
BESPOKV: Application Tailored Scale-Out
Key-Value Stores

Ali Anwar∗, Yue Cheng†, Hai Huang‡, Jingoo Han§, Hyogi Sim¶, Dongyoon Lee§, Fred Douglis‖, Ali R. Butt§
∗IBM Research–Almaden, †George Mason University, ‡IBM Research–T.J. Watson,

§Virginia Tech, ¶Oak Ridge National Laboratory, ‖Perspecta Labs
∗ali.anwar2@ibm.com, †yuecheng@gmu.edu, ‡haih@us.ibm.com, §jingoo@vt.edu, ¶simh@ornl.gov

§dongyoon@cs.vt.edu, ‖fred.douglis@gmail.com, §butta@cs.vt.edu

Abstract—Enterprise KV stores are not well suited for HPC
applications, and entail customization and cumbersome end-to-
end KV design to extract the HPC application needs. To this
end, in this paper we present BESPOKV, an adaptive, extensible,
and scale-out KV store framework. BESPOKV decouples the KV
store design into the control plane for distributed management
and the data plane for local data store. BESPOKV takes as input a
single-server KV store, called a datalet, and transparently enables
a scalable and fault-tolerant distributed KV store service. The
resulting distributed stores are also adaptive to consistency or
topology requirement changes and can be easily extended for
new types of services. Experiments show that BESPOKV-enabled
distributed KV stores scale horizontally to a large number of
nodes, and performs comparably and sometimes better than the
state-of-the-art systems.

I. INTRODUCTION

The underlying storage and I/O fabric of modern high

performance computing (HPC) increasingly employ new tech-

nologies such as flash-based systems and non-volatile memory

(NVM). While improving I/O performance, e.g., via providing

more efficient and fast I/O burst buffer, such technologies also

provide for opportunities to explore the use of in-memory

storage such as key-value (KV) stores in the HPC setting.

Distributed KV stores are beginning to play an increasingly

critical role in supporting today’s HPC applications. Examples

of this use include dynamic consistency control [1], coupling

applications [2], [3], and storing intermediate results [4],

among others. Relatively simple data schemas and indexing

enable KV stores to achieve high performance and high

scalability, and allow them to serve as a cache for quickly

answering various queries, where user experience satisfaction

often determines the success of the applications. Consequently,

a variety of distributed KV stores have been developed, mainly

in two forms: natively-distributed and proxy-based KV stores.

The natively-distributed KV stores [5], [6], [7], [8], [9] are

designed with distributed services (e.g., topology, consistency,

replication, and fault tolerance) in mind from the beginning,

and are often specialized for one specific setting. For example,

HyperDex [10] supports Master-Slave topology and Strong

Consistency (MS+SC). Facebook relies on its own distributed

Memcache [8] with Master-Slave topology and Eventual Con-

sistency (MS+EC). Amazon employs Dynamo [6] with Active-

Active1 topology and Eventual Consistency (AA+EC).

1Active-Active is also called multi-master in database literature.

Fig. 1: Different approaches to enable distributed KV stores:

(a) natively-distributed (b-d) proxy-based.

Another key limitation of natively-distributed KV stores lie

in their inflexible monolithic design where distributed features

are deeply baked with backend data stores. The rigid design

implies that these KV stores are not adaptive to ever-changing

user demands for different backend, topology, consistency,

or other services. For instance, Social Artisan [11] and Be-

hance [12] moved from MongoDB to Cassandra for scalability

and maintenance reasons [13]. Conversely, Flowdock [14]

migrated from Cassandra to MongoDB due to stability issues.

Unfortunately, this migration process is very frustrating and

time/money-consuming as requires data remodeling and extra

migration resources [13].

Alternatively, proxy-based distributed KV stores leverage a

proxy layer to add distributed services into existing backend

data stores. For example, Mcrouter [15], and Twemproxy [16]

can be used as a proxy to enable a basic form of distributed

Memcached [17] with partitioning, as shown in Figure 1(b).

Twemproxy supports additional Redis [18] backend as well.

Recently, Netflix Dynomite [19] extended Twemproxy to

support high availability and cross-datacenter replication, as

illustrated in Figure 1(c).

Unlike monolithic natively-distributed KV stores, the use

of a separate proxy layer enables support for multiple back-

ends. Each single-server KV store such as Memcached [17],

Redis [18], LevelDB [20], and Masstree [21] has own its

merit, so the ability to choose one or mix is an ample reward.

However, existing proxy-based KV stores are still limited to

a single topology and consistency: e.g., Dynomite supports

SC18, November 11-16, 2018, Dallas, Texas, USA
978-1-5386-8384-2/18/$31.00 ©2018 IEEE

System S R MB MC MT AR P
Single-server � � � � � � �

Twemproxy � � � � � � �
Mcrouter � � � � � � �

Dynomite � � � � � � �

BESPOKV (Our work) � � � � � � �

TABLE I: BESPOKV vs. state-of-the-art systems for KV

stores. S: Sharding; R: Replication; MB: Multiple back-

ends; MC: Multiple consistency techniques, e.g. strong, even-

tual, per-request, etc.; MT: Multiple network topologies, e.g.

Master-Slave, Master-Master, Peer-to-Peer, etc.; AR: Auto-

matic failover recovery; P: Programmable.

AA+EC only. We see that existing solutions have not yet

extracted the full potential of proxy-based distributed KV

stores. Table I summarizes the limitations of existing proxy-

based KV solutions such as Dynomite and Twmemproxy.

This paper presents BESPOKV, a flexible, ready-to-use,

adaptive, and extensible distributed KV store framework. Fig-

ure 1(d) illustrates BESPOKV’s distributed KV store archi-

tecture. BESPOKV takes as input a single-server KV store,

which we call datalet, and transparently enables a distributed

KV store service, supporting a variety of cluster topologies,

consistency models, replication options, and fault tolerance

(§III). To the best of our knowledge, BESPOKV is the first
system supporting multiple consistency techniques, multiple
network topologies, dynamic topology/consistency adaptation,
automatic failover, and programmability, all at the same time.

Decoupling control and data planes brings three unique ben-

efits to BESPOKV that are not possible in existing distributed

KV stores. First, given a (single-server) datalet, BESPOKV

enables immediately-ready-to-use distributed KV stores. De-

velopers can simply “drop” a datalet to BESPOKV and offload

the “messy plumbing” of distributed systems support to the

framework. BESPOKV transparently supports multiple back-

ends and different combinations of cluster topologies and con-

sistency models: e.g., MS+SC, MS+EC, AA+SC, AA+EC, and

more (§IV). Second, BESPOKV makes distributed KV stores

adaptive to dynamic changes. BESPOKV supports seamless

on-the-fly cluster topology and data consistency changes by

updating controlets while keeping datalets unchanged: e.g.,

MS+EC to MS+SC, and AA+EC to MS+EC (§V). Lastly,

BESPOKV enables extensible distributed KV stores. Starting

from default controlets, developers can quickly synthesize new

and innovative services: e.g. KV stores with hybrid topologies.

In essence, BESPOKV leverages the reusability principles [22]

to simplify the task of constructing systems with new designs.

This paper makes the following contributions:

• We propose a novel distributed KV store architecture that

enables innovative uses of KV stores in HPC applications,

Our implementation of BESPOKV is publicly available at

https://github.com/tddg/bespokv.

• We demonstrate that BESPOKV can be easily extended to

offer advanced features such as range query, per-request

consistency, polyglot persistence, and more. To the best of

our knowledge, BESPOKV is first to support a seamless

on-the-fly topology/consistency adaptation. We also present

several use cases to show effectiveness of BESPOKV.

• We deploy BESPOKV-enabled distributed KV stores in a

local testbed as well as in a public cloud (Google Cloud

Platform [23]) and evaluate their performance.

II. MOTIVATION: KEY-VALUE STORES FOR HPC

This section discusses the benefits of using distributed KV

stores for HPC applications, and how BESPOKV can bring the

potential into reality.

Wang et al. [2] first studied the effectiveness and usefulness

of distributed KV stores for HPC. By encapsulating the

distributed system complexities into the KV stores, the authors

showed how KV stores can simplify design and implementa-

tion of HPC services such as Job launch, monitoring/logging,

and I/O forwarding. In response, HPC community has pro-

posed different HPC-oriented KV stores such as SKV [4],

PapyrusKV [1], MDHIM [24], and Sharp [3]; and further

demonstrated other use cases of KV stores for online analysis,

visualization, and coupling HPC applications.

Non HPC-oriented KV stores are mostly built for stream-

ing workloads, they often use a lot of memory out of the

box. This is not very friendly to HPC workloads. Match-

ing of application as well as KV store memory demands,

and throughput/latency needs require customizations that ex-

isting KV stores do not provide. BESPOKV’s control and

data plane decoupled architecture, flexible configurability, and

extensibility enable new solutions and such customizations

for emerging HPC systems and workloads. First, BESPOKV

makes it easy for HPC developers to explore different design

trade-offs in future HPC systems with heterogeneous hardware

resources. Prior solutions are developed for one architecture.

For instance, SKV [4] is designed for the IBM Blue Gene

Active Storage I/O nodes equipped with flash storage [25],

while PapyrusKV [1] is designed to leverage non-volatile

memory (NVM) in HPC systems. Future HPC architectures

are expected to have hierarchical, heterogeneous resources

such as DRAM, NVM, and high-bandwidth memory (HBM).

BESPOKV seamlessly support the use of different datalets,

each of which can be tuned, for different memory and storage

architecture (evaluated in section VI-A).

Second, BESPOKV enables new HPC services for emerging

workloads. (1) Data layout: While existing KV solution are

rigid and pre-fixed for one setting, BESPOKV allows storing

data in different datalets, adapt and switch datalets as needed,

and thus can handle diverse characteristics of new data work-

loads. For example, datalet using B-tree as main data structure

is better suited for read-intensive workloads [26] (e.g., deep

learning), while LSM tree based datalet is a better choice for

write-intensive workloads due to high write amplification and

no fragmentation [27]. Unlike existing solutions BESPOKV

provides option to switch datalets (evaluated in sections VI-A

and VIII-B). (2) Multi-tenancy and geo-distribution: HPC

applications built atop KV store may require dynamically

switching the topology and consistency. For example, in case

of a distributed metadata server or job launch system built

using KV store [2], simple MS topology may be sufficient for

handling metadata and resource contention for Jobs launched

Fig. 2: BESPOKV architecture and the interactions between components. LSM Tree: Log-structured merge-tree. DLM: Distributed

lock manager.

on one cluster but AA topology may become more beneficial

as we scale out to multiple clusters located at different

geolocations. Existing KV stores do not provide such support

(evaluated in section VIII-C). (3) Low latency: Ultra low

latency is often required to take advantage of in-memory KV

storage [28]. For this purpose we added support for DPDK [29]

kernel bypassing in BESPOKV (evaluated in §E).
III. BESPOKV DESIGN

In this section, we describe the design of BESPOKV and

how it provides compatibility, versatility, modularity, and high

performance for supporting distributed KV stores. Figure 2

shows the overall architecture of BESPOKV comprising five

modules: datalet, controlet, coordinator, client library, and

optional components. A collection of datalets form the data

plane, the rest of the modules makes up the control plane.

Datalet is supplied by the user and responsible for storing

data within a single node. Datalet should provide the basic

I/O interfaces (e.g., Put and Get) for the KV stores to be

implemented. We refer to this interface as the datalet API.

For example, a user can develop a simplest form of in-memory

hash table. Users can also mix and match datalets with each

datalet using a different data structure.

Controlet is supplied by BESPOKV and provides a datalet

with distributed management services to realize and enable

the distributed KV stores associated with the datalet. The

controlet processes client requests and routes the requests

to the associated entities: e.g., to a datalet for storing data.

BESPOKV provides a default set of controlets, and allows

advanced users to extend and design new controlets as needed

for realizing a service that may require specialized handling

in the controlet.

BESPOKV allows an arbitrary mapping between a controlet

and a datalet. A controlet may handle N (≥ 1) instances of

datalets, depending on the processing capacity of the controlet

and its datalets, and can leverage physical resource (datacen-

ter) heterogeneity [30], [31] for better overall utilization. For

instance, a controlet running on a high-capacity node may

manage more datalet nodes than a controlet running on a low-

capacity node. For simplicity, we use one-to-one controlet–

datalet mappings in the rest of the paper.

Coordinator provides three main functions. (1) It maintains

the metadata regarding the whole cluster topology and pro-

vides a query service as a metadata server. (2) It tracks

Datalet API (provided by application developers)

Put(key, val) Write the {key,val} pair to the datalet

val=Get(key) Read val of key from the datalet

Del(key) Delete {key,val} pair from the datalet

Client API (provided by BESPOKV)

CreateTable(T) Create a table T to insert data

Put(key, val, T) Write the {key,val} pair to table T

val=Get(key, T) Read val of key from table T

Del(key, T) Delete {key,val} pair from table T

DeleteTable(T) Delete table T

TABLE II: APIs to Put, Get, and Del a KV pair. Datalet and

Client APIs are for using pre-built controlets.

the liveness of the cluster by exchanging periodic heartbeat

messages with the controlets. (3) It coordinates failover in

case of a node failure. The coordinator can run on separate

node or alongside other controlets.

BESPOKV implements the coordinator on top of

ZooKeeper [32] for better resilience. Similar to designing

specialized controlets, advanced users have the option to

design customized coordinators if needed. It is also possible to

design a new coordinator as a special form of controlet from

scratch using the BESPOKV-provided controlet programming

abstraction as shown in section III-B. Nonetheless, because it

is widely used across many KV stores, BESPOKV includes

the coordinator as a default module in the control plane.

Client library is provided by BESPOKV and used by the

client applications to utilize the services created by BESPOKV.

The library provides a flexible means for mapping data to

controlets. The client application uses the library interface to

consult with the coordinator and fetch data partitioning and

mapping information, which is then used to route requests to

appropriate controlets. BESPOKV allows different developers

to choose their own partitioning techniques such as consistent

hashing and range-based partitioning.

Optional Components BESPOKV provides two optional com-

ponents facilitating the controlet development: 1) a distributed

lock manager (DLM) for a locking service, and 2) a Shared

Log for an ordering service. One can build such a distributed

management service as a special form of controlets from

the scratch, but given its common use in distributed KV

store development, BESPOKV imports existing solutions (e.g.,

Redlock [33] for DLM, and ZLog [34], [35], [36] for Shared

Log) and provides interface libraries (section III-B, Table III).

A. Data Plane
A collection of datalets running on different distributed

nodes form the data plane for BESPOKV. A single-server

Events API (provided by BESPOKV)

Register(c,e,cb) Register basic event e for conn c to call func cb

Enable(c,e) Enable event e to be triggered onc time for conn c

On(e,cb) Register extended event e to call func cb

Emit(e) Emit event e

Shared Log API (provided by BESPOKV)

CreateLog Creates a new log instance L

PutSharedLog(m, L) Append message m to log L

AsyncFetch(L) Asynchronous read from log L

DLM API (provided by BESPOKV)

Lock(key) Acquire lock on key

Unlock(key) Unlock key

Coordinator API (provided by BESPOKV)

LogHeartbeat(c,d) Log heartbeat for controlet c & datalet d

map=GetShardInfo(s) Get controlet & datalet list for shard s

c=LeaderElect(s) Elect new Master controlet for shard s

TABLE III: APIs for Events, Shared Log, DLM, and Coordi-

nator for new controlet development. Due to space limitation,

we list only important APIs.

datalet is completely unaware of other datalets. Datalet De-
velopment. BESPOKV supports multiple backends. Users can

make use of off-the-shelf single-serve data stores such as

Redis [18], SSDB [37], and Masstree [21]. In addition, BE-

SPOKV provides datalet templates based on commonly used

data structures: currently, a hash-table-based tHT, a log-based

tLog, and a tree-based tMT. For the ease of development,

BESPOKV furnishes an asynchronous event-driven network

programming framework in which developers can design new

datalets, starting from existing templates. We evaluate the

reduced engineering effort in §VII.

APIs and Protocol Parsers. For compatibility and modularity,

BESPOKV provides a clean set of datalet APIs (between

controlet and datalet) and client APIs (between client app and

client library). Table II presents example datalet and client

APIs. As these APIs are consistent with existing I/O interfaces

of existing KV stores. Datalet developers can adopt them in

a straightforward manner to enable distributed services. This

is much easier than library-based replication solutions such as

Vsync [38] where developers should learn complex new APIs.

To offer compatibility and be able to understand application

protocols to process incoming requests properly, BESPOKV’s

communication substrate supports two options. (1) It pro-

vides a BESPOKV-defined protocol using Google Protocol

Buffers [39]. This option is suitable for new datalets and is

preferred due to its ease of use and better programmability.

(2) BESPOKV allows developers to provide a parser for their

own protocols. This option is mainly available for porting

existing datalets such as Redis or SSDB.

B. Control Plane
BESPOKV provides a set of pre-built controlets that pro-

vide datalets with common distributed management. Given a

datalet, BESPOKV makes distributed KV stores immediately

ready-to-use. Developers can also extend these pre-built con-

trolets or design new ones from scratch for advanced services.

Pre-built Controlets. BESPOKV identifies four core com-

ponents for distributed management, and provides pre-built

controlets that support common design options in existing dis-

tributed KV stores. The choice is based on our comprehensive

study of existing systems that revealed three key observations:

(1) cluster topology, consistency model, replication, and fault

Fig. 3: Put/Get paths in MS+SC. M means master; Sn means

the nth slave; D means datalet.

tolerance generally define distributed features of KV stores;

(2) for the topology, MS and AA are common; and (3) for the

consistency model, SC and EC are popular. Detailed descrip-

tions of exemplary controlets supporting MS+SC, MS+EC,

AA+SC, and AA+EC options follow in §IV.

Controlet Development. To support advanced users and new

kinds of services, BESPOKV provides an asynchronous event-

driven network programming framework for controlet devel-

opment as well. For each event (e.g., Put request, timeout,

etc.), developer can define event handlers to instruct how

the controlet should process the event to enable versatile

distributed management services in the control plane. The

aforementioned pre-built controlets indeed consist of a set of

pre-defined event handlers for common distributed services.

Control Plane Configuration. To configure the system, each

controlet takes as input (1) a JSON configuration file that

specifies the basic system deployment parameters such as

topology, consistency model, the number of replicas, and

coordinator address ; and (2) a datalet host file containing the

list of datalets to be managed. BESPOKV loads the runtime

configuration information at the coordinator, which serves

as the query point for the client library and controlets to

periodically retrieve configuration updates. Any change in

configuration at runtime (e.g., topology/consistency switch)

results in replacing old controlets with new ones. We describe

dynamic adaptation mechanisms in §V in detail. Contro-
let Programming Abstraction BESPOKV uses asynchronous

event-driven programming model to achieve high throughput.

For each event (e.g., incoming network input, timer, etc.),

developers are asked to define event handlers to process the

event. There are two types of events in BESPOKV: basic and

extended events. Basic events represent pre-defined conditions.

Developers can create their own extended events by using

basic or existing extended events.

Other Controlet APIs. BESPOKV provides a set of libraries

and APIs with common features for controlet development,

shown in Table III.

IV. BESPOKV-BASED DISTRIBUTED KV STORES

BESPOKV, to be specific its control plane, transparently

turns a user-provided single-server datalet to a scalable, fault-

tolerant distributed KV store. This section presents support

for MS+SC (See §C for MS+EC, AA+SC, and AA+EC) and

four examples to enable new forms of distributed services by

combining existing controlets or extending ones.

A. Master-Slave & Strong Consistency
We start from a KV store supporting the MS topology with

the SC model (MS+SC). Perhaps the simplest way to ensure

SC is to rely on a locking mechanism using ZooKeeper [32] at

the cost of serialization. However, alternative scalable designs

exist such as chain replication (CR) [40], value-dependent

chaining [10], and their variants. The pre-built BESPOKV

controlet for MS+SC leverages CR algorithm. Our modular

design allows BESPOKV to adopt other optimizations for

CR [41], [42] as well, but so far we have not implemented

those. The original CR paper describes the tail sending a

message directly back to the client; but similar to CRAQ [42],

our implementation lets the head respond after it receives an

acknowledgment from the tail, given its pre-existing network

connection with the client.

Example. Figure 3 shows how MS+SC is implemented in

BESPOKV. Here, clients route Puts to the head of the

corresponding controlet–datalet chains via consistent hashing

(step 1). The head controlet forwards the incoming Put request

to its local datalet (step 2) and then to mid node (step 3),

which forwards the request to its local datalet and then to

tail (step 4). Tail first forwards the request to local datalet

and then sends Ack back to mid, which sends Ack back to

head (step 5). Once the head controlet receives the Ack from

the mid, the head controlet marks the request completed and

responds to the client (step 6). Gets are routed to the tail node

of the corresponding chains. This provides the SC guarantee

as clients are only notified of the successful completions of

Puts after the data is persisted through the tail nodes.

Failover. In all cases (MS+SC, MS+EC, AA+SC, and

AA+EC), when the coordinator detects a node failure using a

periodic heartbeat message, it launches a new controlet–datalet

pair in recovery mode on one of the standby nodes. The new

controlet then recovers the data from one of the datalets.

In particular, for MS+SC using chain replication, the coor-

dinator performs the chain recovery process and adds the new

pair as the new tail to the end of the chain. The former chain

recovery process depends on the location of the failure in the

replica chain as follows. If a middle node fails, the coordinator

notifies the head controlet to skip forwarding requests to the

failed node. In case the tail node fails, the coordinator informs

the head controlet to skip forwarding requests to the tail datalet

and temporarily marks the second to the last node as the new

tail so that future incoming Get requests can be redirected

properly. If the head node fails, the coordinator appoints the

second node in chain as the new head, and updates the cluster

metadata. Upon seeing the change, the clients redirect future

writes to the new head. Every node maintains a list of requests

received but not yet processed by the tail, which is used to

resolve in-flight requests [42], [40].

B. Range Query
We support range query or scan operations as fol-

lows. For datalets, the Masstree-based tMT template is

used and extended to expose a range query API such as

GetRange(Start, End). The client library supports range-

based partitioning, e.g., dividing the name space by alphabet-

ical order (e.g., A-C on one node, D-F on another node, and

so on). The controlet divides a client request into sub-requests

and forwards the sub-range query requests to corresponding

datalets that store the specified range.

C. Per-request Consistency
We extend the client library GET API to support con-

sistency/topology specification on a per-request basis. For

instance, under MS+SC, if the user specifies a lower value

of consistency level, GETs can go to any of the replicas, thus

only eventual consistency is guaranteed.

D. Polyglot Persistence
A use case for KV store is to support businesses that may

be divided into different components, and each component

requires its own private data storage. BESPOKV supports such

polyglot persistence [43] by launching custom controlets for

cross-app lazy synchronization (eventual consistency).

E. Other Topologies
BESPOKV also supports an AA-MS hybrid topology by

configuring an MS topology for each shard on top of the

logical AA overlay. Similarly, a P2P-like topology can also be

enabled by allowing clients to send a request to any controlet,

which then routes the request to the actual controlet that

manages the requested data. In this case, a controlet needs

to maintain a routing map similar to a finger table [44] to

determine the location of keys.

V. DYNAMIC ADAPTATION TO CONSISTENCY AND

TOPOLOGY MODEL CHANGES

Separating the control and data planes bring another benefit:

BESPOKV-enabled distributed KV stores can seamlessly adapt

to consistency and topology model changes at runtime by

switching the controlets while keeping the datalets unchanged.

At a high level, upon a consistency and/or topology change

request, Coordinator launches a new set of controlets that will

provide new services. Two old and new controlets are mapped

to one datalet during the transition phase. The old controlet

provides the old service with no downtime, and forwards

some requests to the new controlet so that it can prepare

the new service. When the transition completes, the new

controlet takes over the old one. The transition protocol differs

per each case. BESPOKV supports any transition between

four aforementioned topology and consistency combinations,

among which we describe two interesting cases in detail.

section VIII-C presents the experimental results on this aspect.

A. Transition from MS+EC to MS+SC
To make a transition from EC to SC, the master node needs

to make sure that all the Put requests 1) that have arrived

before the transition starts and 2) that arrive during transition

are fully propagated to the slave nodes. For the former, the

old master keeps flushing out any pending propagation. For

the latter, the old master forwards an incoming Put request

to the new master controlet which uses chain replication for

SC, instead of propagating it asynchronously. When there

is no more pending propagation left in the old controlet,

the transition is over. SC guarantees will be enforced after

Fig. 4: Transition: MS+EC to MS+SC and AA+EC to MS+EC.

the transition has completed. During the transition, any node

may respond to Get requests, providing EC guarantee. This

means that a Get request, even after the reconfiguration was

requested, may experience EC until the transition is over.

As controlet developers are responsible for developing the

transition functionality for the various consistency/topology

modes. A controlet developer can choose an alternative route

to fence all writes as soon as the reconfiguration is requested

so that all reads observe the same and latest applied value.

Figure 4 (a) shows transition from MS+EC to MS+SC 2.

Client 1 sends a Put request (Step 1a) to the old master

controlet C1. A concurrent Get request (Step 1b) from Client

2 gets serviced as it used to be. The old master forwards

Put request (Step 2) to the new master controlet which

guarantees SC. When the new master completes its chain

replication process, it acknowledges the old master, which in

turn acknowledges Client 1. When the transition completes, a

Put request (Step 3) is routed to the new master controlet.

B. Transition from AA+EC to MS+EC
In AA+EC, any active node can get a Put request. To

maintain a global ordering between concurrent Puts, an active

node relies on the Shared Log that propagates Puts to the

other nodes on its behalf. On the other hand, in MS+EC,

only the master node gets Put requests and is in charge of

propagating them to the slaves. Therefore, the key operation

in the transition from AA+EC to MS+EC is to move the role

of propagating Puts from the Shared Log to the new master.

To this end, when the transition starts, the new master node

takes the in-flight Puts that have not been propagated yet

from the Shared Log and starts propagating them by itself.

When an old active controlet receives a Put request during

transition, it does not consult with Shared Log, but forwards

the request to the new master node which will eventually

propagates the request. The Get requests are not affected.

Figure 4 (b) shows an example where a Put request (Step 1)

is forward to the new master (Step 2) during transition. When

the transition completes, a Put request (Step 3) is serviced by

the new master. The transition from MS+EC to AA+EC can

be supported by the reverse step order.

VI. BESPOKV’S USE CASES

A. Hierarchical and heterogeneous storage of HPC
HPC big data problems require efficient and scalable storage

systems, but load balancing I/O servers at scale remains a chal-

2Reverse transition from MS+SC to MS+EC is trivial as the new master
just needs to start using asynch. propagation instead of chain replication.

Fig. 5: Put/Get paths in MS+EC for HPC monitoring to

perform I/O load balancing.

lenge. Statistical analysis [45] and Markov chain model [46]

have been used to predict shared resource usage. A KV store

can be used to collect runtime statistics from HPC storage

systems for accurate prediction. However, existing KV stores

are designed for one type of storage architecture (in-memory,

SSD, NVM, etc.), leading to suboptimal performance.

BESPOKV supports the use of different datalets to store

replicas of a KV pair, where each of these datalet can be

tuned for different memory and storage architecture. By doing

so, BESPOKV unifies multiple data abstraction together and

enables multifaceted view on shared data with configurable

consistency and topology. Figure 5 shows an example of

how BESPOKV unifies three different data abstractions – a

log-structure merge-tree, Masstree, and log, and transparently

provides master-slave topology (MS) and eventual consistency

(EC). Data is replicated asynchronously in batch mode from

master to slaves. In this design, it is possible to run applica-

tions with different properties (e.g., write-intensive and read-

intensive apps) together.

There are two advantages of this design architecture. First,

different applications can choose datalet that best suits their

need. As a typical use case, monitoring data collection is write-

intensive workload, and prefers a scalable solution that is able

to persist all data on persistent storage. Whereas, analytical

models incur read intensive workload which could benefit from

high read throughput. Second, replicas in different datalets are

not evicted simultaneously. For instance, a replica of a KV pair

may evict from in-memory based datalet due to size restriction

but another replica may stay longer in NVM/SSD based datalet

or stay forever in log based datalet that uses HDD.

To evaluate this scenario, we develop a monitoring system

for Lustre parallel file system that collects monitoring data

from different components of Lustre. The collected data is

used by an analytics model to perform I/O load balancing

for big data HPC applications. As monitoring workload is

dominated by Put, we choose a log-structure merge-tree as

our first datalet. Contrarily, analysis workload is read-intensive

so we select Masstree as our second datalet. For persistence

of data, we use log based datalet that stores on HDD.

The monitoring workload is obtained by running three HPC

applications simultaneously on a production Lustre deploy-

ment. First application is Hardware Accelerated Cosmology

Code (HACC), second is IOR benchmark, and third is a

transaction processing application from a large financial in-

stitution. The workload consists of monitored data which

includes system level stats from Metadata Server (MDS)

and Object Storage Server (OSS), and overall metadata from

Object Storage Target (OST) and Metadata Target (MDT).

The collected time series data is propagated as KV pairs to

BESPOKV (deployed on 24 nodes setup) via the client side

library integrated with probe agents. Analytics model captures

two properties of HPC applications’ I/O requests namely,

stripe count and number of bytes to be written. The predicted

requests along with the current application requests are used to

drive load balancer. The workload is completely read-intensive

with uniform distribution.

Figure 6 shows the result of using different data

abstractions for monitoring and analytics workloads.

0
200
400
600

LSM B+ Log

Th
ro

ug
hp

ut

(1
03

 Q
P

S
) Monitoring Analytics

Fig. 6: Effect of using differ-
ent data abstractions.

As shown, LSM outperforms

B+ tree by 25% in terms of

average throughput for write-

intensive/monitoring workload.

Whereas, the average through-

put of B+ tree is 35% better

compared to LSM for read-

intensive/analytics workload. Furthermore, both B+ tree and

LSM outperform log. These results clearly show that BE-

SPOKV’s ability to map applications to appropriate datalet

that best suits application needs improve performance.

B. Distributed cache for deep learning
Machine learning (ML) and deep learning (DL) techniques

are becoming more popular in HPC for solving problems in

human health, high-energy physics, material discovery and

other scientific areas [47]. Accordingly, more HPC systems

(e.g., Summit [48], [49]) are being designed to facilitate to

run DL applications by employing a hybrid architecture (i.e.,

combining CPUs and GPUs) with the ample memory space

and fast interconnects.

DL applications are characterized by their massively parallel

and data-intensive workloads [50]. Especially, pre-processing

and ingesting the training dataset from the I/O subsystem

becomes a significant bottleneck, which causes GPUs to sit

idle waiting for the next dataset to work on. Typical DL

algorithms require the entire dataset (e.g., millions of image

files) to be passed to the neural network through multiple

iterations to reach the optimal result with a desired accuracy.

Furthermore, the dataset tends to be extremely large to fit in

a single pass and oftentimes has to be divided into multiple

batches. Unfortunately, traditional HPC parallel file systems

are not designed to accelerate such parallel accesses to massive

number of small files, and scientists are seeking for alternative

solutions using KV store to expedite the data ingestion pro-

cess [51]. However, existing KV stores are not flexible enough

to support diverse computing environments and application

needs. Moreover, building and customizing a distributed KV

store can be frustrating to domain scientists.

BESPOKV can be used to build a distributed cache to

improve the I/O performance for training DL models. In

particular, BESPOKV’s support for multiple backends makes

it suitable for wide variety of ML problems where dataset

can range from small KV pairs to large objects. BESPOKV

also allows application developers to customize the network

topologies and consistency models.

We have prototyped a distributed cache using BESPOKV

and added support for DPDK kernel bypassing [29] for low

latency DL queries. We evaluate the efficacy of our distributed

cache by running an image segmentation model with a 100 GB

training dataset. Our approach could complete the training

4× faster than the extant approach (40 images/sec. vs. 10

images/sec.).

C. Building burst buffer file systems
Burst buffer file systems are becoming an indispensable

framework to quickly absorb application I/O requests in ex-

ascale computing [52], [53], [54], [55]. Many burst buffer

file systems adopt KV stores to manage file system metadata.

BESPOKV allows to develop similar file systems with less

development effort. In particular, the dynamic and flexible

nature of BESPOKV well suits with ephemeral burst buffer

file systems [52]. An ephemeral burst buffer file system has

to be dynamically constructed and destroyed within compute

nodes assigned to a corresponding job. In such a scenario,

BESPOKV can quickly initialize the distributed KV store for

storing file system metadata.

Furthermore, BESPOKV also allows to dynamically tune

the file system behavior. For instance, it is often preferred to

relax the strong POSIX consistency semantics for certain HPC

workloads (e.g., checkpointing) to maximize the parallel I/O

performance [56]. BESPOKV can simplify the development of

such a file system, because it natively supports an instantiation

of the distributed KV store with desired consistency and

reliability levels.

D. Accelerating the file system metadata performance
KV store is also widely adopted to enhance the performance

of file system metadata operations in HPC systems. Metadata

performance is one of the major limitations in HPC parallel

file systems. A popular approach to address this limitation

is to stack up a special file system atop the parallel file

system [57], [58], [59]. The stacked file system then quickly

absorbs the metadata operations by exploiting a distributed

KV store. BESPOKV can accelerate the development of such a

stacked file system (evaluated in section VIII-B). Specifically,

BESPOKV allows to explore various datalets in backend, and

also dynamically tune the file system behavior to comply with

the desired performance, consistency and reliability levels.

E. Resource and process management
KV store has also been used to aid the resource and

process management in HPC systems [2], [60]. BESPOKV

can help develop an advanced job launching system, because

it can adapt to different topology and consistency models

on the fly. For example, the simple MS topology may be

sufficient for handling jobs on a single cluster, but the AA

topology may become more suitable when jobs spans multiple

clusters (evaluated in sections VIII-B and VIII-C).

VII. BESPOKV IMPLEMENTATION

Current implementation of BESPOKV consists of ~69k lines

of C++/Python code without counting comments or blank

lines. Except controlets, BESPOKV consists of five compo-

nents. (1) Control Core implements the control plane backbone

with support for event and message handling. (2) Client library
helps clients route requests to appropriate controlets, and

is extended from libmc [61], a in-memory KV store client

library. (3) Coordinator uses ZooKeeper [32] to store topology

metadata of the whole cluster and coordinates leader elections

during failover. It includes a Python-written failover manager

that directly controls the data recovery as well as handling

BESPOKV process failover. (4) Lock server APIs implement

two lock server options—ZooKeeper-based [62] and Redlock-

based [33]. (5) Shared Log handler is implemented using ZLog

[34], based on CORFU.

The BESPOKV prototype has four pre-built controlets as de-

scribed in §IV. All controlet shares the sample event-handling

controlet template of 150 LoC. In addition, BESPOKV sup-

ports multiple backend datalets with protocol parsers. Using

the common datalet template of 966 LoC, we implemented

three new datalets with a Protobuf-based [39] parser: tHT, an

in-memory hash table; tLog, a persistent log-structured store

that uses tHT as the in-memory index; and tMT, a Masstree-

based [63] store. In addition, BESPOKV are compatible with

existing single-server KV stores SSDB [37] and Redis [18]

that use a simple text-based protocol parser. With protocol

parsers, we refer them tSSDB and tRedis, respectively. Docker

based BESPOKV is partially supported right now. We plan to

use Kubernetes [64] to simplify deployment in near future.

Using the template-based design approach, we note that
for developers (with few years of C/C++ programming expe-
rience) non familiar to BESPOKV it took almost three and six
person-days time to develop datalet and controlet, respectively.
This underscores BESPOKV’s ability to ease development of
distributed KV stores.

VIII. EVALUATION

Our evaluation answers the following questions:
• Are BESPOKV-enabled distributed KV stores scalable (sec-

tion VIII-B), adaptive to topology and consistency changes

(section VIII-C), and extensible (section VIII-D)?

• How does BESPOKV compare to existing proxy-based (sec-

tion VIII-E), and natively-distributed (section VIII-F) KV

stores?

• How well BESPOKV handles a node failure? (§D)

A. Experimental Setup
Testbeds and configuration We perform our evaluation on

Google Cloud Engine (GCE) and a local testbed. For larger

scale experiments (section VIII-B – section VIII-E), we make

use of VMs provisioned from the us-east1-b Zone in GCE.

Each controlet–datalet pair runs on an n1-standard-4 VM

instance type, which has 4 virtual CPUs and 15 GB memory.

Workloads are generated on a separate cluster comprising

nodes of n1-highcpu-8 VM type with 8 virtual CPUs to

saturate the cloud network and server-side CPUs. A 1 Gbps

network interconnect was used.

For performance stress test (section VIII-F) and fault tol-

erance experiments (§D), we use a local testbed consisting

of 12 physical machines, each equipped with 8 2.0 GHz

Intel Xeon cores, 64 GB memory, with a 10 Gbps network

interconnect. The coordinator is a single process (backed-up

 10

 100

 1000

3612 24 36 48

Th
ro

ug
hp

ut
 (1

03 Q
P

S
)

nodes
(95% GET)

3612 24 36 48
nodes

(50% GET)

(a) SC. On log scale.

 0

 200

 400

 600

 800

36 12 24 36 48
nodes

(95% GET)

36 12 24 36 48
nodes

(50% GET)

MS Unif
MS Zipf
AA Unif
AA Zipf

(b) EC.

Fig. 7: BESPOKV scales tHT horizontally.

using ZooKeeper [32] with a standby process as follower)

configured to exchange heartbeat messages every 5 sec with

controlets. We deploy the DLM, Shared Log, Coordinator and

ZooKeeper on separate set of nodes. BESPOKV’s coordinator

communicate with ZooKeeper for storing metadata.

Workloads We use two workloads obtained from typical HPC

services: job launch, and I/O forwarding and three workloads

from the Yahoo! Cloud Serving Benchmark (YCSB) [65].

We use approach similar to [2] to generate HPC work-

loads. The job launch workload is obtained by monitoring

the messages between the server and client during a MPI

job launch. Control messages from the distributed servers

are treated as Get whereas results from the compute nodes

back to the servers as Put. The I/O forwarding workloads

is generated by running SeaweedFS [66], a distributed file

system which supports KV store for metadata management.

The clients first create 10,000 files, and then performs reads

or writes (with 50% probability) on each file. We collect the

log of the metadata server. We extend these workloads several

times until reaching 10M requests with the goal to reflect the

time serialization property of the obtained messages.

For YCSB we use an update-intensive workload (Get:Put

ratio of 50%:50%), a read-mostly workload (95% Get), and

a scan-intensive workload (95% Scan and 5% Put). All

workloads consist of 10 million unique KV tuples, each with

16 B key and 32 B value, unless mentioned otherwise. Each

benchmark process generates 10 million operations following

a balanced uniform KV popularity distribution and a skewed

Zipfian distribution (where Zipfian constant = 0.99). The

reported throughput is measured in terms of thousand queries

per second (kQPS) as an arithmetic mean of three runs.

B. Scalability
Figure 7 shows the scalability of BESPOKV-enabled dis-

tributed tHT. We measure the throughput when scaling out tHT

from 3 to 48 nodes on GCE. The number of replicas is set to

three. We present results for all four topology and consistency

combinations: MS+SC, MS+EC, AA+SC, and AA+EC. For

all cases, BESPOKV scales tHT out linearly as the number

of nodes increases for both read-intensive (95% Get) and

write-intensive (50% Get) workloads. For SC, MS+SC using

chain replication scales well, while AA+SC performs worse as

expected in locking based implementation. For EC, the results

show that our EC support scales well for both MS+EC and

AA+EC. Performance comparison to existing distributed KV

stores will follow in section VIII-F.

 0

 200

 400

 600

 800

 3 6 12 24 48T
hr

ou
gh

pu
t (

10
3 Q

PS
)

nodes
(a) tSSDB.

 3 6 12 24 48
nodes
(b) tLog.

 3 6 12 24 48
nodes
(c) tMT.

Unif 95% GET
Zipf 95% GET

Unif 50% GET
Zipf 50% GET

Unif 95% SCAN
Zipf 95% SCAN

Fig. 9: BESPOKV scales tSSDB, tLog, and tMT with MS+EC.

 1

 10

 100

 1000

 3 6 12 24 36 48

T
h
ro

u
g
h
p
u
t
(1

0
3
 Q

P
S

)

nodes
(a) SC. On log scale.

MS I/O-F MS Job-L AA I/O-F AA Job-L

 200

 400

 600

 800

 3 6 12 24 36 48
nodes
(b) EC

Fig. 8: BESPOKV scales HPC

workloads.

Figure 8 shows simi-

lar trend for HPC oriented

workloads. We again ob-

serve that MS outperforms

AA for SC whereas the trend

is opposite for EC where AA

performs better than MS.

We also observe that perfor-

mance of I/O forwarding is

slightly better than Job launch. This is because I/O forwarding

workload has 12% more reads than Job launch with Get:Put

ratio of 62%:38%.

Figure 9 shows the scalability when varying the number of

nodes from 3 to 48, with tSSDB, tLog, and tMT as datalet.

Due to space constraints, we only present the result with the

MS+EC configuration. While enabling eventual consistency

with fault tolerance, BESPOKV provides good scalability for

all three. In terms of performance, tMT is an in-memory

database and thus outperforms both tLog and tSSDB which

persist data on disk. It is as expected that the throughput

of Scans (range queries) is much lower than point queries.

A 48 node tMT cluster gives 18k QPS on Zipfian 95%
Scan, while Uniform yields slightly higher throughput (21k).

Interestingly, this test covers a potential use case of BE-

SPOKV+tLog for flash storage disaggregation, where users can

exploit the scale-out capacity of an array of fast SSD (flash)

devices/nodes with low-latency datacenter network [67], [68].

C. Adaptability

 0
 100
 200
 300
 400
 500

 0 5 10 15 20 25 30 35 40

transition starts ends

T
hr

ou
gh

pu
t (

10
3 Q

PS
)

Time (sec)

MS-EC->MS-SC
MS-EC->AA-EC
MS-EC->AA-SC

Fig. 10: BESPOKV seamlessly

adapts service from MS-EC to

MS-SC, AA-EC, and AA-SC.

We evaluate BESPOKV’s

adaptability in switching

online consistency levels

and topology configurations

(§V). In all the tests we

use 3 shards with a Zipfian

workload of 95% Get. As

shown in Figure 10, the

transition is scheduled to

be triggered at 20 sec. The

throughput drops to the lowest point for all three cases. This

is because clients switch connection to the new controlets.

Performance stabilizes in ~5 sec, because all the in-flight

requests are handled during this process. We observe similar

trends for other possible transitions that can be enabled by

BESPOKV. This demonstrates BESPOKV’s flexibility and

adaptability in switching between different key designs &

configurations. This also shows that BESPOKV is able to

complete switching in extremely short time compared to

Fig. 11: BESPOKV adds MS+SC and AA+EC for Redis.

Comparison with Dynomite (Dyno) and Twemproxy (Twem).

existing solutions because BESPOKV does not require data

migration or down time.

D. Extensibility and New Services
As sketched in §IV, BESPOKV can be extended to support

new forms of distributed services. This section evaluates two

examples: per-request consistency and polyglot persistence.

We evaluate the per-request consistency service (Sec-

tion IV-C) under MS+SC and a Zipfian workload with a

25:75% ratio of SC:EC as the desired consistency. We ob-

served the performance to be between MS+SC and MS+EC

as shown in Figure 7; for example, with 24 nodes, we obtain

~300k QPS for 95% Get and ~270k QPS for 50% Get

workloads. We also evaluate the average latency of each

request. With a weaker consistency requirement, the GET

latency is 0.67 ms. We get an average of 1.02 ms latency

with default strong consistency.

We test polyglot persistence (section IV-D) by storing each

replica in a different type of datalet. We use tHT, tLog and tMT
in MS topology with eventual consistency. The performance

of the resulting configuration under Uniform workload is very

similar to the numbers in Figure 7 and 9; for example, with

24 nodes, we obtain 375k QPS for 95% Get and 200k QPS

for the 50% Get workload.

E. Comparison to Proxy-based Systems
This section shows that BESPOKV can support new topolo-

gies and consistency models for existing single-server KV

store, and them compares BESPOKV with two state-of-the-

art Proxy-based KV stores. We test BESPOKV+Redis (tRedis)

running in MS+SC, MS+EC and AA+EC modes, reusing

SSDB’s text-based protocol parser for Redis. We measure

the throughput of tRedis on eight 3-replica shards across 24

nodes on GCE, and compare it with Dynomite [19] supporting

AA+EC only, and Twemproxy [16] supporting MS+EC only.

Figure 11 shows the throughput. BESPOKV enables new

MS+SC (~500k QPS under Zipfian 95% Get) and AA+EC

(~750k QPS under Zipfian 95% Get) configurations with

reasonable performance. As expected, MS+SC is more ex-

pensive than MS+EC. Twemproxy is just a proxy to route

requests using consistent hashing to a pool of backend servers.

Hence, Twemproxy+Redis in supporting MS+EC performs

slightly better than BESPOKV in supporting MS+EC. How-

ever, we observed the same performance for Dynomite+Redis

in supporting AA+EC configuration for Redis as BESPOKV

in supporting AA+EC.

F. Comparison to Natively-Distributed Systems
In this experiment, we compare BESPOKV-enabled KV

stores with two widely used natively-distributed (off-the-shelf)

KV stores: Cassandra [7] and LinkedIn’s Voldemort [69].

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 50 100 150 200 250

L
at

en
cy

 (
m

s)

Throughput (103 QPS)

(a) 95% Get.

 0

 0.4

 0.8

 1.2

 1.6

 2

 0 50 100 150 200

L
at

en
cy

 (
m

s)

Throughput (103 QPS)

(b) 50% Get.

MS+SC
MS+EC
AA+SC
AA+EC

Cassandra
Voldemort

Fig. 12: Average latency vs. throughput achieved by various

systems under Zipfian workloads.

These experiments were conducted on our 12-node local

testbed in order to avoid confounding issues arising from

sharing a virtualized platform. We launch the storage servers

on six nodes and YCSB clients on the other four nodes to

saturate the server side. The coordinator, lock server (only

for AA+SC), ZLog (only for AA+EC), and ZooKeeper are

launched on separate nodes. We use tHT as a datalet to show

high efficiency of BESPOKV-enabled KV stores.

For Cassandra, we specify consistency level of one to make

consistency requirements less stringent. Cassandra’s replica-

tion mechanism follows the AA topology with EC [70]. For

Voldemort we use a server-side routing policy, all-routing as

the routing strategy, a replication factor of three, one as the

number of reads or writes that can succeed without client

getting an exception, and persistence set to memory.

Figure 12 shows the latency and throughput for all tested

systems/configurations when varying the number of clients

to increase the throughput in units of kQPS.3 For AA+EC,

BESPOKV outperforms Cassandra and Voldemort. For read-

intensive workload ,BESPOKV’s throughput gain over Cassan-

dra and Voldemort is 4.5× and 1.6×, respectively. For write-

intensive workload , BESPOKV’s throughput gain is 4.4×
over Cassandra and 2.75× over Voldemort. In this experiment

Cassandra was configured to use persistent storage. However

even using tLog as a datalet for BESPOKV(also uses persistent

storage) we observed a throughput gain of 2.6× and 1.2×
over Cassandra and Voldemort, respectively. We suspect that

this is because Cassandra uses compaction in its storage

engine which significantly effects the write performance and

increases the read latency due to use of extra CPU and disk

usage [71]. Voldemort uses the same design and both are based

on Amazon’s Dynamo paper [6]. Furthermore, our findings

are consistent with Dynomite in terms of the performance

comparison with Cassandra [71].

As an extra data point, we also see interesting tradeoffs

when experimenting with different configurations supported

by BESPOKV. For instance, MS+EC achieves performance

comparable to AA+EC under 95% Get workload since both

configurations serve Gets from all replicas. AA+EC achieves

47% higher throughput than MS+EC under 50% Get work-

load, because AA+EC serves Puts from all replicas. For

AA+SC, lock contention at the DLM caps the performance for

both read- and write-intensive workloads. As a result, MS+SC

performs 3.2× better than AA+SC for read-intensive workload

and ~2× better for the write-intensive workload.

3Uniform workloads show similar trend, hence are omitted.

IX. RELATED WORK

Dynomite [19] adds fault tolerance and consistency support

for simple data stores such as Redis. Dynomite only supports

eventual consistency with AA topology. It also requires the

single-server applications to support distributed management

functions such as Redis’ streaming data recovery/migration

mechanism. BESPOKV’s datalet is completely oblivious of the

upper-level distributed management, which offers improved

flexibility and programmability.

Pileus [72] is a cloud storage system that offers a range of

consistency-level SLAs. Some storage systems offer tunable

consistency, e.g., ManhattanDB [73]. Flex-KV [74] is another

flexible key-value store that can be configured to act as a

non-persistent/durable store and operates consistently/incon-

sistently. Morphus [75] provides support towards reconfigura-

tions for NoSQL stores in an online manner. MOS [76], [77]

and hatS [78], [79] provide flexible and elastic resource-level

partitioning for serving heterogeneous object store workloads.

ClusterOn [80] proposes to offer generic distributed systems

management for a range of distributed storage systems. To

the best of our knowledge, BESPOKV is the first generic

framework that offers a broad range of consistency/topology

options for both users and KV store application developers.

Vsync [38] is a library for building replicated cloud services.

BESPOKV embeds single-node KV store application code

and automatically scales it with a rich choice of services.

Going one step further, BESPOKV can be an ideal platform

to leverage library support such as Vsync to further enrich

flexibility. EventWave [81] elastically scales inelastic cloud

programs. PADS [82] provides policy architecture to build

distributed applications. Similarly, mOS [83] provides reusable

networking stack to allows developers to focus on the core

application logic instead of dealing with low-level packet

processing. BESPOKV focuses on a specific domain with a

well-defined limited set of events–KV store applications.

Using distributed log to facilitate data management has

also been studied. CORFU [35], vCorfu [84], and Tango [85]

enable flexible data management by leveraging a Shared Log

over an SSD array. BESPOKV utilizes a shard log to not

only guarantee ordering but also to provide seamless transition

between different topologies (i.e., MS and AA).

X. CONCLUSION

We have presented the design and implementation of BE-

SPOKV, a framework, which takes a single-server data store

and transparently enables a scalable, fault-tolerant distributed

KV store service. Evaluation shows that BESPOKV is flexible,

adaptive to new user requirements, achieves high performance,

and scales horizontally. BESPOKV has been open-sourced and

is available at https://github.com/tddg/bespokv.

ACKNOWLEDGEMENT

We thank our shepherd, Ioan Raicu, and the reviewers for

the valuable feedback. This work is sponsored in part by the

NSF under the grants: CNS-1565314, CNS-1405697, CNS-

1615411, and CNS-1814430.

REFERENCES

[1] J. Kim, S. Lee, and J. S. Vetter, “Papyruskv: a high-performance parallel
key-value store for distributed nvm architectures,” in ACM/IEEE SC’17.

[2] K. Wang, A. Kulkarni, M. Lang, D. Arnold, and I. Raicu, “Using
simulation to explore distributed key-value stores for extreme-scale
system services,” in ACM/IEEE SC’13.

[3] Z. W. Parchman, F. Aderholdt, and M. G. Venkata, “Sharp hash: A
high-performing distributed hash for extreme-scale systems,” in IEEE
Cluster’17.

[4] S. Eilemann, F. Delalondre, J. Bernard, J. Planas, F. Schuermann,
J. Biddiscombe, C. Bekas, A. Curioni, B. Metzler, P. Kaltstein et al.,
“Key/value-enabled flash memory for complex scientific workflows with
on-line analysis and visualization,” in IEEE IPDPS’16.

[5] “MongoDB,” https://www.mongodb.com/.
[6] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,

A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” ser. ACM SOSP ’07.

[7] A. Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system,” ACM SIGOPS Operating Systems Review, 2010.

[8] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung, and
V. Venkataramani, “Scaling memcache at facebook,” in USENIX NSDI
’13.

[9] I. Zhang, N. K. Sharma, A. Szekeres, A. Krishnamurthy, and D. R. K.
Ports, “Building consistent transactions with inconsistent replication,” in
ACM SOSP’15.

[10] R. Escriva, B. Wong, and E. G. Sirer, “Hyperdex: A distributed,
searchable key-value store,” in ACM SIGCOMM ’12.

[11] “Social Artisan,” http://socialartisan.co.uk/.
[12] “Behance,” https://www.behance.net/.
[13] “The Migration Process,” https://academy.datastax.com/

planet-cassandra//mongodb-to-cassandra-migration/#data model.
[14] “Why flowdock migrated from cassandra to

mongodb,” http://blog.flowdock.com/2010/07/26/
flowdock-migrated-from-cassandra-to-mongodb/.

[15] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab et al., “Scaling memcache
at facebook.” in USENIX NSDI’13.

[16] “Twitter’s Twemproxy,” https://github.com/twitter/twemproxy.
[17] “Memcached,” https://memcached.org/.
[18] “Redis,” http://redis.io/.
[19] “Netflix’s Dynomite,” https://github.com/Netflix/dynomite.
[20] “LevelDB,” https://github.com/google/leveldb.
[21] Y. Mao, E. Kohler, and R. T. Morris, “Cache craftiness for fast multicore

key-value storage,” in ACM EuroSys ’12.
[22] C. W. Krueger, “Software reuse,” ACM Comput. Surv., vol. 24, no. 2,

pp. 131–183, Jun. 1992.
[23] “Google Cloud Platform,” https://cloud.google.com/compute/.
[24] H. N. Greenberg, J. Bent, and G. Grider, “Mdhim: A parallel key/value

framework for hpc,” in Proceedings of the 7th USENIX Conference on
Hot Topics in Storage and File Systems, ser. HotStorage’15. Berkeley,
CA, USA: USENIX Association, 2015, pp. 10–10. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2813749.2813759

[25] Y. Cheng, F. Douglis, P. Shilane, M. Tratchman, G. Wallace, P. Desnoy-
ers, and K. Li, “Erasing belady’s limitations: In search of flash cache
offline optimality,” in 2016 USENIX Annual Technical Conference
(USENIX ATC 16), 2016.

[26] “Workload Analysis of KV Stores,” https://www.snia.org/sites/
default/files/SDC/2017/presentations/Storage Architecture/Verma
Vishal Gohad Tushar Workload Analysis of Key-Value Stores on
Non-Volatile Media.pdf.

[27] “B-Trees, Fractal Trees, Heaps and Log Structured Merge
Trees, Where did they all come from and Why?” https:
//www.percona.com/live/17/sites/default/files/slides/Heaps%20B-trees%
20log%20structured%20merge%20trees%202017-04-25.pptx .pdf.

[28] “The CIFAR-10 dataset,” https://www.cs.toronto.edu/∼kriz/cifar.html.
[29] “DPDK,” http://dpdk.org/.
[30] C. Delimitrou and C. Kozyrakis, “Paragon: Qos-aware scheduling for

heterogeneous datacenters,” in ACM ASPLOS ’13.
[31] J. Mars, L. Tang, and R. Hundt, “Heterogeneity in “homogeneous”

warehouse-scale computers: A performance opportunity,” IEEE CAL’11.
[32] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: Wait-free

coordination for internet-scale systems,” in USENIX ATC’10.

[33] “Distributed locks with Redis,” http://redis.io/topics/distlock.

[34] “ZLog,” https://github.com/noahdesu/zlog.

[35] M. Balakrishnan, D. Malkhi, V. Prabhakaran, T. Wobbler, M. Wei, and
J. D. Davis, “Corfu: A shared log design for flash clusters,” in USENIX
NSDI ’12.

[36] M. A. Sevilla, N. Watkins, I. Jimenez, P. Alvaro, S. Finkelstein,
J. LeFevre, and C. Maltzahn, “Malacology: A programmable storage
system,” in ACM EuroSys ’17.

[37] “SSDB,” https://github.com/ideawu/ssdb.

[38] “Vsync,” https://vsync.codeplex.com/.

[39] “Google Protocol Buffers,” https://developers.google.com/
protocol-buffers/.

[40] R. van Renesse and F. B. Schneider, “Chain replication for supporting
high throughput and availability,” in USENIX OSDI’04.

[41] S. Almeida, J. a. Leitão, and L. Rodrigues, “Chainreaction: A causal+
consistent datastore based on chain replication,” in ACM EuroSys’13.

[42] J. Terrace and M. J. Freedman, “Object storage on craq: High-throughput
chain replication for read-mostly workloads,” in USENIX ATC’09.

[43] “Polyglot persistence,” https://en.wikipedia.org/wiki/Polyglot
persistence.

[44] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
in ACM SIGCOMM ’01.

[45] B. Xie, J. Chase, D. Dillow, O. Drokin, S. Klasky, S. Oral, and
N. Podhorszki, “Characterizing output bottlenecks in a supercomputer,”
in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. IEEE Computer Society
Press, 2012, p. 8.

[46] A. K. Paul, A. Goyal, F. Wang, S. Oral, A. R. Butt, M. J. Brim, and
S. B. Srinivasa, “I/o load balancing for big data hpc applications,” in
Big Data (Big Data), 2017 IEEE International Conference on. IEEE,
2017, pp. 233–242.

[47] A. A. Awan, K. Hamidouche, J. M. Hashmi, and D. K. Panda, “S-
caffe: Co-designing mpi runtimes and caffe for scalable deep learning
on modern gpu clusters,” in Proceedings of the 22Nd ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, ser.
PPoPP ’17. New York, NY, USA: ACM, 2017, pp. 193–205.

[48] “ORNL Launches Summit Supercomputer,” //www.ornl.gov/news/
ornl-launches-summit-supercomputer.

[49] “Summit,” https://www.olcf.ornl.gov/summit/.

[50] L. Zhou, S. Pan, J. Wang, and A. V. Vasilakos, “Machine learning on
big data: Opportunities and challenges,” Neurocomputing, vol. 237, pp.
350–361, 2017.

[51] S.-H. Lim, S. R. Young, and R. M. Patton, “An analysis of image storage
systems for scalable training of deep neural networks,” system, vol. 5,
no. 7, p. 11, 2016.

[52] T. Wang, K. Mohror, A. Moody, K. Sato, and W. Yu, “An ephemeral
burst-buffer file system for scientific applications,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE Press, 2016, p. 69.

[53] T. Wang, S. Oral, Y. Wang, B. Settlemyer, S. Atchley, and W. Yu,
“Burstmem: A high-performance burst buffer system for scientific appli-
cations,” in Big Data (Big Data), 2014 IEEE International Conference
on. IEEE, 2014, pp. 71–79.

[54] D. Shankar, X. Lu, and D. K. D. Panda, “Boldio: A hybrid and resilient
burst-buffer over lustre for accelerating big data i/o,” in 2016 IEEE
International Conference on Big Data (Big Data). IEEE, 2016, pp.
404–409.

[55] X. Shi, M. Li, W. Liu, H. Jin, C. Yu, and Y. Chen, “Ssdup: a traffic-aware
ssd burst buffer for hpc systems,” in Proceedings of the International
Conference on Supercomputing. ACM, 2017, p. 27.

[56] R. Rajachandrasekar, A. Moody, K. Mohror, and D. K. Panda, “A 1
pb/s file system to checkpoint three million mpi tasks,” in Proceedings
of the 22nd international symposium on High-performance parallel and
distributed computing. ACM, 2013, pp. 143–154.

[57] S. Patil and G. Gibson, “Scale and Concurrency of GIGA+: File System
Directories with Millions of Files,” in Proceedings of the 9th USENIX
Conference on File and Stroage Technologies, ser. FAST ’09, 2011.

[58] K. Ren, Q. Zheng, S. Patil, and G. Gibson, “IndexFS: Scaling File Sys-
tem Metadata Performance with Stateless Caching and Bulk Insertion,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’14, Piscataway,
NJ, USA, 2014.

[59] Q. Zheng, K. Ren, G. Gibson, B. W. Settlemyer, and G. Grider,
“Deltafs: Exascale file systems scale better without dedicated servers,”
in Proceedings of the 10th Parallel Data Storage Workshop. ACM,
2015, pp. 1–6.

[60] R. H. Castain, D. G. Solt, J. Hursey, and A. Bouteiller, “Pmix: process
management for exascale environments,” in Proceedings of the 24th
European MPI Users’ Group Meeting, EuroMPI/USA 2017, Chicago,
IL, USA, September 25-28, 2017, 2017, pp. 14:1–14:10.

[61] “libmc,” https://github.com/douban/libmc.

[62] “ZooKeeper Recipes and Solutions,” https://zookeeper.apache.org/doc/
r3.1.2/recipes.html.

[63] “Embedded Masstree,” https://github.com/rmind/masstree.

[64] “Kubernetes: Production-Grade Container Orchestration,” https://
kubernetes.io/.

[65] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in ACM SoCC ’10.

[66] “SeaweedFS,” https://github.com/chrislusf/seaweedfs.

[67] A. Klimovic, C. Kozyrakis, E. Thereska, B. John, and S. Kumar, “Flash
storage disaggregation,” ser. ACM EuroSys ’16.

[68] N. Zhao, A. Anwar, Y. Cheng, M. Salman, D. ping Li, J. Wan, C. Xie,
X. He, F. Wang, and A. R. Butt, “Chameleon: An adaptive wear balancer
for flash clusters,” in 2018 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), 2018.

[69] R. Sumbaly, J. Kreps, L. Gao, A. Feinberg, C. Soman, and S. Shah,
“Serving large-scale batch computed data with project voldemort,” in
USENIX FAST’12.

[70] N. Carvalho, H. Kim, M. Lu, P. Sarkar, R. Shekhar, T. Thakur, P. Zhou,
and R. H. Arpaci-Dusseau, “Finding consistency in an inconsistent
world: Towards deep semantic understanding of scale-out distributed
databases,” in USENIX HotStorage ’16.

[71] “Why not Cassandra,” http://www.dynomitedb.com/docs/dynomite/v0.5.
6/faq/.

[72] D. B. Terry, V. Prabhakaran, R. Kotla, M. Balakrishnan, M. K. Aguilera,
and H. Abu-Libdeh, “Consistency-based service level agreements for
cloud storage,” in ACM SOSP’13.

[73] “Manhattan, our real-time, multi-tenant distributed database for Twitter
scale,” http://goo.gl/7EThfo.

[74] A. Phanishayee, D. G. Andersen, H. Pucha, A. Povzner, and W. Belluo-
mini, “Flex-KV: Enabling high-performance and flexible KV systems,”
in Workshop on Management of Big Data Systems’12.

[75] M. Ghosh, W. Wang, G. Holla, and I. Gupta, “Morphus: Supporting
online reconfigurations in sharded nosql systems,” IEEE Transactions
on Emerging Topics in Computing, 2015.

[76] A. Anwar, Y. Cheng, A. Gupta, and A. R. Butt, “Taming the cloud object
storage with mos,” in ACM PDSW, 2015.

[77] ——, “Mos: Workload-aware elasticity for cloud object stores,” in ACM
HPDC, 2016.

[78] K. Krish, A. Anwar, and A. R. Butt, “hats: A heterogeneity-aware tiered
storage for hadoop,” in Cluster, Cloud and Grid Computing (CCGrid),
2014 14th IEEE/ACM International Symposium on. IEEE, 2014, pp.
502–511.

[79] ——, “[phi] sched: A heterogeneity-aware hadoop workflow scheduler,”
in Modelling, Analysis & Simulation of Computer and Telecommunica-
tion Systems (MASCOTS), 2014 IEEE 22nd International Symposium
on. IEEE, 2014, pp. 255–264.

[80] A. Anwar, Y. Cheng, H. Huang, and A. R. Butt, “Clusteron: Building
highly configurable and reusable clustered data services using simple
data nodes,” in USENIX HotStorage’16.

[81] W.-C. Chuang, B. Sang, S. Yoo, R. Gu, M. Kulkarni, and C. Killian,
“Eventwave: Programming model and runtime support for tightly-
coupled elastic cloud applications,” in ACM SOCC’13.

[82] N. M. Belaramani, J. Zheng, A. Nayate, R. Soulé, M. Dahlin, and
R. Grimm, “Pads: A policy architecture for distributed storage systems.”
in USENIX NSDI’09.

[83] M. Jamshed, Y. Moon, D. Kim, D. Han, and K. Park, “mos: A
reusable networking stack for flow monitoring middleboxes,” in USENIX
NSDI’17.

[84] M. Wei, A. Tai, C. J. Rossbach, I. Abraham, M. Munshed, M. Dhawan,
U. Wieder, S. Fritchie, S. Swanson, M. J. Freedman et al., “vcorfu: A
cloud-scale object store on a shared log,” in USENIX NSDI’17.

[85] M. Balakrishnan, D. Malkhi, T. Wobber, M. Wu, V. Prabhakaran,
M. Wei, J. D. Davis, S. Rao, T. Zou, and A. Zuck, “Tango: Distributed
data structures over a shared log,” in ACM SOSP ’13.

[86] H.-T. Kung and J. T. Robinson, “On optimistic methods for concurrency
control,” ACM Transactions on Database Systems (TODS), vol. 6, no. 2,
pp. 213–226, 1981.

[87] “Cassandra Configuration,” http://docs.datastax.com/en/cassandra/2.0/
cassandra/dml/dml config consistency c.html.

[88] “How Dynomite handles the data conflict,” https://github.com/Netflix/
dynomite/issues/274.

[89] R. Van Renesse, D. Dumitriu, V. Gough, and C. Thomas, “Efficient
reconciliation and flow control for anti-entropy protocols,” in ACM
Workshop on Large-Scale Distributed Systems and Middleware’08.

[90] Y.-J. Hong and M. Thottethodi, “Understanding and mitigating the im-
pact of load imbalance in the memory caching tier,” in ACM SOCC’13.

[91] B. Fan, H. Lim, D. G. Andersen, and M. Kaminsky, “Small cache,
big effect: Provable load balancing for randomly partitioned cluster
services,” in ACM SOCC ’11.

[92] X. Li, R. Sethi, M. Kaminsky, D. G. Andersen, and M. J. Freedman,
“Be fast, cheap and in control with switchkv,” in USENIX NSDI ’16.

[93] Y. Cheng, A. Gupta, and A. R. Butt, “An in-memory object caching
framework with adaptive load balancing,” ser. ACM EuroSys ’15.

[94] Y. Cheng, A. Gupta, A. Povzner, and A. R. Butt, “High performance in-
memory caching through flexible fine-grained services,” in ACM SOCC
’13.

[95] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and I. Stoica,
“Netcache: Balancing key-value stores with fast in-network caching,” in
Proceedings of the 26th Symposium on Operating Systems Principles.
ACM, 2017, pp. 121–136.

APPENDIX A

ARTIFACT DESCRIPTION: BESPOKV

Abstract—This description contains the information needed to
launch experiments of the SC’18 paper ”BESPOKV: Applica-
tion Tailored Scale-Out Key-Value Stores”. More precisely, we
explain how to compile, run, deploy, configure, and benchmark
BESPOKV to reproduce the results. Additionally, we also explain
how to develop controlets used in the examples section of the
paper.

A. How to deliver?
BESPOKV source can be cloned or downloaded from

GitHub repository at https://github.com/tddg/bespokv.

B. Dependencies:
1) gcc 4.8 (required by folly)

2) autoconf-2.69 (requires v ≥ 2.69)

3) google-glog

4) protobuf

5) libopenssl

6) gflags-master

7) boost 1 55 0: ./b2 install

8) folly (requires double conversion)

9) libuuid

10) libevent

11) lz4 1.7.1 (redlock requires v ≥ 1.7.1)

12) zookeeper (server + C binding lib)

C. How to compile?
Compile BESPOKV Go to the src directory, for debugging

mode, run make. To enable compiler level optimization, run

make opti.

Compile datalet application Go to the apps directory, for

debugging mode, run make. To enable compiler level opti-

mization, run make opti.

Compile client lib To compile client lib, go to the libckv dir

and compile proto file:

1 s t a t i c void MSSCContro let In i t (c o n t r o l e t c)
{

2 / / c reates a socket f o r l i s t e n i n g f o r
c l i e n t s

3 s = s o c k e t i n i t () ;
4 / / Reg is te r ca l l back f u n c t i o n f o r bas ic

events
5 c . Reg is te r (s , ON CONN START, OnConnStart) ;
6 c . Reg is te r (c l ien t conn in , ON REQ IN,

OnReqIn) ;
7 c . Reg is te r (data let conn out ,ON REQ OUT,

OnReqOut) ;
8 c . Reg is te r (data le t conn in , ON RSP IN,

OnRspIn) ;
9 c . Reg is ter (c l ien t conn out , ON RSP OUT,

OnRspOut) ;
10 . . .
11 / / Def ine extended events
12 c .On(PUT, OnPut) ;
13 c .On(GET, OnGet) ;
14 c .On(ENQ, OnEnqueue) ;
15 . . .
16 }

Fig. 13: Initialization code of the MS+SC controlet.

cd apps / c l i b s / l i b c k v

p r o t o c −−cpp\ ou t = . ckv\ p r o t o . p r o t o

Move the header file generated to the include folder:

cp * . h i n c l u d e /

Next, create a directory to compile the lib:

mkdir b u i l d

cd b u i l d /

cmake . .

make

libckv.a will be available in build directory

Compile benchmark First, compile the client lib as shown in

previous step. Then go to the bench directory and run make.

D. How to run?

Datalet backend First, you should have a backend datalet

running, e.g., a Redis node. Go to the Redis dir:

. / r e d i s −s e r v e r −−p o r t 12346

Under apps/, we implemented several datalets for BE-

SPOKV. If you want the datalet backend to be a key-value

store, execute:

cd apps / ckv

. / conkv − l 1 9 2 . 1 6 8 . 0 . 1 7 0 −p 11111 − t 1

BESPOKV To run the BESPOKV executable, go to the src
dir and execute:

. / conproxy −−con f i g / r oo t / conrun / conf / c1 . json
−−d a t a l e t s / r oo t / conrun / conf / d1 . c fg −−
shard shard1 −−proxyAddr 192.168.0.170 −−
p roxyC l i en tPo r t 12345

E. How to configure?
Configuration file includes a JSON formatted file specifying

all options (num replicas option might be a bit confusing

and here it indicates how many replicas excluding the master

replica), as below:

1 / * S t a r t o f template framework w i th basic
events * /

2 void OnReqIn (c o n t r o l e t c , conn *
c l i en t conn in) {

3 / / parse the request to f i n d out opera t ion
4 Request req = c l ien t conn in−>msg read () ;
5 switch (req .Op) {
6 case ’PUT’ : c . Emit (PUT) ; break ;
7 case ’GET’ : c . Emit (GET) ; break ;
8 . . .
9 }

10 }
11
12 void OnReqOut (c o n t r o l e t c , conn *

data le t conn out) {
13 data let conn out−>msg send () ; / / send

message
14 c . Enable (data le t conn in , ON RSP IN) ;
15 }
16
17 void OnRspIn (c o n t r o l e t c , conn *

data le t conn in) {
18 / / read response message
19 Request rsp = data le t conn in−>msg read () ;
20 / / user−def ined response handl ing l o g i c
21 switch (req .Op) {
22 / / Send req to next d a t a l e t or ack .
23 case ’PUT’ : c . Emit (PUT) ; break ;
24 case ’GET’ :
25 c . Enable (c l ien t conn out , ON RSP OUT) ;

break ;
26 . . .
27 }
28 }
29
30 void OnRspOut (c o n t r o l e t c , conn *

c l ien t conn out) {
31 / / r ep l y back to c l i e n t
32 c l ien t conn out−>msg send () ;
33 } / * End of template framework w i th bas ic

events * /
34
35 / * S t a r t o f extended events * /
36 void OnPut (c o n t r o l e t c) {
37 / / enqueue req i f not done before
38 c . Emit (ENQ)
39 / / get backend server connect ions
40 D1, D2, D3 = g e t l i s t () ;
41 / / enable ON REQ OUT f o r d a t a l e t s one at a

t ime
42 i f (! ALL REPLICAS DONE) c . Enable (D,

ON REQ OUT) ;
43 / / once done wi th a l l d a t a l e t s ack back
44 else c . Enable (c l ien t conn out , ON RSP OUT) ;
45 }
46
47 void OnEnqueue (c o n t r o l e t c) {
48 p = g e t p a r t i t i o n () ;
49 / / rec ieve ack from MQ can be a separate

event
50 Enqueue (req , p) ;
51 c . Emit (PUT) ;
52 }
53
54 void OnGet (c o n t r o l e t c) {
55 D = g e t t a i l () ;
56 c . Enable (D, ON REQ OUT) ;
57 } / * End of extended events * /

Fig. 14: Using a template to create a MS+SC controlet.

{
"zk" : "192.168.0.173:2181" ,
"mq" : "192.168.0.173:9092" ,
"consistency_model" : "strong" ,
"consistency_tech" : "cr" ,
"topology" : "ms" ,
"num_replicas" : "2" ,

}

And a datalet list file specifying all datalets, as below:

0: master ; 1 : s lave
192.168.0.171:11111:0
192.168.0.171:11112:1
192.168.0.171:11113:1

F. How to benchmark?

YCSB traces To run the YCSB trace bench:

cd bench
. / bench c l ien t −d 40 − l t r a c e d i r /

kv1M op1M uniform text . run −t 32 −m 6 −r
2 −f hosts . c fg −R 0 −W 0

Fig. 15: The Put/Get paths in MS+EC (a), AA+SC (b), and AA+EC (c). The Get path is same in all three, except in AA+SC,

where the difference is that each Get needs to acquire a read lock before proceeding. Mn means the nth master;

Where hosts.cfg is an example host file including all

hosts, -m indicates how many hosts, -r indicates how many

replicas, -R specifies which replica to serve READ (-1 means

any replica), and -W indicates which replica to serve WRITE

(again, -1 means any replica for active/active topology). Ex-

ample host file is shown as below:

192.168.0.171:12345 192.168.0.171:12348
192.168.0.171:12346 192.168.0.171:12349
192.168.0.171:12347 192.168.0.171:12350
192.168.0.172:12345 192.168.0.172:12348
192.168.0.172:12346 192.168.0.172:12349
192.168.0.172:12347 192.168.0.172:12350

Redis benchmark To run the Redis benchmark:

. / red is−benchmark −h hulk0 −p 12345 −c 50 −n
100000 −t set , get −P 32 −r 1000000

This will send requests to conproxy, which will serve as

a proxy forwarding requests between benchmark clients and

Redis backend datalets.

G. How to deploy?

ZK and MQ To launch zk and MQ on cloud, run:

b in / zookeeper−server−s t a r t . sh −daemon con f i g /
zookeeper . p r o p e r t i e s

b in /MQ−server−s t a r t . sh −daemon con f i g / server .
p r o p e r t i e s

BESPOKVand datalet nodes To launch a cluster of BE-

SPOKV+ conkv nodes, first add the data node info in slap.sh,

then run:

cd s c r i p t s
. / s lap . sh runckv
. / s lap . sh runcon

H. Docker container based execution

Docker based BESPOKVis PARTIALLY supported. To run

containerized deployment:

cd s c r i p t s
. / s lap . sh docker runckv
. / s lap . sh docker runcon

APPENDIX B

CONTROLET DEVELOPMENT

Figure 13 shows the code snippet for the controlet initial-

ization. Developer can register callback functions and define

extended events during initialization. Figure 14 shows the code

snippet for MS+SC controlet built atop our controlet template.

The first half of the code snippet (white background) shows

the controlet code template. It uses basic events to construct

message forwarding logic where a request is accepted from

a client connection and forwarded to a datalet connection.

Similarly, a response is accepted from the datalet connection

and forwarded to the client. The template also provides logic to

parse the request to find out the request type. Line 25 and lines

35—57 are developer-defined logic (colored background).

Developers provide callback functions OnPut, OnEnqueue,

and OnGet to implement Figure 3.

APPENDIX C

BESPOKV-BASED DISTRIBUTED KV STORES

Using hash-based tHT datalet and consistent hashing for the

client library as an example, this section presents support for

three more widely-used topology and consistency combina-

tions: MS+EC, AA+SC, and AA+EC.4

A. Master-Slave & Eventual Consistency
BESPOKV’s pre-built controlet takes a simple approach to

support MS+EC where the master copies the data to slaves

asynchronously. Example. Figure 15(a) shows an example

for MS+EC. Here, upon receiving an incoming Put request

(step 1), the master node commits the request to the local

datalet (step 2) before it sends an acknowledgement back to

the client (step 3). Unlike the previous SC case, the master

does not wait until the propagation finishes5. Subsequently,

BESPOKV provides EC by asynchronously forwarding Put

requests to other datalets (step 4).

4Please note that these examples present just one way to implement each
combination. Controlet developers can easily implement their own versions.

5This way at least one datalet is written straight away as in Cassandra [7].
An alternative design choice is to forward the request to more than one datalet
and then acknowledge back. However, this decision solely depends on the type
of eventual consistency that is desired.

Failover. Upon a node failure, the coordinator launches a new

controlet–datalet pair, and then the new controlet recovers the

requests from another datalet. For MS+EC, the new pair is

added as a slave. If the master node fails, the coordinator

promotes one of the slave nodes to master after a leader

election process. The coordinator then updates the cluster

topology metadata so that future incoming writes can be routed

to the new master, similar to the case of head failure in

MS+SC.

B. Active-Active & Strong Consistency
Supporting AA and SC is expensive in general. AA allows

multiple nodes to handle Put requests and SC requires global

ordering (serialization) between them. Thus, CR-like optimiza-

tion is not applicable under AA. For simplicity and comparison

purposes, the current BESPOKV’s AA+SC controlet takes the

distributed locking based implementation, using the DLM

library (section III-B). For performance improvement, opti-

mistic concurrency control [86] and inconsistent replication [9]

can be added. Instead of using DLM, one can also enable SC

using a Shared Log to maintain a global and sequential order

of concurrent requests, which we used for AA+EC later in a

relaxed manner.

Example. Figure 15(b) shows a DLM-based AA+SC example.

Clients’ Put requests are routed to any controlet (step 1 and

step 2). Concurrent Puts from another client (step 2 in our

example) are synchronized via the distributed locking service.

The first receiving controlet acquires a write lock (step 3) on

the key and updates all the relevant datalets (step 4 & 5),

releases the lock (step 6), and finally acknowledges to the

client (step 7). For a Get request, the controlet that receives

the request acquires a read lock on that key, reads the value

from the local datalet, releases the lock, and then sends a

response back to the client.

Failover. Like the previous cases, when a node fails the

coordinator launches a new controlet–datalet pair. The new

controlet then performs data recovery from another datalet.

As AA+SC uses locking, ensuring SC for the new node and

adding it as an active node are trivial because all writes

are synchronized using locks. However, deadlock freedom

should be guaranteed. Thus, BESPOKV enforces that locks

are released after a configurable period of time. If a controlet

fails after acquiring a lock, the lock is auto-released after it

expires. Note that if a lock is auto-released, but a controlet

has not failed and was simply unresponsive for a while, it is

terminated to ensure proper continuation of operations. Also,

one of the master nodes cleans up the in-flight requests.

C. Active-Active & Eventual Consistency
For an AA topology, relaxed data consistency is more

widely used in practice for performance as in Dynamo [6],

Cassandra [7]), and Dynomite [19]. In particular, these sys-

tems use gossip-based protocols and provide a weaker data

consistency model, e.g., acknowledging back to the client if a

Put request is written to one node, N nodes, or a quorum [87].

In order to ensure EC, when multiple masters receive con-

current PUT requests, AA should be able to resolve conflicts

Fig. 16: Throughput timeline on failover. EC: eventual consis-

tency; SC: strong consistency; Dyno: Dynomite.

and agree on the global order of them, unlike MS where

one master gets all the writes. In this sense, Dynomite does

not support (a strict form of) EC when conflicting PUT

requests arrive within a time period less than the latency of

replication [88].

To address this issue, BESPOKV’s AA+EC controlet uses

a Shared Log to keep track of the request ordering. From

the Shared Log, asynchronous propagation of writes occur to

support EC. One disadvantage of this approach is that we need

to scale the Shared Log setup as BESPOKV scales. Alternative

approach is to add anti-entropy/reconciliation [89].

Example Figure 15(c) depicts how BESPOKV supports

AA+EC. In AA, clients can route Get/Put to any of the

master controlets (step 1a). On a Put, the receiving controlet

(in our example the leftmost one) writes to the Shared Log first

(step 2a), commits the request on its local datalet (step 3a), and

then responds back to the client (step 4a). All the controlets

asynchronously fetch the request (step 5). Gets can be handled

by any of the corresponding controlets by retrieving the data

from their local datalets. The duration to keep the requests in

Shared Log is configurable.

Failover. For AA+EC, the failover is handled like with

MS+EC, except that leader election is not needed in this case.

Discussion. Load imbalance due to hot keys (i.e., hotspots)

can be solved by integrating a small metadata cache at BE-

SPOKV’s client library to keep track of hot keys [90]; once the

popularity of hot keys exceeds a certain pre-defined threshold,

client library replicates this key on a shadow server that is

rehashed by adding a suffix to the key. In fact, our proxy-

based architecture naturally fits for adding a controlet-side

small cache or data migration/replication for load balancing

purpose [91], [92], [93], [94], [95].

APPENDIX D

FAILOVER & DATA RECOVERY

We also evaluate how BESPOKV performs in case of a

node failure, and compare it with Redis’s replication used by

Dynomite for failover recovery. In this set of tests, we use 3

shards (each with 3 replicas) to clearly reflect the impact of a

failure on throughput. The workload consists of 1 million KV

tuples generated with a Zipfian distribution. We intentionally

crash a node to emulate a failure, and Figure 16 shows the

resulting throughput change.

MS topology For MS+SC, we bring down the head node

under the write-intensive workload (50% Put, as shown in

the bottom half of Figure 16 (a)) and the tail node for the

0

0.05

0.1

60 80 100 120 140 160 180 La
te

nc
y

(m
s)

Time (seconnds)

DPDK Socket

0
40
80

120

60 80 100 120 140 160 180 Th
ro

ug
hp

ut

(1
0^

3
Q

P
S

)

Time (seconds)

DPDK Socket

Fig. 17: Latency and throughput improvements by using DPDK.

read-intensive workload (95% Get, as shown in top half of

the figure), to maximize the performance disruption on the

respective workloads. For MS+EC, we take down the master

node for the write-intensive workload and a random slave node

for the read-intensive workload.

We observe that for MS+SC, Put throughput goes down by

about 1/3 when the head node crashes at 20 sec, as we have

3 shards. The coordinator detects the node failure from the

lack of heartbeat message before assigning the master role to

the second node in the chain. The coordinator then launches

a new controlet–datalet pair in recovery mode, and inserts the

pair to the end of the chain once data recovery completes at

around 35 sec. Meanwhile the throughput stabilizes. MS+EC

failover shows a similar trend. The top half of Figure 16 (a)

shows the impact of node failure on Get performance under

MS topology. For MS+SC, killing the tail brings down Get

throughput by 1/3. Once failure is detected, the coordinator

makes the 2nd-from-last node in the chain the new tail, and

updates the topology metadata. Once clients see the update,

they reroute the corresponding Gets to the new tail. Hence, the

throughput goes back to normal in ~5 sec. MS+EC behaves

differently as Gets are served by any of the 3 replicas. Thus,

the slave failure does not affect the performance as much

(throughput drops by ~1/9).

AA topology In BESPOKV’s AA and Dynomite (with Redis)

failover test, we randomly kill a node at 20 sec and record the

overall throughput. As shown in Figure 16(b), the throughput

is slightly impacted in all cases, because both BESPOKV

AA and Dynomite serve reads and writes from all replicas.

Dynomite leverages Redis’ master-slave replication to recover

data directly from the surviving nodes. We observe trend

similar to Dynmoite as BESPOKV also uses datalet’s callback

functions to import and export the data.

APPENDIX E

DPDK OPTIMIZATION

We recently added support for DPDK based communication

between clients, controlets, and datalets in to BESPOKV. In

this experiment, we show performance of socket vs. DPDK

based communication. We deployed a single shard on our

local testbed and measured latency and throughput. Each node

in our local setup is equipped with Intel ethernet controller

X540-AT2. Figure 17 shows that DPDK reduces latency by

up to 65%. We also observe 3× improvement in throughput

compared to socket based communication. Another interesting

finding is that DPDK based communication results in more

stable performance.

