
International Journal of Software Engineering and Knowledge Engineering
© World Scientific Publishing Company

1

A FLEXIBLE STRATEGY FOR EMBEDDING AND CONFIGURING RUN-
TIME CONTRACT CHECKS IN .NET COMPONENTS

STEPHEN H. EDWARDS

Department of Computer Science, Virginia Tech, 660 McBryde Hall (0106),
Blacksburg, Virginia 24061, United States of America

edwards@cs.vt.edu
http://people.cs.vt.edu/~edwards/

WESTLEY HAGGARD

Department of Computer Science, Virginia Tech, 660 McBryde Hall (0106),
Blacksburg, Virginia 24061, United States of America

wes@puzzleware.net
http://www.puzzleware.net/

Received (1 November 2006)
Revised (9 February 2007)

Accepted (9 February 2007)

In component-based systems, there are several obstacles to using Design by Contract (DbC),
particularly with respect to third-party components. Contracts are particularly valuable when
debugging or testing composite software structures that include third-party components. However,
existing approaches have critical weaknesses. First, existing approaches typically require a
component’s source code to be available if you wish to strip (or re-insert) checks. Second,
documentation of the contract is either distributed separately from the component or embedded in
the component’s source code. Third, enabling and disabling specific kinds of checks on separate
components from independent vendors can be a significant challenge. This paper describes an
approach to representing contracts for .NET components using attributes. This contract information
can be retrieved from the compiled component’s metadata and used for many purposes. The paper
also describes nContract, a tool that automatically generates run-time checks from embedded
contracts. Such run-time checks can be generated and added to a system without requiring source
code access or recompilation. Further, when checks for a given component are excluded, they
impose no run-time overhead. Finally, a highly expressive, fine-grained mechanism for controlling
user preferences about which specific checks are enabled or disabled is presented.

Keywords: Design by Contract; assertion checkers; dynamic verification; component-based
software; binary components; preconditions; postconditions; invariants; coding techniques;
debugging aids; specification.

1. Introduction

Every developer at one point or another uses a third-party component. The reason for
using third-party components is to try to keep software production costs to a minimum.
There are many costs associated with developing a component in-house, including costs
for design, coding, testing and maintenance. These costs often can be reduced or

Stephen H. Edwards and Westley Haggard

2

eliminated by reusing a third-party component. However, using a third-party component
has its own set of problems, such as figuring out how to use its interface and how to
integrate it with other components.

Most third-party components come with documentation that informally describes the
interface for the component. This informal description is helpful, but an informally
written description may not define precisely what the component interface expects or
what it produces. As a result, the component client may be unable to determine exactly
how to use the interface. This in turn increases the chances of misusing the component
and of introducing bugs.

To reduce the impact of these problems, component developers can use a more formal
approach to documenting components. Bertrand Meyer’s Design by Contract (DbC)
approach 1, 2 is a popular technique that seems to fit this problem naturally. DbC lays out
a clear division of responsibilities between a component implementation and client code
that uses it. A contract delineates what each party may assume and what each party is
obligated to ensure.

Using the DbC approach, component developers can precisely and unambiguously
specify the component interface by providing pre- and postconditions for each method
and by providing invariant conditions for each class. Preconditions formally describe
what the component expects to be true on entry to its methods—if these conditions are
not met, then the client is to blame. Postconditions formally describe what the
component client can expect as a result from making a call to the component—if these
conditions are not met, then the component is to blame. Class invariants formally
describe what must hold true about the state of a particular object after initial
construction, as well as before and after every (public) method call.

Providing a contract for a component decreases the chances of component misuse and
decreases the number of bugs clients make. Run-time contract verification, if available
would help component clients determine more easily if they are violating any
preconditions, and would assure them that the component is doing what it claims, further
decreasing the number of bugs.

1.1. The Problem

Most DbC approaches allow one to check conformance with a contract at run-time,
usually through some form of assertion checking. Such run-time verification is a great
tool during development, testing, and debugging, since it can help spot places where one
component is calling another improperly, where glue code contains bugs, or even where
the client has misunderstood the intended behavior of a component. In practice, DbC
assertions are typically enabled during development and then disabled during release to
eliminate the run-time penalty of executing assertions in the final product.

However, while the benefits of DbC for developers are well-understood, component-
based development introduces new challenges. While the original developer of a
component may wish to use DbC internally during his or her development activities, the

 Embedding Run-time Contract Checks in .NET Components

3

client who reuses a component is also a developer, working on an even larger system.
Indeed, the primary limitations of most existing approaches to run-time contract checking
impact not component developers but component clients when a component is distributed
in compiled form only. Component developers understandably wish to maintain control
over their source code. However, when assertion checks are embedded directly within
the component being checked, as in most existing techniques, either the client must
relinquish the benefits of assertion checks, or the client must pay some run-time penalty
for the checks because there is no option to recompile without checks to eliminate this
overhead.

Edwards et. al describe a set of requirements for any contract-checking strategy
targeted at component-based software. 3 In short, these requirements suggest that to be
viable in a component-based setting, any contract-checking approach should:

• Allow checking code to be inserted or removed without editing source code.
• Allow run-time checks to be selectively enabled or disabled for individual

components or features.
• Avoid requiring recompilation of a component or the client’s code to control run-

time checking features.
• Allow the client to control which action(s) are taken in response to detected contract

violations.
• Avoid requiring the client to use the same development tools used by the component

developer in order to take advantage of the contracts.

The key problem addressed in this paper is how to obtain these goals for a given
component framework. Because different component technologies use different methods
to interconnect components, solutions to this problem may vary from one technology to
another. Here, we focus on .NET components.

1.2. Goals for a Solution

The .NET framework provides both unique capabilities and unique restrictions that come
into play in solving the problem of expressing component contracts. We describe a
strategy and associated tool, called nContract, which provides configurable run-time
contract verification without requiring component recompilation or source code access.
More specifically, nContract addresses the problem through the following key features:

(1) Contract information is embedded in the binary version of the .NET component as

metadata.
(2) Run-time checks can be added or removed without recompilation of either the

component or the client’s code.
(3) All checks can be enabled or disabled at the level of a .NET assembly, a class or

even an individual method.

Stephen H. Edwards and Westley Haggard

4

(4) Different classes of checks—preconditions, postconditions, exceptional
postconditions, and class invariants—can be enabled or disabled individually at all
levels of granularity.

(5) Little or no performance penalty occurs if checks are disabled.
(6) Custom actions can be performed when any contract violation is detected.

nContract allows component developers to formally specify .NET components using
attributes. Figure 1 illustrates an overview of the key aspects of this strategy. The

Fig. 1. General overview of how nContract embeds, packages, and configures contract checks.

 Embedding Run-time Contract Checks in .NET Components

5

embedded contract information is retrieved from the compiled component’s metadata and
a subclass can be generated for each type with a contract. This subclass is used as a
container to package run-time checks for contract conformance. All members of the
component’s interface are overridden in the subclass and contract assertions are wrapped
around calls to the base class. As long as the component client uses a factory to create
instances of the component’s types, the decision of whether or not to create assertion-
checked or unchecked objects can be deferred until run-time.

1.3. Organization of this Paper

Section 2 describes related efforts to support run-time contract checking features.
Section 3 explains our approach to embedding DbC contract descriptions directly in
binary .NET components using metadata. This strategy allows contracts to be carried
along in compiled components, ready for inspection or use through a standard API by a
variety of tools. Section 4 lays out the nContract strategy for packaging run-time
contract-checking code so that it can be added or removed in a design without requiring
recompilation, even in situations where only the binary version of the component is
available. Section 5 describes an innovative way to selectively enable or disable run-time
checks at a fine-grained level, without imposing any additional performance overhead in
performing the checks themselves. Section 6 provides an evaluation of the approach by
comparing it to existing strategies and quantitatively assessing its performance impact.
Finally, Section 7 summarizes our conclusions.

2. Summary of Related Work

A great deal of past work has been conducted on run-time assertion checking in general,
and DbC-style contract checking in particular. Because a complete review is beyond the
scope of this paper, here we briefly discuss the most relevant projects.

Eiffel 2 is one of the oldest and most well-known tools to support DbC. Eiffel allows
contracts to be expressed directly in the language via relevant language constructs, and
also can generate in-lined run-time checks of contract conditions within each class
method. Removing checking code requires recompilation. More recently, Spec# 4 is a
research language that adapts the same techniques to C#. Like Eiffel, it provides specific
programming language constructs for describing contracts, supports generation of in-
lined run-time checks inside methods, and requires recompilation to remove checking
code from a binary component.

A number of other tools are “add-ons” to existing programming languages that allow
developers to describe contracts using structured comments right in a component’s source
code. JML 5 and IContract 6 typify this strategy. JML is a behavioral specification
language for Java, with an associated compiler that can generate run-time executable
checks for (most) behavioral specifications in the resulting bytecode file 7. The resulting
class is one where the original method implementations have been renamed, helper
methods implementing each assertion have been added, and the original method name is

Stephen H. Edwards and Westley Haggard

6

used to define a “wrapper” method that calls checking helpers as well as the now-
renamed underlying method. ContractJava 8 uses a similar strategy with “wrapper”
methods, but focuses more on behavioral subtyping rules and assigning proper blame in
the hierarchy chain if a contract violation occurs. IContract is a preprocessor for Java
that can insert contract checks in-line in methods during compilation. All three tools
require recompilation to remove checking code.

In addition to using embedded comments, some tools use alternate contract
representations. XC# 9 is an extension to the C# compiler that supports compile-time
attributes. It provides attributes for expressing preconditions and postconditions, and
XC# can in-line the corresponding run-time checks in methods as part of the compilation
process. Recompilation is necessary to remove checks.

Instead of inserting checking code during compilation, others have also investigated
dynamically inserting checks. JContractor 10 provides a custom class loader for Java
programs. It uses special naming conventions to identify regular methods that represent
executable contract checks. When loading classes, if it identifies any such methods via
its naming conventions, it dynamically rewrites the class bytecode to insert calls to the
checks in the desired method bodies. Unlike compilation-based approaches, this allows
one to insert or remove checks by choosing whether or not to use the custom class loader,
without requiring recompilation. Handshake 11 also uses a custom class loader to
dynamically insert checks into Java classes at load time. Unlike JContractor, however,
Handshake represents contracts in a separate file with a special syntax. It then
dynamically modifies class bytecode at load time to insert checks, if desired. Similar to
JML’s approach, Handshake renames the original method and then generates a
replacement that includes run-time checks surrounding a call to the now-renamed
original.

Aspect oriented programming (AOP) provides an alternative approach to adding
contract checks to components. There are a number of possible ways to write an aspect
that will instrument the code with assertions for contract checking. Unfortunately, most
tools for implementing AOP, or “aspect weavers,” work at compile-time only. Compile-
time-only aspect weaving typically leads to a solution where one can enable or disable
the checks at compile-time but not at run-time, usually with a requirement for source
code access. Alternatively, more recent aspect weaving tools are beginning to employ
dynamic weaving techniques that do not require source code access or recompilation.
Such an approach would be a viable alternative to the strategy described in this paper.
Unfortunately, although some weavers such as Loom.NET 12 hold promise, there are no
dynamic aspect weavers for .NET that are mature enough to support the techniques
needed for true source-less control over embedded contracts at this time.

The notion of storing contracts directly in components is also related to the notion of
proof-carrying code. 13, 14 However, with proof-carrying code, the idea is to attach a
complete, machine-verifiable proof along with a component. Although techniques
similar to those we propose could be used to embed proofs in components, here we are
focusing purely on embedding behavioral contracts (or behavioral specifications).

 Embedding Run-time Contract Checks in .NET Components

7

For .NET components, the .NET contract wizard provides contracts for .NET
components by creating Eiffel for .NET proxy classes. 15 It works by reading in a .NET
assembly and listing all the types and methods from the assembly and allows for
preconditions, postconditions and invariant checks to be entered as Eiffel expressions.
These preconditions, postconditions and invariants are added to the Eiffel proxy class
using Eiffel’s language constructs. The tool then produces another .NET assembly
containing all the Eiffel proxy classes. To enable assertion checks at run-time, the client
would use the Eiffel proxy instead of the original class.

Two prior efforts by the author have focused on the same goals described here, but
for different languages. Tan and Edwards 16 describe an approach to packaging JML-style
run-time behavioral checks in separate wrapper classes, rather than including them in the
bytecode of the original class. Their approach relies on a custom class loader to
transform calls to new into factory method invocations at load time, and to integrate the
wrapper class into the program’s class hierarchy to ensure subtype substitutability. This
approach is the one most closely related to the work reported here. However, due to the
way .NET implements components, the bytecode editing and class loading techniques
described by Tan and Edwards are not applicable in a .NET environment. Further, their
work does not address enabling/disabling assertions efficiently down to the level of
individual methods. Finally, their approach for Java relies on behavioral specifications
embedded in the source code in the form of structured comments, and does not allow
contracts to be retrieved from compiled assets. In C++, Edwards et. al describe how
wrapper classes can be used to support insertion or removal of run-time checking code at
link-time. 3 The C++ technique requires clients to use factories for object creation, but
allows the client to either “link in” or omit supporting wrapper classes that contain
contract checks. When wrapper classes are linked into the final application, they are
automatically detected by the corresponding factory methods. When they are omitted
from the linkage phase, factories produce unwrapped (unchecked) object instances.
However, the C++ wrappers share many of the same limitations as the JML wrapper
classes described by Tan and Edwards.

3. Embedding Behavioral Contract Descriptions in .NET Components

.NET components are self-describing; all the information needed to describe the
component is stored as metadata in the compiled version. Further, .NET allows
developers to add custom metadata to the component by defining their own custom
attributes. Attributes are tags that can be added to code constructs such as classes,
methods, parameters and other constructs where one might want to store custom
information. Here is a simple C# code example that has a FormallySpecified
attribute attached to the class and a Pre attribute attached to the method (attributes have
been italicized for emphasis):

Stephen H. Edwards and Westley Haggard

8

[FormallySpecified]

public class Test

{

 [Pre("i > 0")]

 public void DoWork(int i) { }

}

.NET provides a reflection API that allows programmatic retrieval of component

metadata at run-time. By using attributes to store the DbC contract information, the
contract can be retrieved from the binary component, eliminating any need for source
code access. Furthermore, precise written documentation can be generated by pulling the
contract information directly out of binary components.

nContract provides a set of attributes that are used to store the DbC contract
information, such as preconditions and postconditions for methods. These conditions are
expressed in the form of a string parameter to the corresponding attribute. These
condition strings are extracted by the nContract tool and inserted in a code template to
generate run-time checks. Since run-time checks will be compiled as C# code, these
condition strings take the form of C# boolean expressions (other .NET languages could
be used for the expressions if the templates were changed to that particular language).
Figure 2 illustrates a small C# component that contains a contract expressed in this form,
a CharBuffer.

nContract uses the following contract attributes (complete details and a full example
are provided by Haggard 17):

• FormallySpecified marks a class as being formally specified.
• Pre provides a condition which needs to hold true on the entry of a method.
• Post provides a condition which needs to hold true on the exit of a method.
• ExceptionalPost provides a condition which needs to hold true whenever the

specified exception is thrown from a method.
• Invariant provides a condition which needs to hold true after an object's creation

and before and after every public method call for that object.
• RepresentationalInvariant is the same as invariant except it is not part of the

public specification. Its purpose is for a developer to provide invariants which
reference internal data and can be verified at run-time by nContract.

• ModelField indicates an abstract field a developer can use for public specification
which allows them to change implementation details later without breaking the
public specification.

• Pure marks a method as having no side effects. Any method that is used in any of
the condition expressions needs to be marked as pure.

Note that operator @ appearing in some assertions in Figure 2 is a C# operator that

alters the parsing of string literals to allow multi-line strings and to ignore escape

 Embedding Run-time Contract Checks in .NET Components

9

sequences. It is used here purely to allow assertions—which are expressed as string
literals—to span multiple lines.

At this point, it is also important to note that the purpose of designing nContract was
to explore ways of embedding contracts in binary components, and using this embedded
information to overcome the need for recompilation or source code access. Other
researchers have investigated alternative ways of specifying behavior and alternative
languages for expressing such specifications. While the choice of C# expressions as the
means to write assertions in nContract is expedient, it is by no means the only choice. It
would be equally feasible for one to choose a completely different contract specification
language, together with a corresponding run-time checking code generator, to achieve the
same basic result.

[FormallySpecified]

[ModelField(typeof(List<char>), "Contents",

 "new List<char>(this.ToString().ToCharArray())")]

[RepresentationalInvariant(

 "numberOfChars == stringBuilder.Length")]

public class CharBuffer

{

 [Pre("value != null")]

 [Post("Contents.Count == value.Length")]

 protected CharBuffer(string value) {...}

 ...

 [Pre(@"index >= 0 && index <= Contents.Count

 && value != null")]

 [Post(@"Contents.Count ==

 old.Contents.Count + value.Length")]

 [ExceptionalPost(typeof(ArgumentOutOfRangeException),

 "index < 0 || index > Contents.Count")]

 public virtual void Insert(int index, string value)

 {...}

 ...

 // Member fields

 protected StringBuilder stringBuilder;

 protected int numberOfChars;

}

Fig. 2. An example C# class containing an embedded contract description.

Stephen H. Edwards and Westley Haggard

10

The only notable aspect of nContract’s approach to describing assertions is that it
provides explicit support for model-based specification of contracts. While many DbC
approaches, beginning with Eiffel, require one to describe a component’s contract
directly in terms of its attributes or methods, such a strategy may require contracts to be
too implementation-specific, and may require the client to understand the implementation
in order to understand the contract. With a model-based specification 18 however, one can
define an abstract model of an object’s state, and define the contract in terms of the
abstract model rather than the concrete implementation. nContract’s ModelField
attribute is used to introduce an abstract model of a component’s state, together with an
abstraction function that describes how to compute the abstract state from the
component’s concrete implementation. Figure 2 illustrates an abstract state model, where
a model field called Contents is introduced at the start of the class declaration. This
model field is defined to be a List<char>, which is a simple way to understand its
contents. The ModelField attribute for Contents also says how the class’ concrete
implementation maps into this abstract view. The behavior of methods can then be
described in terms of this abstract view.

4. Packaging Contract Checks for Use in Testing

The embedded contract information described in Section 3 ensures that the contract is
always available, whether or not source code is provided to clients. However, for
contracts to be of practical benefit to clients during their development activities, they
should be able to turn on run-time checking. However, for a binary-only .NET
component, clients cannot easily insert or remove code from the assembly itself. Instead,
the nContract strategy is to retrieve the contract description from the compiled
component’s metadata, and then generate a subclass for each type with a contract. These
subclasses are used as containers to package run-time checks for contract conformance.
All members of the component’s interface are overridden in the subclass and contract
assertions are wrapped around calls to the base class. The component client can then use
a factory to create instances of the component’s types, allowing the decision of whether
or not to create assertion-checked or unchecked objects to be deferred until run-time, and
changed without recompilation.

For every formally specified type in a given .NET component, nContract uses a
template to generate a subclass for that type. For example, a subclass called
CharBufferWithChecks would be generated for CharBuffer, from Figure 2. Every
public or protected virtual method or property from the base class is overridden in
the subclass and assertion checks are inserted around calls to the base method or
property. Figure 3 outlines this subclass for the CharBuffer example.

The Insert() method in Figure 3 illustrates how checking code is inserted in the
subclass. The overriding definition in the subclass determines whether specific checks
for the class invariant, the method precondition, the method postcondition, and any
separate postconditions for possible exceptions are enabled, and carries out the

 Embedding Run-time Contract Checks in .NET Components

11

corresponding assertion checks when necessary. Placeholders marked with double-angle
brackets («...») represent assertions taken directly from the embedded contract

public class CharBufferWithChecks : ExampleComponent.CharBuffer

{

 ...

 public override void Insert(

 System.Int32 index, System.String value) {

 if (config.Insert_Int32_String.InvariantDisabled == false)

 config.CheckEntryInvariant(«InvariantCondition»);

 if (config.Insert_Int32_String.PreDisabled == false)

 config.CheckPrecondition(«Precondition»);

 try {

 base.Insert(index, value);

 if (config.Insert_Int32_String.PostDisabled == false)

 config.CheckPostcondition(«PostCondition»);
 }

 catch (Exception ex) {

 if (config.Insert_Int32_String.ExceptionalPostDisabled

 == false)

 {

 if (ex is System.ArgumentOutOfRangeException)

 {

 System.ArgumentOutOfRangeException excep =

 ex as System.ArgumentOutOfRangeException;

 config.CheckExceptionalPostcondition(

 «ExceptionalPostcondition»);
 }

 }

 throw;

 }

 finally {

 if (config.Insert_Int32_String.InvariantDisabled

 == false)

 config.CheckExitInvariant(«InvariantCondition»);
 }

 }

...

private CharBufferConfiguration config;

}
 Fig. 3. The assertion checking subclass generated for CharBuffer.

Stephen H. Edwards and Westley Haggard

12

specification for the corresponding method or class. The subclass method
implementations use the config data member to determine which specific checks should
be executed. The config data member refers to a singleton instance of a class that
contains these configuration settings for the subclass. nContract automatically generates
such a configuration class for each checking subclass in order to implement the checking
behavior controls described in Section 5.

Any properties defined in the base class are also overridden in the checking subclass
using a similar template. The only other items that are included in the subclass template
are properties that represent the model fields declared in the contract and a reference to
the associated configuration class (i.e., the config variable in Figure 3).

Because of C#’s subtyping rules, an instance of CharBufferWithChecks can be
used in any context where a CharBuffer object is expected. A CharBufferWith-
Checks object will behave identically to a CharBuffer object, but with run-time checks
of contract conformance performed dynamically. During development, one can use
CharBufferWithChecks objects, and switch to completely unchecked objects for
deployment so that all object code and run-time overhead associated with the subclasses
can be completely avoided.

However, to achieve this end, it is also critical to address how clients create new
objects. There are two specific goals we want to achieve for object creation in client
code. First, we want to be sure that client code need not change, or even require
recompilation, when one wants to switch from using checking subclasses to using
unchecked base classes, and vice versa. Second, we also want to minimize the costs
associated with run-time checks when they are completely suppressed in an application.
To achieve these goals, we can rely on the factory method design pattern, 19 which allows
us to completely decouple the client from decisions about which concrete class is created
when a new object is needed. If the client uses factory method calls to create all new
instances from a component, rather than directly calling the new operator, we can achieve
our two goals regarding object creation.

To support this scheme, for every public or protected constructor in the class
being checked, nContract generates within the checking subclass a corresponding
constructor and a corresponding factory method with the same parameter profile. The
factory method allows for any necessary preconditions to be checked before the
constructor is invoked, and it also allows for any exceptional postconditions on the
constructor to be checked. Figure 4 shows the simplified structure of these features in the
CharBufferWithChecks example.

Note that the Create() factory method provided in Figure 4 only allows one to
create instances of the checked subclass. Using this factory method to create checking
subclass instances is necessary in order to properly check contract requirements on the
corresponding constructor. Of course, this is not the factory method we want clients to
use to create objects, since clients should write their code without directly referring to
any contract checking features.

 Embedding Run-time Contract Checks in .NET Components

13

Instead, the original component developer must decide on a factory method scheme
for clients to use when creating instances of classes from the developer’s component.
The strategy that requires the least amount of effort is to use a generic factory that works

public class CharBufferWithChecks : ExampleComponent.CharBuffer

{

 ...

 protected CharBufferWithChecks(string value): base(value)

 {

 if (config.ctor_String.PostDisabled == false)

 config.CheckPostcondition(«Postcondition»);

 if (config.ctor_String.InvariantDisabled == false)

 config.CheckExitInvariant(«InvariantCondition»);

 }

 public static ExampleComponent.CharBuffer Create(

 string value)

 {

 if (config.ctor_String.PreDisabled == false)

 config.CheckPrecondition(«Precondition»);

 CharBufferWithChecks newObject = null;

 try {

 newObject = new CharBufferWithChecks(value);

 }

 catch (Exception ex) {

 if (config.ctor_String.ExceptionalPostDisabled

 == false) {

 if (ex is ExceptionType) {

 ExceptionType excep = ex as ExceptionType;

 config.CheckExceptionalPostcondition(

 «ExceptionalPostcondition»);

 }

 }

 throw;

 }

 return newObject;

 }

...

}
 Fig. 4. The constructor and factory generated in the assertion checking subclass.

Stephen H. Edwards and Westley Haggard

14

for all classes. nContract provides an assembly called ContractSpecification that
includes a generic Factory<T> class. The Factory<T> class provides a public factory
method called Create() that provides for generic object instantiation 17. Create()
takes a variable number of arguments and uses reflection to create an instance of the
checking subclass or the original base class, depending on configuration settings.

The use of a generic factory provides the least burden on the component developer,
although the use of reflection does impose an extra run-time cost. Component developers
who wish to avoid this cost can provide their own custom factory methods in the
underlying classes. This provides a statically type-checked signature for factories, and
allows one to avoid using reflection when run-time contract checks are completely
disabled for a class. Figure 5 illustrates such a custom factory method, which could be
added to the CharBuffer class in Figure 2. This custom factory simply uses the new
operator when checks are completely disabled for the class in question, but delegates
object creation to the generic Factory<T> class if any checking features are enabled for
the given class.

Using factories for object creation, when combined with checking subclasses
generated directly from embedded contracts, allows nContract to completely separate the
client’s code from any dependencies on checking subclasses, and eliminates any hard-
coded decisions about whether assertion checks are present. While this covers some of
the goals outlined in Section 1.2, achieving the remaining goals requires an alternative
approach to managing configuration choices about how checking features are enabled,
disabled, and controlled.

5. Configuring Run-time Checking Features

To provide appropriate flexibility to clients, nContract gives them the ability to
individually configure precondition, postcondition, exceptional postcondition and

public class CharBuffer

{

 ...

 public static CharBuffer Create(string value)

 {

 if (Factory<CharBuffer>.ChecksEnabled())

 return Factory<CharBuffer>

 .CreateChecksEnabledInstance(value);

 else

 return new CharBuffer(value);

 }

 ...

}
 Fig. 5. A developer-provided factory method.

 Embedding Run-time Contract Checks in .NET Components

15

invariant checks at the assembly, class and method level. Rather than using compile-time
options, or using a single global enable/disable setting, nContract uses a separate
configuration object for each subclass containing run-time checks, an approach used
successfully in prior work. 3, 16 Thus, nContact uses a template to generate a custom
configuration class for every formally specified class. Figure 6 shows an example of
such a class for CharBuffer. Each subclass that implements run-time checking features
contains a field, config, which refers to the singleton instance of the corresponding
configuration class.

Each generated configuration class encapsulates all of the options controlling run-
time checking for the underlying class. For example, the CharBufferConfiguration
class in Figure 6 manages all of the options involved in controlling run-time checking
features for the CharBuffer class in Figure 2.

When nContract generates a configuration class, it generates a field for every
constructor, method and property to hold the settings for the individual check types
(preconditions, postconditions, invariants, or exceptional postconditions). This allows
these configuration settings to be directly referenced in the generated subclass as shown
in Figure 3, which provides an efficient way to determine if a particular check type is
disabled for a particular method. At the same time, since all checking subclasses for a
given type will share a reference to the same instance of their configuration class, there is
only a single place to change these options. The configuration class also inherits
common methods from the ContractSpecification.ClassConfiguration base
class that enable it to report contract violations in a systematic way.

public class CharBufferConfiguration :

 ContractSpecification.ClassConfiguration

{

 public static CharBufferConfiguration GetConfig()

 {

 return Factory<ExampleComponent.CharBuffer>.GetConfig()

 as CharBufferConfiguration;

 }

 public CharBufferConfiguration() :

 base(typeof(ExampleComponent.CharBuffer)) {...}

 public ContractSpecification.MethodConfiguration ctor_Void;

 ...

 public ContractSpecification.MethodConfiguration

 Insert_Int32_String;

 ...

}
 Fig. 6. The automatically-generated configuration class for controlling checking features on CharBuffer.

Stephen H. Edwards and Westley Haggard

16

While only one instance of each configuration class is created at run-time, the
creation (via loading an external XML file) is handled by the nContract infrastructure.
As a result, the CharBufferConfiguration class in Figure 6 does not follow the
singleton design pattern directly; its constructor is public, so that nContract can create an
instance from XML data, and its static GetConfig() method looks up this instance
using nContract’s template factory infrastructure.

While the structure of the configuration class shows how checking options can be
tested efficiently at run-time, it is also important to provide a way for clients to control
these options without affecting their code. nContract uses XML files that are loaded at
program startup to control these options.

After nContract generates the checking subclasses and configuration classes for a
given assembly, it then compiles them into another .NET assembly. This second .NET
assembly is loaded and an instance of each configuration class is created. These
configuration classes are then serialized to XML files to control the settings for that
assembly. Figure 7 shows the serialized form of the configuration class. Here is the
XML configuration file that corresponds to the CharBufferConfiguration
configuration class.

Now configuring the checks becomes as simple as modifying this XML file. For
example if one wishes to disable all checks for the CharBuffer class, just set the
Enabled attribute on the corresonding ClassConfiguration tag to false.
This action will instruct the factory methods to create instances of the original class,
rather than instances of the checking subclass. If checks are enabled instead, one can
enable or disable specific kinds of checks on a per-method basis in a similar way. These
settings are reloaded from the XML file on program startup.

While XML files may not provide the most human-friendly interface, they do provide
a representation for the options that can be processed easily by other tools. For example,
a graphical control panel that presents a hierarchical view of contract checking settings
for an entire application is easy to devise, a technique suggested by Tan and Edwards 16
and originally inspired by the IControl tool for IContract 20. Such a tool would allow the
client to easily turn on or off specific features, and simply record the desired changes in
the relevant XML files. Tan and Edwards also suggest a strategy for making such
changes to run-time checking options at run-time using the same form of interface.

Finally, while the custom configuration classes handle the problems of how the client
enables or disables contract checking features without requiring source code access to the
original component, these classes do not address what action(s) take place when a
contract violation is detected. Having the ability to execute customizable actions on
failed assertions can be a big advantage to the client. When a contract violation occurs
during development and debugging, different developers may want different actions to be
taken. Some may want the violation to be logged, to throw an exception, to start the
debugger, or simply to display a message. Allowing for customizable actions gives the
developer more freedom to handle the violation in their own way.

 Embedding Run-time Contract Checks in .NET Components

17

To address this need, nContract takes advantage of the .NET event model by defining
a static public event called OnAssert, and then signaling this event whenever a contract
violation is detected. As a result, a developer can create any number of custom assert
handlers and subscribe them to this event. The original component developer can choose
whatever handler(s) are appropriate in that context, and the component client can make
completely different choices. This arrangement allows complete freedom to both parties.
In contrast, other tools typically hardcode a specific action to be taken for contract
violations, with the most common action being to throw an exception of some sort to
terminate the application.

6. Evaluating nContract

This section discusses the limitations and tradeoffs involved in using this scheme in
Section 6.1. It then assesses the strengths and impact of nContract in two ways. First,
Section 6.2 presents a feature by feature breakdown and comparison with the most
common tools and techniques used for run-time contract verification. This comparison
focuses primarily on how the contracts are provided or packaged and on how the run-time
checks are configured. Second, Section 6.3 presents the results of run-time performance
testing. Experiments were conducted to test the running times of a component with
checks included, both when enabled and disabled, and with checks omitted. This gives
some insight into the performance impact of this approach.

<?xml version="1.0" encoding="utf-8"?>

<ArrayOfClassConfiguration

 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <ClassConfiguration

 xsi:type="CharBufferConfiguration"

 TypeName="ExampleComponent.CharBuffer"

 Enabled="true" UseDefaultTraceAssert="true">

 <ctor_String PreDisabled="false" PostDisabled="false"

 ExceptionalPostDisabled="false" InvariantDisabled="false" />

 ...

 <Insert_Int32_String PreDisabled="false" PostDisabled="false"

 ExceptionalPostDisabled="false" InvariantDisabled="false" />

 ...

 </ClassConfiguration>

</ArrayOfClassConfiguration>

 Fig. 7. The XML file that controls the checking features for CharBuffer.

Stephen H. Edwards and Westley Haggard

18

6.1. Limitations

nContract relies on subclasses and type substitutability to make unchecked classes
and their contract-checking counterparts interchangeable. Using subclasses to package
run-time checking code introduces some specific design restrictions that a component
developer must follow, however:

(1) In order to create a checking subclass that inherits from a given base class, the base

class cannot be private, sealed, or static.
(2) All the constructors that are to be checked at run-time must be public or

protected, since it is necessary to access them from the generated subclass.
Further, to ensure that the client uses a factory method instead of calling the new
operator directly, we recommend that the component developer make all the
constructors protected.

(3) All methods or properties that will be checked at run-time must be public or
protected. This is a reasonable restriction, since private features within a
component do not participate in its contract with the client. In addition, however,
methods or properties that will be checked must also be overridable, since that is the
technique that will be used to add checking features. To be overridable, the method
or property must either have a virtual or override keyword associated with it.
Static and private methods or properties are not checked because they cannot be
overridden.

(4) Fields are not checked. To get around this limitation, one could create a public or
protected virtual property that references the field in question. If a field is used in
any of the contract’s conditions, it must be at least protected; otherwise, it will not
be accessible to the subclass.

(5) The new operator cannot be used to create objects—a factory method must be used
instead.

Also, the approach detailed here is founded on the idea that the original contract is

embedded in the binary (compiled) version of a component. As a result, changing the
contract for a given component requires recompilation. However, one can always add
new contractual requirements by creating a subclass, which inherits the contract of its
parent and then extends the behavioral requirements by adding more assertions.

6.2. Comparison to Other Contract Checking Strategies

Table 1 summarizes how nContract compares with the various contract checking tools
discussed in Section 2. There are five principal dimensions in the comparison, with a
number of possible alternatives for each.

First, Table 1 indicates the means by which contracts are expressed when using
different tools. Many tools rely on encoding contracts in the form of structured
comments within a component’s source code. Others instead offer special language

 Embedding Run-time Contract Checks in .NET Components

19

constructs for defining contracts. One tool represents contracts in a separate form using
special syntax, and another uses a defined naming convention so that executable checks
can be embedded in a class or component using regular methods. Finally, nContract and
one other tool use metadata to encode contracts in a form that is directly accessible in the
compiled component.

Second, Table 1 divides the implementation strategies for performing run-time checks
into three categories. Most existing tools simply in-line checking code right in the
methods being checked. Except for Java-specific approaches that use custom class
loaders, this implementation strategy usually requires one to recompile a component in
order to remove checks. Other tools instead embody run-time checks in their own helper
methods, rename each original method, and replace each with a “wrapper” that surrounds
a call to the renamed original with appropriate calls to checks. Three approaches,
including nContract, place all checking code in separate classes, and use factory methods
to control the kind of concrete object client code receives.

Third, Table 1 indicates when choices about the inclusion of run-time checking code
are made. Many approaches make this choice at compile-time, forcing one to recompile
in order to remove or re-insert checking code. This practice is unacceptable for

Table 1. A feature comparison of contact checking tools.

Feature

C
++

 W
ra

pp
er

s

C
on

tra
ct

Ja
va

Ei
ff

el

H
an

ds
ha

ke
e

IC
on

tra
ct

JC
on

tra
ct

or

JM
L

nC
on

tra
ct

Sp
ec

Ta
n-

JM
L

X
C

Contract storage technique:
Structured comments
Language construct
Separate file
Naming convention
Metadata

Implementaton strategy:
In-line assertions
Separate methods
Separate classes

Configuration choices fixed at:
Compile-time
Link -time
Load-time

Granularity for controlling checks:
Only global control
For packages/assemblies
For individual classes *
For individual methods *

Customizable assertion actions

Stephen H. Edwards and Westley Haggard

20

components distributed in binary form. One approach for C++ makes the choice at link-
time. Several others make the choice at load-time.

Fourth, Table 1 indicates the granularity at which run-time checks can be controlled.
Many approaches only allow global control, possibly by requiring one to “compile in” or
“compile out” checks in order to enable or disable them. However, other tools allow
preconditions, postconditions, and invariant checks to be turned on or off on a per-
package or per-assembly basis. Most such tools also allow these categories of checks to
be turned on or off for individual classes as well. Spec# is the exception: while it allows
assembly-level control over all forms of checks, it only allows invariant checks to be
enabled or disabled at the level of individual classes or methods. IContract and Spec# are
the only tools besides nContract to allow control of assertions at the level of individual
methods. However, both IContract and Spec# generate checks in-line at compile-time,
requiring recompilation to remove checks. nContract is the only tool in this comparison
that allows method-level control while also avoiding the need for source-code access.

Fifth, Table 1 indicates whether or not the various approaches allow one to provide
user-configurable response actions to take when contract violations are discovered.

6.3. Performance Impact

In terms of execution time, nContract has a performance impact in three areas. First,
because nContract uses method overriding to insert checks in generated subclasses,
method dispatch must necessarily be virtual using dynamic binding, which will impose a
penalty on method calls. Second, object creation through a factory method instead of
through direct calls to the new operator will impose some penalty for object creation.
Third, checking to see if specific contract assertions are enabled and performing the
corresponding checks will add a penalty to each method that is invoked. We have
examined these three issues separately through performance experimentation.

First, consider the impact of using virtual methods. To assess the size of this impact,
two versions of the CharBuffer class were created, one with all virtual methods and the
other with no virtual methods. Both classes contain an empty method and non-empty
method (the Append() method, which is similar to Insert()). Test runs of 100 million
calls to the method under consideration were made and timed. This test was repeated 10
times on a 3GHz Pentium 4 machine with 1Gb of RAM, and the results were averaged.

Figure 8 summarizes the results. The difference in execution time for the non-empty
method calls is less than 1%. While there is a significant difference between the virtual
and non-virtual costs for a completely empty method, the size of this difference is
negligible when compared to the cost of a realistic, non-empty method. Therefore any
reasonable method that does some amount work will not suffer much from being a virtual
method.

Second, consider the impact of factory methods rather than the new operator.
Figure 9 summarizes the results obtained by timing the various object creation techniques
discussed in this paper. For comparison, direct calls to new for the same class averaged

 Embedding Run-time Contract Checks in .NET Components

21

Non-Virtual
Virtual

Empty Method

Non-Empty Method

4.5581 4.6046

0.0101 0.5115

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Ex

ec
ut

io
n

tim
e

in
 n

s

Virtual Method Execution Times

 Fig. 8. A comparison of times of virtual vs. non-virtual and empty vs. non-empty method calls.

Custom
Generic

Normal

With Checks

0.2529

4.3623

0.1609

3.556

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Ex
ec

ut
io

n
tim

e
in

 µ
s

Custom vs. Generic Factory Calls

 Fig. 9. A comparison of times taken to create an instance of an object using different creation methods.

Stephen H. Edwards and Westley Haggard

22

0.0962 μs. As expected, there is a significant penalty involved in using the generic
factory method, which use reflection-based techniques. The generic factory method for
creating normal object (i.e. without embedded checks) uses the
Activator.CreateInstance() method to create new objects. When checks are
desired, it must use the checking subclass’ factory method to ensure that desired checks
are performed during object creation. This involves dynamically looking up the sublcass
type, and then dynamically invoking the correct static factory method. Although
nContract uses caching of the lookup results, the process is still noticeably more
expensive than otherwise.

Alternatively, if the component developer decides to provide custom factory methods
in the original component itself, substantial improvements can be made. Such custom
factory methods do not require reflection. As shown in Figure 9, the result is an
execution time similar in scale to direct calls to new. On this basis, we recommend that
developers write their own factory methods where possible, rather than requiring clients
to use the generic factory methods. Instead, the generic methods are a general-purpose
fallback that can be used in cases where the component developer has not provided built-
in factory methods.

Third, consider the impact of testing configuration settings to determine if checks are
enabled, and executing the corresponding checks. To examine this issue, we measured
the time taken to execute methods from the original class, the checking subclass with all
checks enabled, and the checking subclass with all checks disabled. To best reflect
typical class usage for our example component, each measurement run included one
million executions of a sequence of actions that included a call to the Insert() method,
a call to the Remove() method, and two accesses of the Length property, all in the
CharBuffer class. The measurement run was repeated 10 times and the results were
averaged, providing the execution time summary shown in Figure 10.

In Figure 10, the “Original” bar represents the average execution time for the given
sequence of method calls on the original base class (no checks present at all). Other than
the added cost of the use of virtual methods, this represents the “full speed” execution of
the underlying code. In comparison, the checking subclass imposes an extra level of
method call overhead for each method invoked, plus the cost of testing to see if each
check is enabled, plus the cost of executing any enabled checks. With all checks
disabled, Figure 10 indicates the checking subclass runs an average of 49% slower than
the original class. Since the client can specifically enable or disable the use of checking
subclasses on a per-class basis, the client can choose whether or not to incur this cost at
any point during development of a larger application. Figure 10 also indicates that, with
all checks enabled, the checking subclass is significantly slower. This additional penalty
is due only to the cost of performing the checks themselves, and not to any infrastructure
aspects of the overall strategy used here. The results reported here are similar to those
reported for C++. 3 Typically, invariant checks and postcondition checks impose the
greatest burden. Again, however, because the client can choose whether or not to inable
invariant and postcondition checks at a fine-grained level, without requiring

 Embedding Run-time Contract Checks in .NET Components

23

recompilation or source code access, it is much easier for these features to be exercised in
a controlled way when developing larger systems using third-party components.

7. Conclusions

Configurable run-time contract verification can be a great tool for component developers
and clients. It adds an extra layer of verification that allows component developers to
ensure their component does what it is supposed to do given the correct input. It also
helps clients alleviate the problem of not knowing the correct input and expected output
for a particular component. By having this verification when the client uses a component
they are more likely to produce more reliable software systems with that component.
However, techniques that require one to have access to component source code in order
to recompile it with different options are not viable in a component-based marketplace.
Further, the additional overhead imposed by such checks if they were left in place in the
binary versions of components that vendors provide to their customers is a strong
disincentive.

If we want component clients to receive the benefits of contract checking in their own
development activities, however, these problems must be overcome. nContract describes
a strategy for overcoming these problems for .NET components, as typified by C#
assemblies. Similar techniques could be applied in other .NET languages easily.
Extrapolation to other component technologies is also possible, but may require more
effort.

0.1154 0.1722

10.3009

0

2

4

6

8

10

12

Ex
ec

ut
io

n
tim

e
in

 µ
s

Original Checks Disabled Checks Enabled

Method Performance

 Fig. 10. A comparison of execution times when checks are enabled, disabled, or removed entirely.

Stephen H. Edwards and Westley Haggard

24

nContract addresses the problems involved in using run-time contract checking with
.NET components by embedding contract information in the compiled component’s
metadata. This metadata can be extracted and processed, both to produce human-
readable documentation and to generate run-time-checking subclasses. Such a checking
subclass is used as a container to package run-time checks for contract conformance. All
members of the component’s interface are overridden in the subclass and contract
assertions are wrapped around calls to the base class. As long as the component client
uses a factory to create instances of the component’s types, the decision of whether or not
to create assertion-checked or unchecked objects can be deferred until run-time.

Using nContract allows component developers and clients to get the benefits of run-
time contract verification with requiring the original vendor to provide source code, and
allowing both parties to avoid nearly all the run-time costs imposed by contract checking
strategies when those features are unneeded. Other researchers interested in investigating
the implementation of nContract can download it electronically 21 or can visit the
nContract forum on-line. 22

References

1. B. Meyer, Applying ‘Design By Contract’, Computer, 25:10(1992) 40-51.
2. B. Meyer, Object-Oriented Software Construction, 2nd edn. (Prentice Hall PTR, Upper Saddle

River NJ, 1997).
3. S.H. Edwards, M. Sitaraman, B.W. Weide and J. Hollingsworth, Contract-checking wrappers

for C++ classes, IEEE Trans. Softw. Eng., 30:11(2004), 794-810.
4. M. Barnett, K. Rustan, M. Leino, and W. Schulte, The Spec# programming system: an

overview, (2004), http://research.microsoft.com/SpecSharp/papers/krml136.pdf.
5. G.T. Leavens, A.L. Baker, and C. Ruby, JML: a notation for detailed design, in Behavioral

Specifications of Businesses and Systems, eds. H. Kilov, B. Rumpe, and I. Simmonds
(Kluwer, 1999), pp. 175-188.

6. R. Kramer, iContract—the JavaTM Design by ContractTM tool, in TOOLS '98: Pro. Technology
of Object-Oriented Languages and Systems, (IEEE CS Press, 1998), p. 295-307.

7. Y. Cheon, A Runtime Assertion Checker for the Java Modeling Language, TR #03-09 (Dept.
of Computer Science, Iowa State University, 2003).

8. R.B. Findler, M. Latendresse, and M. Felleisen, Behavioral contracts and behavioral
subtyping, in Proc. 8th European Software Engineering Conf./ 9th ACM SIGSOFT Int’l Symp.
Foundations of Software Engineering, (ACM Press, 2001), pp. 229–236.

9. eXtensible C#, (2005), http://www.resolvecorp.com/Products.aspx.
10. M. Karaorman, U. Holzle, and J. Bruno, jContractor: a reflective Java library to support

design by contract, in Proc. Meta-Level Architectures and Reflection, 2nd Int’l Conf.,
Reflection '99, LNCS #1616, (Springer Verlag, 1999), pp. 175-196.

11. A. Duncan and U. Hölzle, Adding contracts to Java with Handshake, TRCS98-32 (Univ. of
California at Santa Barbara, 1998),

 http://www.cs.ucsb.edu/research/trcs/abstracts/1998-32.shtml.
12. Loom.NET, (2007), http://www.dcl.hpi.uni-potsdam.de/research/loom/.
13. G.C. Necula, (1997), Proof-carrying code, in Proc. 24th ACM SIGPLAN-SIGACT Symp.

Principles of Programming Languages, (ACM Press, 1997), pp.106-119.
14. A.W. Appel, (2001), Foundational proof-carrying code, in Proc. 16th Ann. IEEE Symp. Logic

in Computer Science, pp.247-256.

 Embedding Run-time Contract Checks in .NET Components

25

15. K. Arnout and R. Simon, The.NET Contract Wizard: adding design by contract to languages
other than Eiffel, in Proc. 39th Int’l Conf. Exhibition on Technology of Object-Oriented
Languages and Systems (TOOLS39), (IEEE CS Press, 2001), pp. 14-23.

16. R.P. Tan and S.H.Edwards, An assertion checking wrapper design for Java, in SAVCBS 2003:
Specification and Verification of Component Based Systems, TR #03-11, (Dept. of Computer
Science, Iowa State University, 2003), pp. 29–34,

 http://www.cs.iastate.edu/~leavens/SAVCBS/2003/papers/full-papers/tan-edwards.pdf.
17. W. Haggard, nContract—Creating Configurable Run-Time Contract Verification for .NET

Components, M.S. Thesis, (Dept. of Computer Science, Virginia Tech, 2005),
http://puzzleware.net/download.aspx?file=/nContract/nContract-Thesis.pdf.

18. J.M. Wing, A specifier's introduction to formal methods, Computer, 29:9(1990), 8-24.
19. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable

Object-Oriented Software, (Addison-Wesley, 1995).
20. iControl, (2005) http://icplus.sourceforge.net/iControl.html.
21. W. Haggard, nContract source code download,

 http://puzzleware.net/download.aspx?file=/nContract/nContractSourceCode.zip
22. W. Haggard, nContract forum, http://puzzleware.net/forums/11/ShowForum.aspx.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /RunLengthEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

