
Experiences Using Tablet PCs in a
Programming Laboratory

 Stephen H. Edwards and N. Dwight Barnette
Virginia Tech, Dept. of Computer Science

660 McBryde Hall, Mail Stop 0106
Blacksburg, VA 24061 USA

+1 540 231 6931

edwards@cs.vt.edu, net@vt.edu

ABSTRACT
This experience report describes lessons learned using first gen-
eration tablet PCs to support active learning in an undergraduate
computer science laboratory course. We learned that tablet PCs
are poorly matched to typical CS laboratory tasks: writing, com-
piling, and testing programs. Pen-based input is inadequate for
typical program editing tasks, and a pen is less effective than a
mouse when typing at a keyboard. Students show a clear prefer-
ence for desktop computers in this environment. Nearly three
quarters of our students preferred a lab supporting wireless con-
nectivity, however. Students also believe that the use of movable,
reconfigurable furniture allows them to work in arrangements that
are more natural during lab. Overall, students preferred the flexi-
bility provided by wireless network access, freedom from cables,
and movable furniture, but felt tablets were ineffective for pro-
gramming tasks.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education; C.5.3 [Computer System Implementation]:
Microcomputers—portable devices.

General Terms
Human Factors

Keywords
Tablet, pen, wireless, programming, reconfigurable lab, furniture,
CS1.

1. INTRODUCTION
Wirelessly enabled tablet PCs offer the promise of portable, any-
time anywhere accessibility with the convenience of pen-based
input and note-taking. There is growing interest in incorporating
this new technology into active learning classroom experiences
[3] as well as enhancing lecture presentations [2]. Some educa-
tors are even experimenting with pen-based markup and grading

of student work by teaching assistants [5].
Thanks to a hardware donation from Microsoft, we were able to
set up a laboratory classroom equipped with tablet PCs for use in
freshman CS1 courses. In fall 2003, we began investigating the
impact that tablet PCs have in a computer science lab setting.
This experience report describes the lessons learned using first
generation tablet PCs to support active learning in an undergradu-
ate computer science laboratory course.

2. CONTEXT AND GOALS
Virginia Tech is currently in the process of overhauling its core
undergraduate curriculum to infuse more effective teaching prac-
tices and improve the effectiveness of our teaching. Some of the
changes being incorporated include the use of lab-based teaching
across the freshman year, the use of pair programming in closed
lab sessions, the adoption of an aggressive objects-first pedagogy,
and the inclusion of test-driven development from the first lab
assignment. We also have begun moving away from a traditional
lecture mode of delivery and toward more active, participatory
teaching approaches.
In addition to efforts to incorporate new teaching strategies, we
have also begun examining how the environment and equipment
used in the classroom can augment the learning process. This
exploration of tablet PCs is part of a longer term strategy to
evolve our teaching laboratories into highly flexible, adaptive
spaces that can serve many teaching styles, and that can also serve
as the hub for a broader learning environment without walls or
physical space constraints.
We began down this path by placing a pool of twenty tablet PCs
in a non-traditional room furnished with movable, reconfigurable
seating and tables with casters. This arrangement provides the
ability to switch from lecture-style seating, to small discussion
groups, to a lab format, to anything else, without equipment get-
ting in the way. Students can push the tables and rearrange their
seats so that they can work together. They have the freedom to
arrange themselves in a way most conducive to their learning and
comfort. No desktop machines or wires restrict this arrangement.
Wireless tablets allow lab assistants freedom to move about the
space. Students do not have their view obstructed by rows of
desktop machines, and each can easily take notes or make annota-
tions as they follow along with the group.
In this alternative classroom, students—or a pair working to-
gether—check out a wireless-enabled tablet PC for each lab ses-
sion. These tablets served as highly mobile access points run-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.
SIGITE’04, October 28–30, 2004, Salt Lake City, Utah, USA.
Copyright 2004 ACM 1-58113-936-5/04/0010...$5.00.

ning on batteries, rather than conventional personal computers.
Student accounts within this learning environment are maintained
on a separate server and files are accessed transparently across the
network. A student’s desktop can be accessed from any wireless
tablet, from his or her own wireless notebook, or over the internet,
making their personal environment transportable among devices.
An individual’s file space is even uniformly accessible from both
Windows and Unix machines. In the future, we envision adding
additional support to provide access to server-hosted Windows
software through Windows Terminal Services, and allow students
to remotely connect to our Unix servers. Students with wireless
notebooks then could seamlessly “join” our departmental lab en-
vironment easily, whether they are physically located in a labora-
tory, attending a course lecture in a different building, or studying
in the library.
We began exploring the use of such a tablet-equipped classroom
in our introductory programming course (CS1) for computer sci-
ence majors. The CS1 course at Virginia Tech, CS 1705: Intro-
duction to Object-oriented Design I, is taught in a two lecture
hour, two lab hour format. In fall 2003, approximately 200 stu-
dents enrolled in this course were divided into two lecture sec-
tions and eight closed lab sections. The two lecture sections both
met in lecture halls with wireless support, where the instructor
used a tablet for presentation and students were allowed to bring
their own wireless-enabled devices. Four of the closed lab ses-
sions met in a traditional computer-equipped classroom for
weekly instruction, with regular desktop computers arranged on
tables in rows. The remaining four lab sections met in the non-
traditional tablet classroom. During registration and course selec-
tion, students were unaware of the use of tablets in this course,
and were unaware of which lab sections were using tablets or
desktops. As a result, students did not self-select their treatment
condition, providing a better approximation to a random condition
assignment. All of the students were surveyed to collect their
subjective experiences at the conclusion of the course. This paper
describes the experiences gained during one semester of teaching
in this environment.

3. EXPERIENCES DURING LECTURE
Educators involved in the University of Washington’s Classroom
Presenter project [2] or its earlier Microsoft predecessor have
already described experiences in using tablets to enhance the de-
livery of traditional PowerPoint-style lectures. Classroom Pre-
senter focuses on supporting the instructor’s ability to use digital
ink to write directly on PowerPoint slides being presented from a
tablet, and the ability of students using wireless devices to provide
feedback to the speaker in real time during the presentation.
However, one of our teaching strategies was to move away from
lecture-based delivery. As a result, we did not rely on Power-
Point presentations as our primary delivery mode in CS1.
Instead, we chose to teach lecture classes in the form of discus-
sion-oriented “live” programming example sessions. Students
had weekly reading assignments they were to complete in ad-
vance of class. For each lecture meeting, we designed a suitably
sized example programming task that used or exemplified the
concept to be covered. The corresponding lecture then consisted
of a brief review of the important concepts to be explored or ap-
plied in that session, a short discussion of the problem at hand,
and then an interactive construction of a programming solution to

the problem using the same environment and tools that students
use in the lab.
This teaching approach significantly altered the lecture experi-
ence. Students watched “over the shoulder” as the instructor
wrote and discussed a live code example. There was a greater
degree of interaction, with students suggesting possible solution
strategies, identifying problems they could see, and asking why
not do it another way. If a student poses a “what would happen if
…” question, the instructor can answer by interactively trying the
suggestion on the spot. If the example does not work as expected,
the instructor can put the students in control, asking for explana-
tions of the erroneous behavior, suggestions for fixing it, or
strategies for tracking down the source of a defect. Our CS1 stu-
dents use BlueJ as their development environment, which signifi-
cantly aided our ability to interactively create objects, try out
methods, and explore other issues on the fly without spending
time writing one-off main programs.
This kind of interactive programming provides many opportuni-
ties to demonstrate how to write basic test cases as you develop a
program, the value of doing so even in simple student-level pro-
grams, and the techniques of practical debugging. Students who
bring wireless-enabled devices to lecture are able to download the
starting materials for the example from the course web site and
follow along, or even try out their own ideas live during the class
session. While this teaching strategy does require a bit more
preparation and makes the class time less predictable, it results in
a livelier, more engaging classroom experience and was preferred
by instructors and students alike.

3.1 Writing Programs with a Tablet
Because so much lecture time was devoted to creating, viewing,
and modifying program code, we were interested in how effec-
tively a tablet PC would be for this teaching style. Instructors in
our CS1 course used the same kind of tablet PCs as found in our
tablet classroom: a Toshiba Portégé 3500. The Toshiba unit is a
“convertible” tablet with a form factor similar to a lightweight
notebook with a traditional clamshell case containing a compact
keyboard, as shown in Figure 1. After opening the case, the
screen can be rotated and folded back down over the keyboard so
the tablet can be used like a clipboard, entering data with a pen.
Alternatively, without rotating or folding down the display, it can
be used like a more conventional notebook computer. This is in

Figure 1: A “convertible” tablet can also be used as a
notebook.

contrast to the more radical “slate”-style tablets that weigh less
but require the use of an external or on-screen keyboard when
typing instead of using the pen.
For basic programming tasks, the Toshiba performed reasonably
as a compact, wireless notebook. For pen-based input, Micro-
soft’s Windows XP Tablet PC Edition provides full support for
pen-based textual input into most applications, including BlueJ.
Handwriting recognition performs acceptably for both printed and
cursive handwriting, without requiring the use of specialized letter
shapes like many PDA devices. Researchers have been experi-
menting with alternative notations for pen-based program input
for decades [1], but we used the built-in pen-based text input sup-
port provided by the operating system since no special-purpose
pen-based code entry applications were available.
Unfortunately, in our experience, pen-based input does not work
well for program code entry and editing. The handwriting recog-
nition provided within the operating system appears to be opti-
mized for writing English prose. The system makes heuristic
judgments about proper capitalization, word spacing, and place-
ment of punctuation when converting digital ink into ASCII text.
If you are writing in a document or report, the heuristics generally
work appropriately in translating hand-written characters into
appropriate phrases or sentences. However, program text does
not follow the normal conventions of free-form prose. For exam-
ple, “camel case” identifiers (e.g., a ClassName or a method-
NameLikeThis) that consist of a few smaller words run to-
gether are typically recognized as a series of words separated by
spaces instead of one identifier. Conventions about where white
space is used around parentheses or periods often differ between
programming style conventions and free-form prose. The lack of
a tab key (or its common “shift-tab” dual) to adjust or correct
indentation levels quickly is also an issue. Our experience has
been that program text entered with the pen requires a significant
number of small corrective edits such as deleting or inserting
spaces or changing letter capitalization on each individual line.
These edits take time, and significantly reduce the speed with
which code can be entered. As a result, it appears that the pen as
an input device is poorly matched to the task of entering and edit-
ing program text, at least with the current generation of recogni-
tion software.

3.2 Lecturing With a Tablet
Because pen-based input is a poor match for code editing and
much of our lecturing involved live programming, tablets were
used in their clamshell-style notebook orientation during our lec-
tures. The instructor used a tablet cord-free, and controlled a
separate computer wired to the lecture hall’s projection equip-
ment. This approach gave the instructor greater mobility and
freedom during class, which was useful. One of the instructors
frequently took the tablet out into the audience and sat down with
the students, for example. This freedom also allows one to take
the tablet out to a student’s location and let the student take con-
trol, asking him or her to implement a suggestion they have just
made or try out a question they have just asked.
Unfortunately, most software development applications are not
“ink-aware”, and thus are limited in how they can support pen-
based input. For example, most code editing tools can receive
text-based input via the pen—the operating system uses its built-
in handwriting recognition to convert the pen strokes into textual

characters and then sends those characters to the application.
However, one cannot directly annotate code by drawing lines,
circling, underlining, etc., unless the application can deal with
digital ink in its native form. While some tools have this capabil-
ity—for example, Classroom Presenter allows you to directly ink
on PowerPoint-style slides during a live presentation—most soft-
ware development tools do not. Because of our teaching style, the
tablet’s pen was reduced to a simple pointing device during lec-
ture. Overall, pen-based input provided little value in our class-
room.

3.3 Wireless Lecturing
While pen-based input was of questionable value, students and
faculty alike enjoyed wireless support in the classroom. The extra
mobility provided to the instructor was a welcome change from
being glued to the podium, and offered new opportunities for
involving students directly in the teaching process. Further, those
students who did have wireless devices were encouraged to bring
them and to follow along. Eventually, 14% of students adopted
the habit of always bringing their wireless notebook to class. We
expect this trend to increase significantly, since students in future
years will be required to own wireless notebooks by our College
of Engineering, something that was not required for the students
involved in this study.
Although many instructors fear that students in such a situation
will be reading e-mail or playing games during class, this did not
appear to be typical behavior in our lectures. Instead, students
who brought their own notebooks began asking the instructors to
make each lecture’s starting materials available electronically so
they could follow along. After class, students would occasionally
demonstrate errors and ask for assistance right on the spot on their
own machines, rather than e-mailing questions later or simply
walking away puzzled. In a survey given to the students at the
conclusion of the course, many students found that the use of a
wireless tablet by the instructor during lecture meetings aided in
their understanding.

4. EXPERIENCES IN THE LABORATORY

4.1 Tablets in the Lab
Half of the students attended closed lab sessions in our tablet-
equipped laboratory classroom, with the other half using a tradi-
tional lab with desktop machines. In each two-hour lab session,
students worked in pairs solving a two-part programming prob-
lem. Students used pair programming in the lab session [6], with
one student serving as the “driver” and controlling the keyboard
while the other served as “navigator” and watched for errors and
made design suggestions. Half way through the lab period, stu-
dents would switch roles. Student pairs were assigned so that
each student worked with a different partner in each lab session.
Because of the way our lab sessions were structured, student tasks
during lab included: using a web browser to read the assignment
and look up reference details, using BlueJ to write, compile, test
and revise programs, and communicate with a partner to design,
develop, assess, and refine a solution. Although the specific pro-
gramming language and software tools may differ, these basic
tasks are common to many lab-based introductory courses.
Unfortunately, through this experience, we learned that tablet PCs
are poorly suited to the tasks our students were performing. As

indicated in Section 3.1, pen-based input is not as effective as a
keyboard for basic programming tasks. Unsurprisingly, students
uniformly used their tablets in a traditional notebook-style clam-
shell orientation, typing at its built-in keyboard. Further, when
the pen is reduced to a simple pointing device, it appears to be
less effective and less accurate than a mouse. This is evident,
when one considers that to use a pen as a pointing device while
typing, one must stop typing, pick up the pen with one hand,
point, and then put the pen down again before resuming. As the
course progressed, several students began to bring in their own
external mice to use in the laboratory, even though the tablet PCs
were also equipped with touchpads in addition to their pens. One
student went so far as to bring in his own external keyboard as
well as a mouse to use with a tablet. At that point, the lab instruc-
tor told the student: “If you start bringing in your own monitor,
you’ve gone too far”!
Indeed, screen real estate was also an issue. Because of our peda-
gogical decision to use pair programming, two students worked at
each machine. The Toshiba Portégé has a twelve-inch screen that
supports a 1024x768 resolution. For one individual holding the
tablet like a clipboard, this screen configuration is just manage-
able. For two students trying to work together, the small screen is
a serious constraint. Because of the tablet’s small screen size and
small keyboard size, it is difficult for students to work together,
particularly when one of them needs to type. While one might
expect the small, cordless body to make it easier for two students
to push the machine back and forth so both can contribute, stu-
dents clearly expressed dissatisfaction with this style of machine
for CS1 laboratory work.
In the student survey, students expressed a clear preference for the
use of desktops—which sport full-size screens, full-size key-
boards, and mice—rather than tablets in this environment. Stu-
dents unanimously agreed that an external mouse attached to a
tablet PC is necessary for lab work, and 70% agreed that a larger
monitor than that of a tablet PC (12 inches, in our case) is neces-
sary for lab work. Compared to desktop machines, 86% of stu-
dents agreed that tablet PCs are more difficult to use for computer
programming lab tasks. Two thirds of the students did not believe
that wireless tablet PCs allowed them to work together with a lab
partner more effectively. Finally, two thirds of the students who
used tablets in lab claimed they were less likely to purchase a
tablet PC as the result of experiences in this course, with only one

student claiming they were more likely to purchase a tablet.

4.2 A Wireless Lab
As in lecture, experiences during lab with wireless connectivity
were much more positive. Unlike lecture, during lab sessions
students did not bring their own notebooks. Instead, students used
the machines provided in the laboratory exclusively. Wireless
access was not used in the traditional desktop laboratory, and was
only available in the alternative tablet room.
Students perceived clear advantages to having wireless support.
All else being equal, 72% of students would prefer to have lab in
a room supporting wireless connectivity. Further, 80% of stu-
dents found that the use of movable, reconfigurable furniture al-
lows them to work in arrangements that are more natural during
lab. Overall, students preferred the flexibility provided by wire-
less access and movable furniture, but felt tablets were ineffective
for programming tasks.

5. EFFECTS ON STUDENT PERFORM-
ANCE

Because only half of the students in our CS1 course attended lab
sessions in the tablet classroom, we had an opportunity to com-
pare student performance between tablet users and students using
traditional desktop machines during lab. Figure 2 summarizes
student performance between the two groups, showing the mean
and ranges for cumulative student scores on all lab assignments,
on all programming assignments outside of lab, and across all
graded work assigned in the course. An analysis of variance was
conducted and no significant differences were found between
students in the two lab environments, or between students taught
by different instructors. Thus, while tablets may have been an
inconvenient for students to use on laboratory programming tasks,
they do not appear to have had any appreciable effect on student
learning or on outcomes.

6. SUMMARY
As part of out curricular redesign efforts, we were afforded an
opportunity to experiment with the use of tablet PCs in a fresh-
man-level laboratory programming course. In this experience, we
found that both instructors and students considered wireless ac-
cess in both the lecture hall and in the laboratory to be valuable

0%

20%

40%

60%

80%

100%

Tablets Desktops Tablets Desktops Tablets Desktops

Lab Assignments Program Assignments All Work

H
ig

h,
 A

ve
ra

ge
, a

nd
 L

ow
 S

co
re

s

Figure 2: Comparative performance of students on course work.

and to add to the classroom experience. Further, removing the
wires and cables from the lab and using movable, easily recon-
figurable tables and seating made the lab more conducive to
working in pairs and small groups. Overall, students expressed a
clear preference for wireless access and the freedom afforded in
this new space.
On the other hand, this experience also indicates that tablet PCs
are a poor match for typical CS laboratory tasks: writing, compil-
ing, and testing programs. Pen-based input is inadequate for typi-
cal program editing tasks, and a pen is less effective as a pointing
device than a mouse when typing at a keyboard. Students show a
clear preference for desktop computers in this environment. Hav-
ing students work in pairs may exacerbate these difficulties.
Overall, students and instructors felt that tablets were ineffective
for lab-based programming tasks.
At the same time, however, our university is moving inexorably
toward a point where all incoming students will have wireless,
portable computers (not necessarily tablets)—a requirement that
incoming computer science freshmen must begin meeting next
year. We have seen clear benefits to wireless, portable access in
both lecture and lab. In order to move forward in our long-term
plan to evolve our teaching laboratories into highly flexible, adap-
tive spaces serving many teaching styles, we can apply the les-
sons learned through this experience. For example, we are con-
sidering changing the structure of our undergraduate lab facility
from its current model: rows of identically configured desktop
machines. Instead, we could employ a wireless, cordless work
area in the center with flexible, movable furnishings, where the
walls are lined with tables containing simple “docking stations”
with external flat panel displays, external keyboards, and mice.
Students could then bring their own notebook into the facility, and
work as-is, or plug in to the provided external devices as needed.
All machines will still have transparent access to the shared lab
facilities via the wireless network. Such a strategy capitalizes on
the portability and convenience of soon-to-be-ubiquitous wireless
notebooks, while also addressing their biggest shortcomings for
laboratory programming tasks. Further, the reduced hardware
cost and maintenance burden such a facility would provide may

allow support staff more time to support the required networking
and server infrastructure. We are also looking forward to the
experiences that other educators have with newer generation tab-
let PCs. Leveraging tablets effectively hinges on matching the
technology to user tasks where pen-based actions are faster and
more effective than the alternatives.

7. ACKNOWLEDGMENTS
This work is supported in part by Microsoft Corporation. Any
opinions, conclusions or recommendations expressed in this paper
are those of the authors and do not necessarily reflect the views of
Microsoft.

8. REFERENCES
[1] Anderson, R.H. Programming on a tablet: A proposal for a

new notation. In Proc. Symp. Two-dimensional Man-
machine Communication, ACM Press, 1972, pp. 113-123.

[2] Anderson, R., Anderson, R., Simon, B., Wolfman, S.A.,
VanDeGrift, T., and Yasuhara, K. Experiences with a tablet
PC based lecture presentation system in computer science
courses. In Proc. 35th SIGCSE Technical Symp. Computer
Science Education, ACM, 2004, pp. 56-60.

[3] Berque, D., Bonebright, T., and Whitesell, M. Using pen-
based computers across the computer science curriculum. In
Proc. 35th SIGCSE Technical Symp. Computer Science Edu-
cation, ACM, 2004, pp. 61-65.

[4] Dray, S., Siegel D., Feldman, E., and Potenza, M. Why do
version 1.0 and not release it?: Conducting field trials of the
tablet PC. Interactions, 9(2):11-16, March, 2002.

[5] Popyack, J.L., and Herrmann, N. Electronic grading: When
the tablet is mightier than the pen. Syllabus, January 2003,
pp. 18-20.

[6] Williams, L., Upchurch, R.L. In support of student pair-
programming. In Proc. 32nd SIGCSE Technical Symp. Com-
puter Science Education, ACM, 2001, pp. 327-331.

