coarse-grained filters,
ranging from 1% to 9.6%. We present a false negative analysis
on our unsound filters in ğ8.6.

8.4 Detecting True Harmful UAFs

From the remaining UAF warnings, we identified 88 harmful
UAF bugs by manually constructing a dynamic execution
leading to a NullPointerException. nAdroid provides the
callback and thread sequence associated with each potential
UAF bug (ğ7) so that programmers can reason about the
root entry callbacks to start an exploration from. Based on
these hints, we instrumented potential UAF warnings to
perturb the schedule of event callbacks and threads. We
used a timer for callbacks not to block the looper thread,
and a spinloop for threads. Though we were able to find
true UAFs successfully, we note that this manual validation
process was indeed a time-consuming job. We expect that
withnAdroid, the developers who are familiar with the code
base can find harmful casesmuch easily asnAdroid provides
many relevant information: e.g., racy variable, instruction,
event, and call path, etc. Developing an automatic validation
solution would be a good future work.
In Table 1, the 10thś15th columns show the łtypes of re-

maining UAFsž classified by the origins to which a pair of
free/use operations belong, respectively; and the number in
brackets represents the number of validated true harmful
UAF violations in the category. Then, the next (16th) col-
umn shows the total number of łtrue harmful UAFsž that
nAdroid found.

Among 88 harmful UAF bugs found, at least 58 were not
previously reported in the literature. For the remaining 30
in Mytrack_1 and Firefox, we could not confirm if they are
novel because CAFA offers neither racy traces nor input to re-
produce the results. CAFA reports no error between callbacks
in ConenctBot. Previous dynamic tools [17, 26] miss them due
to test coverage. Static tool DEvA [39] also has many false
negatives because of limited analysis scope, whichwe discuss
in ğ8.7.

Though we did not analyze all the cases (ğ8.5), our result
empirically supports our hypotheses introduced in ğ7 as
most true UAF races are found in cases where PC and NT are
involved. The harmful UAF examples in Figure 1 represent
all different cases: (a) is an EC-PC UAF in ConnectBot; (b)
PC-PC in ConnectBot; and (c) C-NT in FireFox.

8.5 False Positive Analysis

Then, we inspect the rest cases to conduct false positive anal-
ysis. For the applications with relatively small number of re-
maining UAFs after filtering, we analyzed them all; whereas
we sampled and analyzed 30% cases for Music, Firefox, Mms,
and K-9 Mail.

In Table 1, the last five columns represent the four sources
of false positives (and the number of warnings not analyzed):
Path Insensitivity. nAdroid analysis (including Chord) is
path-insensitive as in other static analyses. We found it com-
mon to use high-level flag variable, and the program takes
different path, making the manifestation of UAF warnings
infeasible at runtime. This is the most common source.
Points-to Analysis. Like other static analyses, nAdroid
also suffers from imprecision in points-to analysis. nAdroid
takes advantage of Chord’s k-objective sensitive points-to

70



CGO’18, February 24ś28, 2018, Vienna, Austria Xinwei Fu, Dongyoon Lee, and Changhee Jung

analysis with the default value k=2 for balancing precision
and scalability.We note that objects created by a staticmethod
(no context) does not take advantage of k-object-sensitive
pointer analysis, becoming the common source of false posi-
tives.
Not Reachable. Either use or free operation of UAF warn-
ings exists in a component that is not reachable by either
explicit or implicit intent.
Missing Happens-Before. In Android, one event can en-
able/disable other events and it is especially common in UI
callbacks. For example, one can set a button invisible in some
specific condition. Statically capturing these UI interactions
requires understanding semantics of a diverse set of Android
APIs, and nAdroid misses such happens-before orders.

Note that the sources of false positives are not related to
happens-before orders yet rather share the inherent limita-
tions of static analyses. This highlights the effectiveness of
nAdroid’s (sound must-, unsound may-) happens-before-
based filters. Another important implication is that the im-
provement of underlying static analyses such as Chord’s
points-to analysis makes it possible to increase the accuracy
of nAdroid, though it is beyond the scope of this paper.

8.6 False Negative Analysis

This section investigates the sources of false negatives in
nAdroid analysis. Ideally, false negative analysis requires
ground truth to feed and test on. Unfortunately, there does
not exist such a benchmark. As an alternative, we decided to
inject artificial UAF violations and check if nAdroid detects
them or not. Furthermore, instead of randomly adding UAFs,
we took the true data races reported by DroidRacer[26], a
trace-based dynamic data race detector, and introduced new
UAF ordering violations at the same locations as original
data races in order to construct more faithful and practical
cases. In total, we were able to create 28 ground truth.
Table 2 shows the result of our false negative analysis

with artificial UAFs on 8 test applications. The first column
shows all the applications tested by DroidRacer. The next
six columns show the diverse łtypes (based on origins) of
artificially injected UAF violationsž, using the same classifi-
cation as Table 1. The next column łAllž presents the total
number of UAF violations for each application. The last two
columns presents UAFs that nAdroid could not detect.
nAdroid misses 5 (out of 28) UAFs for two reasons: un-

analyzed code and unsound filter. First, nAdroid could not
detect two UAFs in Mms. Further investigation reveals that
IBinder object was passed to the Android framework and
returned to the application later. Thus, nAdroid (based on
Chord’s call graph) was not able to track the full call graph
and racy accesses happens along that call path. As a dynamic
tool, DroidRacer was able to monitor a full interaction be-
tween application and the framework, which was not the

Table 2. False Negative Analysis

APP
Type of artificial UAF Violations

All
Missed by
detection

Pruned by
unsound filtersEC-EC EC-PC PC-PC C-RT C-NT

Tomdroid 1 1

Puzzles 5 4 9 1

Aard 1 1

Music 2 4 6

Mms 2 3 1 6 2

Browser 2 1 3 2

MyTracks_2 1 1

K-9 Mail 1 1

Total 4 11 5 1 7 28 2 3

case for nAdroid. It is in theory possible for nAdroid to in-
clude the whole Android framework into the scope of static
analysis, but it would suffer from scalability issue.
Second, nAdroid missed two UAFs in Browser and one

UAF in Puzzles. It turns out that all three cases are due to
the unsound CHB filter, especially filtered by finishmethod.
The event callbacks used finish method to close the Activ-

ity as an error handling routine in a special program path.
CHB filter relies on may analysis and unsoundly assumes
a happens-before order if there exists at least one program
path reaching finish method. Despite its unsoundness, our
prior experimental results (ğ8.3 and ğ8.4) make the case for
CHB filter. We do not find any other false negatives in other
unsound filters. Lastly, in the next section, we report one
more case that nAdroid was not able to detect due to imple-
mentation limitation.

8.7 Comparison to DEvA

This section compares nAdroid with the state-of-the-art
static tool DEvA [39]. As described in ğ2.3, DEvA’s unsound
algorithmmay lead to false negatives. In this section, we first
investigate if nAdroid can find the UAF bugs that DEvA de-
tects. Furthermore, we show that the lack of happens-before
relation analysis in DEvA results in many false positives.
Table 3 includes the UAF warnings detected and marked

as harmful by DEvA. The first column gives the name of
applications, which are the same set as CAFA. The next four
columns provide the details about each UAF warning: the
racy field; the class; the name of callback including the use
operation (e.g., db.use()); and the name of callback with the
free operation (e.g., db=null). Then, the last two columns
show if nAdroid finds the same UAF warning or not; and if
it filters out the UAF warning or not.
When determining whether nAdroid detects the same

UAF warning or not, we applied the sound IG and IA filters
only (and not the other filters); then checked if the same UAF
warning can be found in nAdroid’s report. The reason is
that DEvA classifies an UAF warning to be harmful if it is
not protected by if-guard or intra-allocation, and thus the
consistent definition is used.
We first show that nAdroid has fewer false negatives

than DEvA. Table 3 shows that nAdroid can detect all UAFs
that are marked as harmful by DEvA, except the last one in

71



nAdroid: Statically Detecting Ordering Violations in Android Applications CGO’18, February 24ś28, 2018, Vienna, Austria

Table 3. Comparison to DEvA

APP Field Class Use Callback
Free

Callback
nAdroid

ToDoList db ToDoActv onActvResult done Detected & Filtered

Music

mAdapter AlbBrowActv onActvResult onDestroy Detected & Filtered
mAdapter ArtAlbBrowActv onRetNCfgIns onDestroy Detected & Filtered
mPlayer MediaPlayServ setNextTrack onDestroy Detected & Filtered
mAdapter ArtAlbBrowActv onActvResult onDestroy Detected & Filtered
mAdapter TrackBrowActv onRetNCfgIns onDestroy Detected & Filtered
mAdapter AlbBrowActv onRetNCfgIns onDestroy Detected & Filtered
mAdapter QueryBrowActv onActvResult onDestroy Detected & Filtered
mAdapter TrackBrowActv onActvResult onDestroy Detected & Filtered
mAdapter QueryBrowActv onRetNCfgIns onDestroy Detected & Filtered

Mytracks_1
binder TrackRecServ onBind onDestroy Detected & Filtered
provUtils TrackRecServ onLocChgAsyc onDestroy Detected & Reported

Browser mCtrlWV AccessPrefFrag onResume onDestroy Not detected

Browser. As mentioned in Section 8.1, the current nAdroid
prototype does not model Fragment yet, and thus the UAF
warning in the class AccesibilityPreferencesFragment is
not detected. In theory, this case can be detected with proper
implementation. On the other hand, DEvA misses many UAF
warnings detected by nAdroid. The applications (and their
true positives) included in Table 1 (nAdroid’s result), but not
in Table 3 (DEvA’s result) represent such cases. For instance,
DEvA does not reports the harmful UAF bugs examples in
Figure 1. (See ğ2.3 why DEvA suffers from false negatives.)
nAdroid also has fewer false positives than DEvA, thanks

to its static happens-before analysis. The last column in
Table 3 shows thatnAdroid detected but filtered the 11 cases,
and agrees only the one case as harmful races. Upon further
investigation, we found that most (9/12) cases involving
onDestroy are pruned by our sound MHB filter. The rest two
cases are filtered by (unsound) CHB filter, and we manually
validate that they are false warnings.

8.8 Analysis Execution Time

The execution time of nAdroid can be partitioned into 3
parts: modeling (ğ4), static detection (ğ5), and filtering (ğ6).
On average, modeling took 32 seconds (1.19%) and filtering
82 seconds (3.08%). As expected, static detection took most
of the static analysis time (about 42 minutes, 95.73%). The
scalability of nAdroid would depend on Chord, which has
shown to be able to handle programs with >180K LOC in
the original paper [29]. If the execution time or scalability
becomes an issue, then the k-value can be adjusted at the
cost of precision.

9 Related Work

ğ2.3 described the most related race detectors for Android [3,
17, 24, 26, 39]. nAdroid can be applied to other concurrency
bugs such as no-sleep bugs [33] and energy bugs [2] where
racy API calls lead to ordering violations.
Static data race detection for traditional multi-threaded

programs can be categorized into type system based [5,
14, 36], lockset analysis based [12, 29, 35, 43], or model
based [37] approaches. Dynamic data race detectors [15, 40,

41, 48ś50], runtime mitigations [25, 42, 47], testing tech-
niques [16, 18] have been also proposed. However, as men-
tioned before, naive application of such solutions to Android
programs would result in imprecise results due to lack of
event-driven concurrency model in analyses.
As another domain, JavaScript/HTML web applications

take single-threaded event-driven concurrency model. We-
bRacer [34] first defined the shared objects and the happens-
before relationships specific to web applications. EventRacer
[38] improved its scalability and introduced the concept of
covered races to decrease the number of reported harmful
races. Recently, Node.fz [10] extended concurrency analysis
to Node.js, a server-side Javascript framework, that uses the
single-threaded event loop and multithreaded worker pool.

10 Conclusion

This work presents nAdroid, a novel static ordering vio-
lation detector for Android applications. nAdroid models
event callbacks as threads and detects ordering violations
between callbacks and between threads in a unified manner.
nAdroid also introduces novel happens-before-based filters
to prune out false/benign warnings. Experimental results
show that nAdroid detects harmful use-after-free ordering
violations; and outperforms state-of-the-art technique.

A Artifact Description

A.1 Abstract

Our artifact provides all the runnable jar files of nAdroid
and all the Android applications tested in this paper, along
with scripts to use these to regenerate the results in our
evaluation section. We tested our artifact on a quad-core
Intel i7 3.6 GHz system with 16GB of memory, running the
3.13 Linux kernel. We also provide a virtual machine image
with all dependencies installed. To validate the results, run
the scripts and check the results according to the README
file.

A.2 Description

A.2.1 Checklist (Artifact Meta Information)

• Program: java and datalog

• Compilation: ant and make

• Data set: android application package (apk)

• Output: a table described in a csv file

• Experimentworkflow: install the dependencies, down-

load and unpack the archive, run the scripts and ob-

serve the results or import the virtual machine image,

run the scripts and observe the results

A.2.2 How Delivered

The archive, virtual machine image and README file are
available on:
Github https://github.com/VTLeeLab/CGO18-nAdroid-Artifact

Google Drive https://goo.gl/V12t34

72

https://github.com/VTLeeLab/CGO18-nAdroid-Artifact
https://goo.gl/V12t34


CGO’18, February 24ś28, 2018, Vienna, Austria Xinwei Fu, Dongyoon Lee, and Changhee Jung

A.2.3 Software Dependencies

nAdroid requires Ant and Java with version 7. nAdroid has
been tested on Ubuntu 14.04, and is expected to run correctly
under other Linux distributions.

A.2.4 Datasets

The artifact provides all the tested applications in the Evalua-
tion section. It includes 35 apk files in total: 7 in the training
set, 20 in test set, 8 in the artificial race injected set.

A.3 Installation

If you want to run the artifact on your own computer, please
install the following dependencies:

$ sudo apt−ge t i n s t a l l onpenjdk −7− j r e

$ sudo apt−ge t i n s t a l l onpenjdk −7− j dk

$ sudo apt−ge t i n s t a l l an t

If youwant to use the virtualmachine image, please import
the ova file into the Virtual Box.

A.4 Experiment Workflow

For the convenience of the artifact evaluation, we provide a
series of shell scripts which run the modeling, race detection,
filtering and result analysis.

Below are the commands to test all the tested applications
in the Evaluation section. It tests 35 applications in total: 7
in the training set, 20 in the test set, 8 in the the artificial
race injected set.

$ cd nAdroid

$ . / run− a l l . sh

Running all the applications costs around 30 hours in a
host desktop with an 4-core cpu. You can also use the follow-
ing command to test the environment first. This command
only tests 3 applications in total: 1 in the training set, 1 in
the test set, 1 in the artificial race injected set.

$ . / run− a l l − t e s t . sh

A.5 Evaluation and Expected Result

After completing either of the above commands, a Result-
Analysis.csv file is generated in the Result folder. It contains
the data using in Figure 5 and Table 1 in the paper. The LOC
information and manual inspection result in Table 1 are not
provided in the ResultAnalysis.csv file.

The data of Table 2 exists in the Result/Injected folder. The
data of Table 3 exists in the Result/Train folder. However,
they all require manual inspection.

Acknowledgements

The authors would like to thank the anonymous referees
for their valuable comments, and James C. Davis for his
careful proofreading. This work was in part supported by the
National Science Foundation under the grant CCF-1527463,
and the Google Faculty Research Award.

References
[1] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexan-

dre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick

McDaniel. 2014. FlowDroid: Precise Context, Flow, Field, Object-

sensitive and Lifecycle-aware Taint Analysis for Android Apps. In

Proceedings of the 35th ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI ’14). 259ś269.

[2] Abhijeet Banerjee, Lee Kee Chong, Sudipta Chattopadhyay, and Abhik

Roychoudhury. 2014. Detecting Energy Bugs and Hotspots in Mobile

Apps. In Proceedings of the 22Nd ACM SIGSOFT International Sympo-

sium on Foundations of Software Engineering (FSE 2014). 588ś598.

[3] Pavol Bielik, Veselin Raychev, and Martin Vechev. 2015. Scalable Race

Detection for Android Applications. In Proceedings of the 2015 ACM

SIGPLAN International Conference on Object-Oriented Programming,

Systems, Languages, and Applications (OOPSLA 2015). 332ś348.

[4] Sam Blackshear, Alexandra Gendreau, and Bor-Yuh Evan Chang. 2015.

Droidel: A General Approach to Android Framework Modeling. In

Proceedings of the 4th ACM SIGPLAN International Workshop on State

Of the Art in Program Analysis (SOAP 2015). 19ś25.

[5] Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. 2002. Own-

ership Types for Safe Programming: Preventing Data Races and Dead-

locks. In Proceedings of the 17th ACM SIGPLAN Conference on Object-

oriented Programming, Systems, Languages, and Applications (OOPSLA

’02). 211ś230.

[6] CVE-2008-0034. 2008. http://www.cvedetails.com/cve/

CVE-2008-0034.

[7] CVE-2010-0923. 2010. http://www.cvedetails.com/cve/

CVE-2010-0923.

[8] CVE-2010-1754. 2010. http://www.cvedetails.com/cve/

CVE-2010-1754.

[9] James Davis, Arun Thekumparampil, and Dongyoon Lee. 2017. Node.

fz: Fuzzing the Server-Side Event-Driven Architecture. In Proceedings

of the Twelfth European Conference on Computer Systems. ACM, 145ś

160.

[10] James Davis, Arun Thekumparampil, and Dongyoon Lee. 2017.

Node.Fz: Fuzzing the Server-Side Event-Driven Architecture. In Pro-

ceedings of the Twelfth European Conference on Computer Systems (Eu-

roSys ’17). 145ś160.

[11] Evelyn Duesterwald and Mary Lou Soffa. 1991. Concurrency analysis

in the presence of procedures using a data-flow framework. In Pro-

ceedings of the symposium on Testing, analysis, and verification. ACM,

36ś48.

[12] Dawson Engler and Ken Ashcraft. 2003. RacerX: Effective, Static

Detection of Race Conditions and Deadlocks. In Proceedings of the

Nineteenth ACM Symposium on Operating Systems Principles (SOSP ’03).

237ś252.

[13] F-Droid. 2017. https://f-droid.org/.

[14] Cormac Flanagan and Stephen N. Freund. 2000. Type-based Race

Detection for Java. In Proceedings of the ACM SIGPLAN 2000 Conference

on Programming Language Design and Implementation (PLDI ’00). 219ś

232.

[15] Cormac Flanagan and Stephen N Freund. 2009. FastTrack: efficient

and precise dynamic race detection. In ACM Sigplan Notices, Vol. 44.

ACM, 121ś133.

[16] Patrice Godefroid. 1997. Model checking for programming languages

using VeriSoft. In Proceedings of the 24th ACM SIGPLAN-SIGACT sym-

posium on Principles of programming languages. ACM, 174ś186.

[17] Chun-Hung Hsiao, Jie Yu, Satish Narayanasamy, Ziyun Kong, Cris-

tiano L. Pereira, Gilles A. Pokam, Peter M. Chen, and Jason Flinn. 2014.

Race Detection for Event-driven Mobile Applications. In Proceedings of

the 35th ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI ’14). 326ś336.

73

http://www.cvedetails.com/cve/CVE-2008-0034
http://www.cvedetails.com/cve/CVE-2008-0034
http://www.cvedetails.com/cve/CVE-2010-0923
http://www.cvedetails.com/cve/CVE-2010-0923
http://www.cvedetails.com/cve/CVE-2010-1754
http://www.cvedetails.com/cve/CVE-2010-1754
https://f-droid.org/


nAdroid: Statically Detecting Ordering Violations in Android Applications CGO’18, February 24ś28, 2018, Vienna, Austria

[18] Jeff Huang. 2015. Stateless model checking concurrent programs with

maximal causality reduction. In ACM SIGPLAN Notices, Vol. 50. ACM,

165ś174.

[19] Jeff Huang and Arun K Rajagopalan. 2016. Precise and maximal race

detection from incomplete traces. In Proceedings of the 2016 ACM

SIGPLAN International Conference on Object-Oriented Programming,

Systems, Languages, and Applications. ACM, 462ś476.

[20] Baris Kasikci, Cristian Zamfir, and George Candea. 2012. Data Races

vs. Data Race Bugs: Telling the Difference with Portend. In Proceedings

of the Seventeenth International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS XVII).

185ś198.

[21] Patrick Lam, Eric Bodden, Ondrej Lhoták, and Laurie Hendren. 2011.

The Soot framework for Java program analysis: a retrospective. In

Cetus Users and Compiler Infastructure Workshop (CETUS 2011), Vol. 15.

35.

[22] Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a

Distributed System. Commun. ACM 21, 7 (July 1978), 558ś565.

[23] Lin Li and Clark Verbrugge. 2005. A Practical MHP Information Anal-

ysis for Concurrent Java Programs. In Proceedings of the 17th Interna-

tional Conference on Languages and Compilers for High Performance

Computing (LCPC’04). 194ś208.

[24] Yu Lin, Cosmin Radoi, and Danny Dig. 2014. Retrofitting Concur-

rency for Android Applications Through Refactoring. In Proceedings

of the 22Nd ACM SIGSOFT International Symposium on Foundations of

Software Engineering (FSE 2014). 341ś352.

[25] Brandon Lucia and Luis Ceze. 2013. Cooperative empirical failure

avoidance for multithreaded programs. In ACM SIGPLAN Notices,

Vol. 48. ACM, 39ś50.

[26] Pallavi Maiya, Aditya Kanade, and Rupak Majumdar. 2014. Race De-

tection for Android Applications. In Proceedings of the 35th ACM SIG-

PLAN Conference on Programming Language Design and Implementa-

tion (PLDI ’14). 316ś325.

[27] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. 2002. Parame-

terized Object Sensitivity for Points-to and Side-effect Analyses for

Java. In Proceedings of the 2002 ACM SIGSOFT International Symposium

on Software Testing and Analysis (ISSTA ’02). 1ś11.

[28] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. 2005. Parame-

terized Object Sensitivity for Points-to Analysis for Java. ACM Trans.

Softw. Eng. Methodol. 14, 1 (Jan. 2005), 1ś41.

[29] Mayur Naik, Alex Aiken, and John Whaley. 2006. Effective Static Race

Detection for Java. In Proceedings of the 2006 ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI ’06). 308ś

319.

[30] Satish Narayanasamy, Zhenghao Wang, Jordan Tigani, Andrew Ed-

wards, and Brad Calder. 2007. Automatically Classifying Benign and

Harmful Data Races Using Replay Analysis. In Proceedings of the 28th

ACM SIGPLAN Conference on Programming Language Design and Im-

plementation (PLDI ’07). 22ś31.

[31] Gleb Naumovich, George S. Avrunin, and Lori A. Clarke. 1999. An

Efficient Algorithm for Computing MHP Information for Concurrent

Java Programs. In Proceedings of the 7th European Software Engineering

Conference Held Jointly with the 7th ACM SIGSOFT International Sym-

posium on Foundations of Software Engineering (ESEC/FSE-7). 338ś354.

[32] Best new octa-core Android smartphones (2015 edition). 2015.

http://www.phonearena.com/news/Best-new-octa-core-Android-

smartphones-2015-edition_id65222.

[33] Abhinav Pathak, Abhilash Jindal, Y. Charlie Hu, and Samuel P. Mid-

kiff. 2012. What is Keeping My Phone Awake?: Characterizing and

Detecting No-sleep Energy Bugs in Smartphone Apps. In Proceedings

of the 10th International Conference on Mobile Systems, Applications,

and Services (MobiSys ’12). 267ś280.

[34] Boris Petrov, Martin Vechev, Manu Sridharan, and Julian Dolby. 2012.

Race Detection for Web Applications. In Proceedings of the 33rd ACM

SIGPLAN Conference on Programming Language Design and Implemen-

tation (PLDI ’12). 251ś262.

[35] Polyvios Pratikakis, Jeffrey S. Foster, and Michael Hicks. 2006. LOCK-

SMITH: Context-sensitive Correlation Analysis for Race Detection.

In Proceedings of the 27th ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI ’06). 320ś331.

[36] Polyvios Pratikakis, Jeffrey S. Foster, and Michael Hicks. 2011. LOCK-

SMITH: Practical Static Race Detection for C. ACM Trans. Program.

Lang. Syst. 33, 1, Article 3 (Jan. 2011), 3:1ś3:55 pages.

[37] Shaz Qadeer and Dinghao Wu. 2004. KISS: Keep It Simple and Sequen-

tial. In Proceedings of the ACM SIGPLAN 2004 Conference on Program-

ming Language Design and Implementation (PLDI ’04). 14ś24.

[38] Veselin Raychev, Martin Vechev, and Manu Sridharan. 2013. Effective

Race Detection for Event-driven Programs. In Proceedings of the 2013

ACM SIGPLAN International Conference on Object Oriented Program-

ming Systems Languages &#38; Applications (OOPSLA ’13). 151ś166.

[39] Gholamreza Safi, Arman Shahbazian, William G. J. Halfond, and Nenad

Medvidovic. 2015. Detecting Event Anomalies in Event-based Systems.

In Proceedings of the 2015 10th Joint Meeting on Foundations of Software

Engineering (ESEC/FSE 2015). 25ś37.

[40] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro,

and Thomas Anderson. 1997. Eraser: A dynamic data race detector

for multithreaded programs. ACM Transactions on Computer Systems

(TOCS) 15, 4 (1997), 391ś411.

[41] Tianwei Sheng, Neil Vachharajani, Stephane Eranian, Robert Hundt,

Wenguang Chen, and Weimin Zheng. 2011. RACEZ: a lightweight

and non-invasive race detection tool for production applications. In

Software Engineering (ICSE), 2011 33rd International Conference on.

IEEE, 401ś410.

[42] Kaushik Veeraraghavan, Peter M Chen, Jason Flinn, and Satish

Narayanasamy. 2011. Detecting and surviving data races using comple-

mentary schedules. In Proceedings of the twenty-third ACM symposium

on operating systems principles. ACM, 369ś384.

[43] Jan Wen Voung, Ranjit Jhala, and Sorin Lerner. 2007. RELAY: Static

Race Detection on Millions of Lines of Code. In Proceedings of the

the 6th Joint Meeting of the European Software Engineering Conference

and the ACM SIGSOFT Symposium on The Foundations of Software

Engineering (ESEC-FSE ’07). 205ś214.

[44] TJ Wala. 2014. Watson libraries for analysis.

http://wala.sourceforge.net/wiki/index.php/Main_Page.

[45] Wenwen Wang, Zhenjiang Wang, Chenggang Wu, Pen-Chung Yew,

Xipeng Shen, Xiang Yuan, Jianjun Li, Xiaobing Feng, and Yong Guan.

2014. Localization of concurrency bugs using shared memory access

pairs. In Proceedings of the 29th ACM/IEEE international conference on

Automated software engineering. ACM, 611ś622.

[46] John Whaley. 2007. Context-sensitive Pointer Analysis Using Binary

Decision Diagrams. Ph.D. Dissertation. Stanford, CA, USA. Advisor(s)

Lam, Monica. AAI3253554.

[47] Jingyue Wu, Heming Cui, and Junfeng Yang. 2010. Bypassing Races

in Live Applications with Execution Filters.. In OSDI, Vol. 10. 1ś13.

[48] Yuan Yu, Tom Rodeheffer, and Wei Chen. 2005. Racetrack: efficient

detection of data race conditions via adaptive tracking. In ACM SIGOPS

Operating Systems Review, Vol. 39. ACM, 221ś234.

[49] Tong Zhang, Changhee Jung, and Dongyoon Lee. 2017. ProRace:

Practical Data Race Detection for Production Use. In Proceedings of

the Twenty-Second International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS ’17). 149ś

162.

[50] Tong Zhang, Dongyoon Lee, and Changhee Jung. 2016. TxRace: Effi-

cient Data Race Detection Using Commodity Hardware Transactional

Memory. In Proceedings of the Twenty-First International Conference

on Architectural Support for Programming Languages and Operating

Systems (ASPLOS ’16). 159ś173.

74


	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 The Android Concurrency Model
	2.2 Examples of UAF Violations
	2.3 Limitations of Current Techniques

	3 Overview
	4 Threadification
	4.1 Entry Callbacks (EC)
	4.2 Posted Callbacks (PC)

	5 Detecting UAF Ordering Violations
	6 Filtering False Positives
	6.1 Sound Filters
	6.2 Unsound Filters

	7 Validating Harmful UAF bugs
	8 Evaluation
	8.1 Implementation and Subject Systems
	8.2 Tested Applications
	8.3 Effectiveness of Sound and Unsound Filters
	8.4 Detecting True Harmful UAFs
	8.5 False Positive Analysis
	8.6 False Negative Analysis
	8.7 Comparison to DEvA
	8.8 Analysis Execution Time

	9 Related Work
	10 Conclusion
	A Artifact Description
	A.1 Abstract
	A.2 Description
	A.3 Installation
	A.4 Experiment Workflow
	A.5 Evaluation and Expected Result

	References

