
The Case of the Poisoned Event Handler:
Weaknesses in the Node.js Event-Driven Architecture

James Davis
Virginia Tech

Blacksburg, VA, USA
davisjam@vt.edu

Gregor Kildow
Virginia Tech

Blacksburg, VA, USA
gregor@vt.edu

Dongyoon Lee
Virginia Tech

Blacksburg, VA, USA
dongyoon@vt.edu

ABSTRACT
Node.js has seen rapid adoption in industry and the open-
source community. Unfortunately, its event-driven architec-
ture exposes Node.js applications to Event Handler-Poisoning
denial of service attacks. Our evaluation of the state of prac-
tice in Node.js— combining a study of 353 publicly reported
security vulnerabilities and a survey of 151 representative
npm modules — demonstrates that the community is not
equipped to combat this class of attack. We recommend
several changes to the state of practice and propose both
programming language and runtime approaches to defend
against Event Handler-Poisoning attacks.

Keywords
Node.js; Event-driven architecture; Denial of service; ReDoS

1. INTRODUCTION
The Event-Driven Architecture (EDA) is coming into its

own. Although EDA approaches have been discussed and
implemented in the academic and professional communities
for decades (e.g. [17, 7, 18, 13]), historically EDA has
only seen wide adoption in user interface settings like web
browsers. It is increasingly relevant in systems programming
today thanks to the explosion of interest in Node.js1, an
event-driven server-side JavaScript framework.

In applications built using EDA, there is a set of possible
events (e.g. “mouse click” or “incoming network traffic”) for
which the developer supplies a set of Event Handlers (also
known as callbacks); these Event Handlers will be executed
when the corresponding events occur [5]. During the execu-
tion of such an application, events are generated by external
activity and routed to the appropriate Event Handlers.

Figure 1 illustrates the classic EDA formulation, known as
AMPED [11]: the operating system or a framework places
events in a queue (e.g. through Linux’s poll system call2),

1See https://nodejs.org/en/.
2Per the Linux man page, “poll...waits for one of a set of file

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

EuroSec’17, April 23 2017, Belgrade, Serbia
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4935-2/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3065913.3065916

and pending events are handled by an event thread. The
event thread may offload expensive activity to a small, fixed-
size worker pool, which generates an event to note the com-
pletion of each offloaded task. The worker pool is typi-
cally implemented using threads or separate processes, and
performs services like offering “asynchronous” (blocking but
concurrent) access to the file system. This architecture is
common to all mainstream general-purpose EDA frameworks
today, discussed further in Section 2.2.

Figure 1: Classic Event-Driven Architecture. In-
coming events are handled sequentially by the event
thread. The event thread may offload tasks to the
worker pool.

Server-side applications implemented using the EDA are
vulnerable to a unique type of denial of service attack which
we term the Event Handler-Poisoning (EHP) attack. Key
to the EDA is the use of a small, fixed-size set of Event
Handlers that handle each event in turn. In the EDA design
of Figure 1, there are two classes of Event Handlers: the
event thread, and the workers in the worker pool. If either
class of Event Handlers (the event thread, or every worker
in the worker pool) becomes blocked, the handling of every
pending event will be delayed.

While in a One Thread Per Client (OTPC) setting an
expensive request from a client delays only that client, in the
EDA context an expensive request delays every client. Thus,
the EDA model resurrects an old foe: DoS vulnerabilities in
an essentially single-threaded server.

Event Handlers might block due to an expensive computa-
tion or due to I/O. In our study of the state of practice in the
Node.js community in Section 4.3, developers appear to be
well apprised of the risks associated with blocking I/O. How-
ever, a surprising number of developers appear to take a cav-
alier approach to the possibility of blocking the event thread

descriptors to become ready to perform I/O.”

with computation, as shown in Section 6.2. The prevalence
of EHP vulnerabilities in many common modules suggests
the need for reform in the community’s practices, and for
both programming language and runtime aids to facilitate
community adoption.

1.1 Contributions
This paper makes the following contributions:

1. After identifying Node.js as the most popular general
EDA framework, we analyze the 353 security vulner-
abilities publicized in its package ecosystem, npm. We
identify and discuss the CPU-bound and I/O-bound
EHP vulnerabilities among them.

2. We evaluate the ease with which a Node.js developer
can avoid EHP vulnerabilities. Our assessment of de-
velopment aids and our study of 151 npm modules iden-
tify significant shortcomings in the tools, documenta-
tion, and modules on which a developer might rely.

3. We discuss ways to reduce EHP vulnerabilities in the
Node.js ecosystem through changes in the community’s
practices and by various programming language and
runtime defenses.

2. BACKGROUND
In this section we compare the EDA with the OTPC ar-

chitecture. We then identify the most popular server-side
EDA framework for analysis. Lastly, we discuss two types
of EHP vulnerabilities in the EDA.

2.1 EDA vs. OTPC
There are two main architectures for scalable web servers.

The traditional approach is the OTPC architecture, of which
Apache3 is the most prominent. In the OTPC style, a thread
or a process is assigned to each client, with a large maximum
number of concurrent clients. The OTPC model isolates
clients from one another, reducing the risk of interference.
However, each additional client incurs memory and context
switching overhead. In contrast, by multiplexing multiple
client connections into a single thread and offering a small
worker pool for asynchronous tasks, an EDA approach sig-
nificantly reduces a server’s per-client resource use. But the
EDA model also exposes the server to instability, e.g. due
to vulnerabilities like EHP.

2.2 General-Purpose EDA Frameworks
Though an EDA approach can be implemented in most

programming languages, the mainstream general-purpose
EDA frameworks for server applications are Java/Reactor4,
C/libuv5, Python/Twisted6, Ruby/EventMachine7, and
JavaScript/Node.js8. To capture the scope and variety of ac-
tivity for each framework, we surveyed each of their GitHub9

repositories using the metrics of number of commits, number
of contributors, and number of releases. The results of our

3See http://www.apache.org/.
4See http://projectreactor.io/.
5See http://libuv.org/.
6See http://twistedmatrix.com/.
7See http://rubyeventmachine.com/.
8See http://nodejs.org/.
9See https://github.com/.

Framework Contributors Commits Releases

Node.js 1176 15666 399
libuv 247 3643 183
EventMachine 113 1141 27
Reactor 56 4249 42
Twisted 35 20751 38

Table 1: Popularity of event-driven programming
environments measured by development activity.
Data were obtained from GitHub in December 2016.

GitHub survey are shown in Table 1, and show that Node.js
has by far the largest developer community and a significant
number of commits.

Node.js is a server-side event-driven framework for
JavaScript that uses the architecture shown in Figure 1. The
worker pool is used internally to perform asynchronous DNS
queries and file system I/O. In addition, user-defined code
can be offloaded to the worker pool. Node.js claims 3.5 mil-
lion users [1], and its open-source package ecosystem, npm, is
the largest of any programming language or framework10.

Though Node.js has seen significant use in industry (e.g.
LinkedIn11, PayPal12, eBay13, and IBM14), to the best of
our knowledge the only academic engagement with security
aspects of Node.js applications was Ojamaa et al.’s high-level
survey [10]. We believe that more academic involvement in
the Node.js community will increase the security of many of
the web services we use every day.

2.3 Event Handler-Poisoning Attacks
The key characteristic of the EDA is that many request

events are addressed by a small number of Event Handlers.
An Event Handler-Poisoning attack exploits this design by
causing the Event Handlers to block indefinitely, poisoning
them. This is done through the submission of an expensive
task, either CPU-bound or I/O-bound.

We emphasize that in the EDA design of Figure 1, of-
floading tasks to a fixed-size worker pool is not a panacea
for EHP vulnerabilities. Suppose an attacker identifies an
EHP vulnerability in code executed by the worker pool. A
pool of size k will jam after only k poisonous requests; the
EHP vulnerability is essentially the same whether the attack
is against the event thread or the worker pool. Therefore,
an attacker’s aim is to submit requests that cause either the
event thread or the entire worker pool to jam up, thereby
delaying the handling of subsequent requests.

It should be noted that an attack that jams the worker
pool can in principle be carried out against any architecture
or system with a cap on the amount of resources available
for clients, including both EDA and pool-based OTPC de-
signs. However, the connection pool in a OTPC system is
significantly larger than the worker pool in typical EDA im-
plementations. While Node.js has a default worker pool of

10See http://www.modulecounts.com/.
11See http://venturebeat.com/2011/08/16/linkedin-node/.
12See https://www.paypal-engineering.com/2013/11/22/node-
js-at-paypal/.

13See http://www.ebaytechblog.com/2013/05/17/how-we-
built-ebays-first-node-js-application/.

14See https://developer.ibm.com/open/openprojects/node-
red/.

size 4 with a maximum of 128 workers15, Apache’s httpd

server has a default connection pool of size 256-400, with
a maximum size of around 2000016. Due to the size of an
OTPC server’s connection pool, attempts to jam it would
presumably be detected by an IDS or addressed through
rate limiting. By comparison, the small number of requests
needed to jam a vulnerable EDA server’s worker pool is too
few to draw attention from network-level defenses, placing
the burden of defense on the application developer or the
runtime system to address it.

An important facet of an EHP attack is its asymmetry. As
in a DDoS attack, a carefully crafted “evil request” will be
roughly the same size and shape as the requests submitted
by legitimate clients. However, unlike a DDoS attack, the
attacker need only submit one (or k) rather than a flood.
Cambiaso et al. capture this concept with the term “slow
DoS attacks” [3].

2.3.1 CPU-bound Vulnerabilities
The CPU-bound EHP vulnerabilities in an EDA system

are a form of Algorithmic Complexity (AC) vulnerability [4].
In an AC attack, attackers force victims to take longer than
expected to perform an operation, typically by exploiting
the Worst-Case Execution Time (WCET) of an algorithm
used to process requests. Rather than overwhelming the
victim with volume, the attacker uses the victim’s vulnerable
algorithms against him. If an attacker identifies an AC-style
vulnerability in an EDA-based server, he can submit “evil
input” to trigger the WCET of the vulnerable algorithm.
When an Event Handler picks up the request, it will take
an inordinately long time to handle it, starving subsequent
requests – an EHP attack.

We argue that CPU-bound EHP vulnerabilities in the
EDA are more general than Crosby and Wallach’s formu-
lation of AC attacks. Per [4], the victim of an AC attack
is an algorithm or data structure that performs well in the
average case but poorly on carefully chosen “evil inputs”. In
the EDA setting, however, any algorithm with non-constant
WCET (non-C-WCET) and unbounded input constitutes an
EHP vulnerability.

While the EDA was originally intended for I/O-bound ap-
plications, we argue that the need to perform computation in
an EDA system is growing. Full-featured servers that rely
on the EDA must inevitably deal with the computations
needed to implement business logic, and with the advent of
fog computing [2], embedded IoT devices will increasingly
be called on to perform data processing. As these input-
driven devices are most readily programmed using the EDA
model, as shown in Cylon.js17, processing the incoming data
will require computation within an EDA setting.

2.3.2 I/O-bound Vulnerabilities
Web servers are commonly called on to interact with the

file system. An I/O-bound EHP vulnerability exists when
the attacker can request the server make a particularly slow
I/O. For example, in a file server, a slow I/O might be a
read of an unusual file, which can take on average 8x longer
to serve [20], or perhaps data stored on slow media, e.g. a

15See http://docs.libuv.org/en/v1.x/threadpool.html.
16See values for ServerLimit and MaxRequest Work-
ers in the Apache httpd documentation, available at
https://httpd.apache.org/docs/2.4/mod/

17See https://cylonjs.com/.

network drive. We suggest several ways in which an attacker
might exploit an I/O-bound EHP in Section 4.3.

3. C-WCET-PARTITIONED ALGORITHMS
When an algorithm’s overall complexity is not O(1), be-

ing C-WCET-partitioned gives it two properties that make
it ideal for the EDA setting. First, it will be cooperative; it
will not be executed atomically, but will instead allow other
events to have a turn on the Event Handler. Second, it will
be predictable: other events will have a turn on the Event
Handler within a fixed amount of time, necessary for high
throughput in a context like Node.js (where events of differ-
ent types and costs are handled by a single worker pool). A
C-WCET-partitioned algorithm can block neither the event
thread nor the worker pool, and thus an application com-
posed of C-WCET-partitioned algorithms is invulnerable to
EHP attacks. To the best of our knowledge we are the first
to propose this hardline stance on C-WCET partitioning for
EDA applications.

C-WCET partitioning is essentially the logical extreme of
cooperative multitasking [15], and interprets EDA systems
as real-time (embedded) systems with a need for strict for-
ward progress guarantees [19]. C-WCET partitioning also
makes predictable the worst-case overall completion time of
a request, a useful feature for application designers. In Sec-
tions 4 and 6 we discuss the security vulnerabilities inherent
in the use of non-C-WCET-partitioned algorithms in the
EDA setting.

4. KNOWN EHP VULNERABILITIES
IN NPM

Having described the concept of an EHP attack against
EDA-based applications, we now assess the documented vul-
nerabilities of this type in the Node.js ecosystem. The open-
source npm community gathers the bulk of its vulnerabil-
ity data via self-reporting, aggregated by the Node Security
Platform (NSP)18 and Snyk.io19 in public databases. In this
section we provide an analysis of the vulnerabilities reported
by these two agencies, focusing on EHP vulnerabilities.

4.1 Known Vulnerability Classification
Initial analysis showed that Snyk.io’s database was a su-

perset of NSP’s, so we examined all vulnerabilities in the
Snyk.io database as of February 1, 2017. Snyk.io has 353
such vulnerabilities, of which 161 had not been assigned a
CWE label. We therefore created an appropriate set of high-
level categories, placing each vulnerability into one of these
categories and obtaining the distribution shown in Figure 2.

We draw the reader’s attention to three elements of the
distribution in Figure 2. First, the 20 DoS by AC vulnerabil-
ities are due to Node.js’s EDA design. In a OTPC environ-
ment, such vulnerabilities would be annoying but not catas-
trophic; in Node.js’s EDA design, they represent a CPU-
bound EHP vulnerability leading to DoS. Second, the 14
Directory traversal and 48 Code injection vulnerabilities are
not specific to the EDA, but in the EDA setting some of
these vulnerabilities comprise CPU-bound and I/O-bound
EHP vulnerabilities. Lastly, since npm has approximately
400,000 modules20, we were surprised that only 353 vulner-

18See https://nodesecurity.io/.
19See https://snyk.io/.
20See https://www.npmjs.com/.

0 20 40 60 80 100 120 140

Other

Unrelated vuln.

Potential EHB vuln.

DoS by crash

CPU-bound EHB vuln.

Inadequate auth.

Code injection

XSS/CORS

Unsafe resources

Number of Reported npm Vulnerabilities, by Type

Unrelated vuln.

Potential EHB vuln.

CPU-bound EHB vuln.

DoS by AC

Directory traversal

Memory disclosure

CPU-bound, I/O-bound EHB vulns.

CPU-bound EHB vulns.

I/O-bound EHB vulns.

Figure 2: Classification of the known 353 npm mod-
ule vulnerabilities. The “Unsafe resource” vulnera-
bilities are trivial cases in which the module obtains
resources over HTTP (not HTTPS), allowing a man-
in-the-middle attack.

abilities have been reported. Caution dictates that many
more security vulnerabilities remain hidden. We are there-
fore uncertain of the total number and relative distribution
of security vulnerabilities in npm modules, and believe this
field is ripe for further study.

4.2 CPU-bound EHP Vulnerabilities
We will first discuss the DoS by AC vulnerabilities, and

then explore the EHP possibilities of the Code injection vul-
nerabilities.

General algorithmic complexity vulnerabilities In
one of these vulnerabilities, the report observed that a mod-
ule’s APIs had O(n) WCET, and that for large input this
API would block an Event Handler.

ReDoS vulnerabilities The other 19 such vulnerabili-
ties were Regular expression Denial of Service (ReDoS) vul-
nerabilities [14]. Regular expression engines are frequently
implemented with worst-case exponential-time performance21

to support advanced features like back references22. A vul-
nerable regular expression triggers the exponential-time worst-
case performance of the engine on evil input. We discuss
these vulnerabilities further in Section 5.
DoS by AC : fix approaches The patch for the O(n)

algorithm was to truncate the input to a maximum size,
achieving O(1) WCET at the cost of generality. For the
remaining 19 ReDoS vulnerabilities, resolution took three
main forms: replacing the vulnerable regular expression with
a safe one (9 cases), filtering the input by type or size prior
to feeding it to the regular expression (4 cases), and remov-
ing the offending regular expression(s) (3 cases). One fix
employed a combination of solutions; in the last four, the
vulnerability remains unrepaired.

Code injection vulnerabilities These 48 vulnerabilities
expose Node.js servers to an array of exploit possibilities,
including both CPU-bound and I/O-bound EDA attacks.
For example, the code while(1); [16] constitutes a CPU-
bound EDA attack.

4.3 I/O-bound EHP Vulnerabilities
14 of the vulnerabilities were Directory traversal, in which

21See http://lh3lh3.users.sourceforge.net/reb.shtml.
22A back reference n matches the substring in the nth par-
enthetical in the regular expression.

the attacker can try to read from and possibly write to any
files in the file system. We propose two ways to exploit these
vulnerabilities to carry out an EHP attack on Linux. We call
these exploits Eternal I/O attacks, and to the best of our
knowledge these exploits are novel.

While several CVE23 reports suggest the possibility of
DoS caused by an infinite read from /dev/zero, such a re-
quest will not constitute an EHP attack against properly
written Node.js code. Node.js’s standard file system Stream

APIs cooperatively partition I/O requests into a sequence of
fixed-size I/Os, dividing a read from /dev/zero into an infi-
nite number of fast partitions. As such, a /dev/zero attack
will delay but not block the victim Event Handler, though
ENOMEM conditions may result.

Unfortunately, Node.js’s file system Stream implementa-
tion is not C-WCET partitioned. The underlying file de-
scriptor is blocking, so I/O against a slow, blocking source
will occupy the Event Handler for long intervals in each
partition (each read()/write()). For example, reading from
/dev/random will poison the Event Handler24, as will reading
from an empty FIFO or writing to a full one.

5. IDENTIFYING VULNERABLE
REGULAR EXPRESSIONS

Given the clear potential for ReDoS vulnerabilities, we
wanted to understand how readily a Node.js developer can
determine whether his regular expressions are vulnerable.
To this end, we extracted the known-vulnerable regular ex-
pressions from the Snyk.io vulnerability reports and ana-
lyzed them using the tools available to the community.

Extracting these regular expressions was non-trivial. The
ReDoS vulnerability reports from NSP and Snyk.io do not
indicate the vulnerable regular expression(s) or the evil in-
puts, even after a patch is available. Consequently, we
identified vulnerable or potentially-vulnerable regular ex-
pressions through manual examination of the vulnerability
patches and the module source code. As we could not al-
ways pinpoint the specific vulnerable regular expression, we
extracted 44 potentially vulnerable regular expressions.

We tested each regular expression using the only open-
source regular expression analysis tools we could identify:
safe-regex

25 and rxxr2 [12]. safe-regex labels as vulnerable
all regular expressions with star height [8] greater than one,
while rxxr2 performs a more complex analysis based on an
idealized backtracking regular expression engine. rxxr2 did
not support unicode characters and unescaped meta char-
acters, and we transformed any regular expressions using
these features into semantically equivalent expressions that
it could parse. rxxr2 reports evil input it believes will trig-
ger exponential-time performance for the regular expression,
simplifying validation of its report, while safe-regex does
not.

Disagreement between oracles These static analysis
tools disagreed on many of the 44 regular expressions we
extracted using the vulnerability reports. Figure 3 shows
the extent to which the oracles agreed in their assessments
of “vulnerable”.

Both oracles were inaccurate in the Node.js environment.
rxxr2 was complete (no false positives) but not sound (it had

23See http://cve.mitre.org/.
24See man(4) random.
25See https://github.com/substack/safe-regex/.

Figure 3: The safe-regex and rxxr2 oracles disagreed
on whether many of the regular expressions were
vulnerable. Each oracle found true vulnerabilities
the other did not.

false negatives). safe-regex was not sound, and we do not
know whether it was complete. We confirmed that each of
the 15 regular expressions identified as unsafe by rxxr2 was
vulnerable to ReDoS. In addition, we manually crafted evil
input based on the analysis of safe-regex, and were success-
ful in demonstrating two of these regular expressions to be
vulnerable; we believe a few to be safe (false positives) and
are not yet certain on the rest. We are working on automat-
ically producing evil input based on safe-regex’s analysis in
order to automatically evaluate the accuracy of its analysis.

We expected inaccuracies in safe-regex, as the tool’s doc-
umentation explains that it is best-effort only. The unsound-
ness of rxxr2 [12] was more surprising, suggesting either bugs
in the authors’ implementation or assumptions about an ide-
alized regular expression engine that do not hold for Node.js.

6. CPU-BOUND EHP VULNERABILITIES
IN THE WILD

Based on our assessment of the prevalence of EHP vulner-
abilities in Section 4, we performed a preliminary study of
npm vulnerabilities “in the wild.”

6.1 ReDoS Vulnerabilities
Keeping in mind the common use of regular expressions

to parse input, we wanted to know whether the regular ex-
pressions in the most popular npm modules were vulnerable.
We examined the first two pages of “most starred” packages
on npm, yielding 71 modules with GitHub repositories. We
consider these modules to be well-maintained and likely to
be compatible with a recent LTS version of Node.js, ensuring
consistency in analysis.

We instrumented a version of Node.js v6.9.4 (a LTS ver-
sion of Node.js) to emit regular expressions as they were
declared. We ran the test suite of each of the modules us-
ing our version of Node.js, extracting 16,252 unique regular
expressions from a total of 487,063 declarations.

We applied the oracles discussed in Section 5 to determine
whether these regular expressions are vulnerable. Prelimi-
nary results produced over 700 potential vulnerabilities from
safe-regex and 20 from rxxr2, of which we have identified
several as truly vulnerable to ReDoS.

6.2 Non-C-WCET Algorithms
As argued in Section 3, in the Node.js EDA, only C-

WCET-partitioned algorithms are safe from EHP vulner-
abilities. We examined 80 npm modules in detail to deter-
mine how they handle potentially computationally expen-
sive tasks, manually inspecting both their documentation
and their implementations. We chose the first 20 modules

returned by npm searches for string, string manipulation,
math, and algorithm, in hopes of striking a balance between
relevance (high usage) and potential algorithmic complexity.

Our initial findings were troubling. Only two of the hun-
dreds of APIs we evaluated were partitioned, and one of
these synchronously executed an exponential-time algorithm
before yielding control. The majority of the API documen-
tation did not state the running time of the synchronous
algorithms, and by inspection we identified algorithms with
complexities ranging from O(n) to O(2n). The modules we
selected were not pet projects; combined, these 80 modules
were downloaded over 200 million times in December 2016
alone. It seems clear to us that the majority of module de-
velopers are not cognizant of the risks of unbounded non-
C-WCET-partitioned algorithms, and that many Node.js
applications are therefore likely vulnerable to CPU-bound
EHP attacks. These findings are in line with previous work
studying the frequency of asynchronous callbacks in server-
side JavaScript, though we identified a lower proportion of
asynchronous callbacks than they did [6].

7. DISCUSSION AND
RESEARCH DIRECTIONS

In this section we share suggestions for the Node.js devel-
opment community, and we propose five research directions
to combat EHP attacks in the EDA setting.

7.1 Community Recommendations
Vulnerability reporting Many reports from Snyk.io and

NSP lacked details like CWE labels or CVE IDs, a precise
description of the vulnerability, a proof of concept, patch
information, or the version(s) of Node.js on which the vul-
nerability exists. Including this information in reports would
ease subsequent analyses of these rich sources of vulnerabil-
ities.

npm module documentation Given the security implica-
tions of poisoning an Event Handler, we strongly recommend
that npm modules clearly document their WCET. While this
information would be useful for developers in any setting, it
is vital for developers building secure EDA-based systems.

Use multiple regex oracles We found both rxxr2 and
safe-regex to be inaccurate. Their combined wisdom, how-
ever, appeared effective at identifying vulnerable regular ex-
pressions, and we recommend developers query both of these
oracles to ensure an accurate report. We will be releasing
tools to facilitate these queries and to validate the oracles’
responses.

7.2 Potential Research Directions
C-WCET-partitioned algorithms As argued in Sec-

tion 3, algorithms used in an EDA system like Node.js should
be C-WCET partitioned; this concept underlies all of the
EHP vulnerabilities discussed in Sections 4 and 6. Happily,
C-WCET partitioning can generally be realized by repeat-
edly calling a kernel function, a straightforward technique
in JavaScript thanks to its notion of closures. Would an ex-
tensive set of npm modules with C-WCET-partitioned algo-
rithms show the Node.js community the way forward? Could
a speculative execution scheme safely alleviate the need for
C-WCET partitioning in part or in whole? Can we automat-
ically refactor algorithms to be C-WCET partitioned? Lin
et al. take a step towards this refactoring in Android [9],

though their technique is inappropriate for Node.js because
of Node.js’s fixed-size worker pool.

TimeoutExceptions Alongside C-WCET partitioning,
we recommend the introduction of runtime-generated Time-

outExceptions into EDA implementations. A TimeoutExcep-

tion would abort synchronous computation after a specified
time limit, allowing developers to use open-source modules
while still ensuring protection against EHP vulnerabilities.

A hybrid regex engine Except for back references, ev-
ery feature of JavaScript regular expressions can be sup-
ported by a linear-time regular expression engine. As back
references are little-used in practice (of the 16,252 we an-
alyzed in Section 6.1, only 54 used them), we recommend
that Node.js offer a linear-time engine for the common case.
This technique has also been discussed by Cox26.

To demonstrate the potential of the hybrid approach, we
evaluated each of the rxxr2-flagged regular expressions from
Section 4.2 against Node.js and against the linear-time RE2

27

engine. While Node.js required exponential time to process
evil input, RE2 performed in linear time.

An accurate oracle As discussed in Section 4.2, nei-
ther of the regular expression oracles we used was accurate,
presumably due to incorrect assumptions about the imple-
mentation of the Node.js regular expression engine. Can
we develop a regular expression oracle tailored to individual
regular expression engine implementations, perhaps based
on their feature sets and a few implementation details?

Truly asynchronous file I/O Node.js implements asyn-
chronous file I/O by offloading synchronous file I/O opera-
tions to its worker pool. Each time the worker pool is as-
signed an Eternal I/O (Section 4.3), an Event Handler is
poisoned. We are unaware of any existing solution to this
problem. Were this I/O implemented using true kernel asyn-
chronous IO or non-blocking file descriptors, Eternal I/Os
that make no forward progress would consume operating
system resources but would not poison an Event Handler.

8. CONCLUSION
The Event-Driven Architecture holds significant promise

for scaling, and Node.js developers can get started quickly
and re-use an enormous amount of existing code written for
client-side JavaScript. However, EDA-based servers are vul-
nerable to Event Handler-Poisoning DoS attacks, just like
old single-threaded servers were. As demonstrated by our
analysis of known vulnerabilities and our survey of poten-
tial new ones, the Node.js community seems to be incau-
tious about this vulnerability. We have proposed a variety
of possible defenses against EHP attacks, and look forward
to assessing their success under various threat models.

Acknowledgments
The authors thank Long Cheng and Dr. Danfeng Yao for
their suggestions, and Talha Ghaffar and M. Usman Nadeem
for their help on our npm hunting expedition. We are also
grateful to the reviewers for their feedback.

9. REFERENCES
[1] New Node.js Foundation Survey Reports New “Full

Stack” In Demand Among Enterprise Developers,

26See https://swtch.com/ rsc/regexp/regexp1.html.
27See https://github.com/google/re2.

2016.
https://nodejs.org/en/blog/announcements/nodejs-
foundation-survey/.

[2] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. Fog
Computing and Its Role in the Internet of Things. In
Mobile Cloud Computing (MCC), 2012.

[3] E. Cambiaso, G. Papaleo, and M. Aiello. Taxonomy of
Slow DoS Attacks to Web Applications. Recent Trends
in Computer Networks and Distributed Systems
Security, pages 195–204, 2012.

[4] S. A. Crosby and D. S. Wallach. Denial of Service via
Algorithmic Complexity Attacks. In USENIX
Security, 2003.

[5] S. Ferg. Event-driven programming: introduction,
tutorial, history. 2006.

[6] K. Gallaba, A. Mesbah, and I. Beschastnikh. Don’t
Call Us, We’ll Call You: Characterizing Callbacks in
Javascript. In International Symposium on Empirical
Software Engineering and Measurement (ESEM),
2015.

[7] D. Goodman and P. Ferguson. Dynamic HTML: The
Definitive Reference. O’Reilly, 1 edition, 1998.

[8] K. Hashiguchi. Algorithms for determining relative
star height and star height. Information and
Computation, 78(2):124–169, 1988.

[9] Y. Lin, C. Radoi, and D. Dig. Retrofitting
Concurrency for Android Applications through
Refactoring. In ACM International Symposium on
Foundations of Software Engineering (FSE), 2014.

[10] A. Ojamaa and K. Duuna. Assessing the security of
Node.js platform. In 7th International Conference for
Internet Technology and Secured Transactions
(ICITST), pages 348–355, 2012.

[11] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An
Efficient and Portable Web Server. In USENIX
Annual Technical Conference (ATC), 1999.

[12] A. Rathnayake and H. Thielecke. Static Analysis for
Regular Expression Exponential Runtime via
Substructural Logics. CoRR, 2014.

[13] R. Rogers, J. Lombardo, Z. Mednieks, and B. Meike.
Android application development: Programming with
the Google SDK. O’Reilly Media, Inc., 1 edition, 2009.

[14] A. Roichman and A. Weidman. VAC - ReDoS Regular
Expression Denial Of Service. OWASP, 2009.

[15] A. Silberschatz, P. B. Galvin, and G. Gagne. Operating
System Concepts. Wiley Publishing, 9th edition, 2012.

[16] B. Sullivan. Server-Side JavaScript Injection. BlackHat
USA, (July):1–7, 2011.

[17] R. E. Sweet. The Mesa programming environment.
ACM SIGPLAN Notices, 20(7):216–229, 1985.

[18] M. Welsh, D. Culler, and E. Brewer. SEDA : An
Architecture for Well-Conditioned, Scalable Internet
Services. In SOSP, 2001.

[19] R. Wilhelm, J. Engblom, A. Ermedahl, et al. The
Worst-Case Execution-Time Problem - Overview of
Methods and Survey of Tools. ACM Transactions on
Embedded Computing Systems (TECS), 7(3):36, 2008.

[20] Z. Wu, M. Xie, and H. Wang. Energy Attack on
Server Systems. In USENIX WOOT, 2011.

