
Mining the Data in Programming Assignments for Educational Research

 Stephen H. Edwards and Vinh Ly
Dept. of Computer Science, Virginia Tech

660 McBryde Hall (0106)
Blacksburg, VA 24061, USA

+1 540 231 5723

edwards@cs.vt.edu, vinhly@vt.edu

ABSTRACT
In computer science and information technology edu-
cation, instructors often use electronic tools to collect,
compile, execute, and analyze student assignments.
The assessment results produced by these tools pro-
vide a large body of data about student work habits,
the quality of student work, and the areas where stu-
dents are struggling. This paper reports on efforts to
extract significantly more useful data from electroni-
cally collected assignments in computer programming
courses. The work is being performed in the context
of the most widely used open-source automated grad-
ing system: Web-CAT. We have enhanced a Web-
CAT plug-in to allow collection of data about the fre-
quency and types of run-time errors produced by stu-
dents, the frequency and types of test case failures that
occur during grading, basic code size metrics, test
coverage metrics, and more. This information can be
combined with the results of “by-hand” grading activi-
ties to form a large, rich data corpus characterizing
student behavior over many assignments in one
course, over many courses, and even across semesters.
The data collected in this way is a valuable resource
for researchers in computer science education.

Keywords: on-line education, computer science, au-
tomated grading, Web-CAT, data mining

1. INTRODUCTION
In computer science and information technology education,
instructors often use electronic tools to collect and process stu-
dent work. This is particularly true for programming assign-
ments, which can be compiled, executed, and analyzed in a
variety of ways. Many tools for automatically grading pro-
gramming assignments exist, and the assessment results pro-
duced by these tools provide a large body of data about student
work habits, the quality of student work, and the areas where
students are struggling. Unfortunately, most such data goes
unused, once it has been reduced to a single number: the stu-
dent’s assignment score.

This paper reports on efforts to extract significantly more useful
data from electronically collected assignments in computer
programming courses. The work is being performed in the
context of the most widely used open-source automated grading
system: Web-CAT. Web-CAT provides a plug-in mechanism
allowing instructors to provide any sequence of customized
grading, feedback generation, and data collection actions de-

sired. We have enhanced existing plug-ins to allow collection
of data about the frequency and types of run-time errors pro-
duced by students, the frequency and types of test case failures
that occur during grading, basic code size metrics, test coverage
metrics, and more. This information can be combined with data
on “by-hand” grading results from instructors or teaching assis-
tants (also collected electronically) to form a large, rich data
corpus characterizing student behavior over many assignments
in one course, over many courses, and even across semesters.

The data collected in this way is a valuable resource for re-
searchers in computer science education. Collecting raw results
for thousands or even tens of thousands of student program
assignments provides access to a spectrum of measures that
give broader insight into the quality and performance of student
work. The resulting data permit the investigation of a wide
range of educational research questions, including what kinds of
errors students encounter most, what assignments are poor dis-
criminators among student learning levels, and what course
learning objectives are being met. Existing work has been car-
ried out for programming assignments written in C++, but the
techniques are applicable in other languages, including Java.
The data collection approach described here is low-cost and
low-effort, because it automates the most tedious, repetitive,
and taxing aspects of collecting fine-grained data on student
deliverables.

2. BACKGROUND
While many automated grading tools have been developed by
various institutions over the past several decades, most have
seen only localized use. One existing automated grading sys-
tem has begun to see more wide-spread use: Web-CAT, the
Web-based Center for Automated Testing [2][3][4]. As the
only automated grading system to focus on assessing student
testing performance, Web-CAT is used by nine separate institu-
tions, with a growing user community. The Web-CAT server at
Virginia Tech alone has processed over 186 thousand program
submissions by 2942 students in 119 course sections since
2003. Web-CAT is available as an open-source project on
SourceForge [5].

Other automated grading systems typically focus on assessing
whether or not student code produces the correct output. Web-
CAT, on the other hand, is typically used in a way that focuses
on assessing the student’s performance at testing his or her own
code, and on generating concrete, directed feedback to help the
student learn and improve. Such a tool allows educators to give
assignments that require test suites to be submitted along with

code. Ideally, students should be able to “try out” their code-in-
progress together with their tests early and often, getting timely
feedback each time.

At the same time, however, Web-CAT has been engineered to
support arbitrary instructor-provided plug-ins for processing
and assessing student work, so virtually any grading scheme or
strategy you can devise can be implemented without modifying
the underlying system itself. Administrators can upload new
plug-ins over the web and publish them for instructors to use.
Instructors can even write their own plug-ins off-line and then
upload them via Web-CAT's web interface. Such plug-ins re-
quire no code changes to the server, and are immediately avail-
able for use without an application restart.

Web-CAT's plug-in architecture provides a great deal of flex-
ibility. The most commonly used grading plug-ins currently
available are for processing Java or C++ assignments where
students write their own software tests. In order to provide ap-
propriate assessment of testing performance and appropriate
incentive to improve, these plug-ins use a scoring strategy that
does more than just give some sort of “correctness” score for
the student’s code. In addition, Web-CAT assesses the validity
and the completeness of the student’s tests.

3. COLLECTING FINE-GRAINED DATA
The data collection approach presented here is low-cost and
low-effort, because it automates the most tedious, repetitive,
and taxing aspects of collecting fine-grained data on student
deliverables. Educators are keenly aware of the costs asso-
ciated with various assessment approaches, which is often an
important factor when selecting tools to use [46].

Further, the data collection mechanism is always on, in the
sense that it continuously collects all grading feedback provided
by course staff, for every student, for every assignment, for
every course that is using the system. The data collected in-
cludes run-time errors produced by students, as well as a num-
ber of automatically measurable features of their programs,
including code size, proportion of required behavior that is
implemented correctly, and thoroughness of testing when stu-
dents are required to test their own code, among others. This
data can be archived from semester to semester over a multi-
year evaluation cycle. This approach also will make it
straightforward to build in regular (once per semester or once
per year) reporting of performance summaries that are driven
directly by instructor rubrics—and thus tied directly to the out-
comes that are being assessed. These benefits will be obtained
without requiring any extra data collection, recording, or report-
ing responsibilities of faculty members. Instead, the relatively
high-cost effort of continuous collection is fully automated, and
the net result is a smaller up-front cost for faculty, who must
choose outcomes ahead of time and design grading schemes
that speak to these outcomes.

3.1 Collecting Student Submission Data
Web-CAT uses plug-ins to process student submissions. The
most popular plug-ins handle submissions of Java and C++
assignments. Details on the Java plug-in are available else-

where [3][5]. As a result, this paper focuses on enhancements
to the C++ plug-in—the Java plug-in features are similar.

We have enhanced both plug-ins to support the collection about
a variety of data available when each student submission is
processed. Some of this data is routinely provided by the com-
piler, including the number and types of compilation errors.
Other data is collected during behavioral analysis, when stu-
dent-written tests are executed against the student’s code, or
when instructor-provided reference tests are executed against
the student’s code. Finally, we have added additional static
dynamic analysis tools to collect further data.

3.2 Code Coverage
In the effort of collecting data that are more useful to character-
ize student submissions, we have integrated BullseyeCoverage,
a coverage analyzer for C++ and C, into Web-CAT’s C++ plug-
in. This tool collects code coverage data that includes method,
condition, and decision coverage measures. The resulting in-
formation explicitly characterizes which parts of a student’s
submission have been exercised by the student’s own software
tests. This provides a comprehensive view of the overall execu-
tion percentage of methods, conditions, and decisions for each
source file. The tool also produces a detailed source code report
of which lines were not executed and why.

Function coverage is the measurement of the degree to which
all methods are invoked when running a given set of tests. This
information is useful for students since it shows an overall pic-
ture of wherever every method is executed when students run
their own tests. Depends on course policy, this could prevent
any unforeseen bugs in student submissions because of lacking
of testing all functional requirements by encouraging more
testing.

Modified condition/decision coverage (MCDC) is a hybrid
measure based in part on condition coverage and decision cov-
erage. Condition coverage is a measurement of the true-or-
faluse outcome true of each Boolean expression or sub-
expression. Sub-expression is one of multiple nested sub-
expressions separated by logic-and, logic-or in one expression.
Decision coverage is a measurement of all result flows of Boo-
lean expressions tested in control structures (such as if state-
ments, while statements, switches, and so on).

Instructors using this plug-in can choose how stringently to
grade students, picking the desired level of coverage they wish
to use for scoring. Regardless of the instructor’s choice for
grading, however, all measures are collected for analysis pur-
poses. Web-CAT also shows these results to students, in the
form of a color-coded, syntax-highlighted, web-viewable prin-
tout that explicitly points out which parts of their code are not
tested as well as possible, with informative comments about
why. Students can quickly scan this view to locate the non-
executed parts of their solution in order to improve their own
testing. The purpose of this is to help instructors to judge stu-
dent submissions and students who can learn from their testing
experiences and improve their code quality.

In addition to helping instructors to grade student submissions,
Web-CAT also assists students to identify what they miss.
Graphical user-friendly diagrams are used to represent percen-
tage results. In addition to those diagrams, a friendly feedback
system, which is based on the locations of uncovered functions
and conditions/decision, is integrated into the source code pag-
es. Those uncovered parts will be highlighted in the source
code. Furthermore, a useful feedback will be provided. For
function coverage, feedback is a note about what parts are not
executed when running tests. For condition/decision coverage,
feedback shows what Boolean result lacks of testing. If there
are nested conditions, the feedback will include details for each
condition’s coverage as well as for the overall coverage of the
nested conditions.

3.3 Error Code and Stack Trace
Finally, in addition to code coverage data, we have also en-
hanced the C++ plug-in to track carefully the results of each test

run executed on student-provided code. Results from instruc-
tor-provided reference tests are logged in detail for analysis and
later reporting. This logging provides additional useful infor-
mation on the type of errors that students make in their submis-
sions. From what we design and implement for the CxxTest
infrastructure, we can identify a large ranges of errors. These
errors range from memory errors, run-time errors, to assertion
errors made in the student’s own tests. Table 1 contains a list of
what type of errors that we can collect.

With the error codes recorded during assignment processing,
instructions are provided with powerful information to grade
student submissions. Furthermore, they can build statistical data
to evaluate, adjust, and improve the course curriculum by iden-
tify students' weakness through these error codes.

Giving back error codes and an explanation of the codes is use-
ful. It, however, would be more beneficial to students, if we can
show them where those errors are from. As a result, we have

Category Error Code Meaning

Basic 0 General Failure
1 Pass

M
em

or
y

Er
ro

r

0 Called delete on array pointer (should use delete[])
1 Called delete[] on non-array pointer (should use delete)
2 Freed uninitialized pointer
3 Freed memory that was already freed
4 Dereferenced uninitialized pointer
5 Dereferenced null pointer
6 Dereferenced freed memory
7 Checked pointers cannot be used with memory not allocated with new or new[]
8 Memory leak caused by last valid pointer to memory block going out of scope
9 Memory leak caused by last valid pointer to memory block being overwritten

10 Comparison with a dead pointer may result in unpredictable behavior
11 Indexed a non-array pointer
12 Invalid array index (%d); valid indices are [0..%lu]
13 Deleted pointer that was not dynamically allocated
14 Memory before/after block was corrupted; likely invalid array indexing or pointer arithmetic

Fa
ile

dA
ss

er
t E

rr
or

0 TS_ASSERT(expr)
1 TS_ASSERT_EQUALS(x, y)
2 TS_ASSERT_SAME_DATA(x, y, size)
3 TS_ASSERT_DELTA(x, y, d)
4 TS_ASSERT_DIFFERS(x, y)
5 TS_ASSERT_LESS_THAN(x, y)
6 TS_ASSERT_LESS_THAN_EQUALS(x, y)
7 TS_ASSERT_PREDICATE(R, x)
8 TS_ASSERT_RELATION(R, x, y)
9 TS_ASSERT_THROWS(expr, type)

10 TS_ASSERT_THROWS_NOTHING(expr)

R
un

-T
im

e
Er

ro
r

0 SIGFPE: floating point exception (div by zero?)
1 SIGSEGV: segmentation fault (null pointer dereference?)
2 SIGILL: illegal instruction
3 SIGTRAP: trace trap
4 SIGEMT: EMT instruction
5 SIGBUS: bus error
6 SIGSYS: bad argument to system call
7 SIGABRT: execution aborted
8 run-time exception

Table 1: Classification of errors that may occur while testing student-written C++ software.

developed a built-in stack trace infrastructure that can trace
back the last execution line and previous calls when the errors
occur. This provides a tremendous amount of information for
C++ students who do not have a built-in stack trace like Java
students.

For many of these errors, it is hard for students to identify the
sources by themselves. There are some programs out there to
identify some of these violations. However, it requires students
to do many extra steps and learn how to use many new tools.
This new plug-in is an attempt to ease the process and to help
students accessing information that they cannot find by them-
selves easily.

For students, the error codes and stack trace is a tremendously
useful resource for them to be able to identify errors in their
code, to trace back and fix it. The most valuable thing is that
students can learn from their own mistakes and improve their
code quality and robustness.

4. RESULTS FROM HAND-GRADING
Course personnel typically still grade at least some aspects of
programming assignments “by hand”, even when using an au-
tomated grading system to score other aspects of an assignment.
We expect this practice to continue. However, we can leverage
existing technology to support this process, increasing speed
and consistency. Currently, Web-CAT already provides course
staff with the ability to mark up student work by hand on-line,
using just a web browser [9][10]. This capability also provides
the crucial hook needed for automated data collection for out-
comes-based assessment.

While different grading strategies can be used on programming
assignments, rubrics are particularly synergistic with objectives-
based course assessment. By rubric, we mean a clearly defined

set of guidelines that are used in assessing achievement by ob-
serving student performance [1][6]. A rubric typically defines
several categories or levels of performance, often over a range
from unacceptable to exceptional or exemplary. For each level
of performance, the rubric clearly defines the specific behaviors
or traits that demonstrate achievement of that level. Powell et
al. discusses the value of rubrics in computer science for pro-
moting consistency and streamlining the grading process [7]. If
we consider two hypothetical learning objectives for a typical
computer science course, we might use a rubric like the one
shown in Table 2. Presumably, these course-level learning
objectives also would be related to particular program-level
outcomes. As a result, one can directly tie achievement of well-
chosen course learning-objectives to program-level outcomes
when desired.

We are currently in the process of extending Web-CAT’s hand-
grading support to include rubric-based grading. All instructor-
written or TA-written comments on an assignment, together
with rubric scores for every aspect of the grading criteria then
will be automatically collected for later summarization, report-
ing, and analysis.

5. ASSESSING STUDENT LEARNING
To see how the information collected by Web-CAT as proposed
here could be used for course assessment, consider the two
learning objectives illustrated in the rubric of Table 2: students
should be able to evaluate and validate the correctness of a pro-
grammatic solution, and be able to document programs clearly
and effectively. For a course that included these objectives, the
instructor might require students to write their own test cases
for the code they write [2], and take advantage of Web-CAT’s
ability to evaluate how thoroughly students test their own work.
If the course used Java, the instructor might also take advantage
of the static analysis tools that Web-CAT uses to check

Objective Unsatisfactory Satisfactory Good Excellent
Evaluate and vali-
date the correct-
ness of a pro-
grammatic solu-
tion

No tests have been
submitted by the stu-
dent, or entire methods
remain completely
untested.

Written test cases are
submitted along with
the code. The test
cases exercise each
method of the design.

Test cases demonstrate
a clear effort at com-
prehensive coverage of
method behaviors in
the corresponding
code, including testing
of boundary conditions
and likely errors.

Student has written a
comprehensive, profes-
sional quality set of
test cases. In addition
to boundary values and
likely errors, each
method is tested mul-
tiple times, including
full branch-level test
coverage.

Document pro-
grams clearly and
effectively

No consistent or con-
certed effort at docu-
mentation.

All public classes and
public methods have
Javadoc descriptions,
although some are
incomplete. Internal
commenting may be
missing or inconsis-
tent.

All public classes and
public methods have
complete Javadoc de-
scriptions with no
missing tags. Attempts
have been made to
describe key algorith-
mic decisions and tra-
deoffs internally

Professional-quality
comments exist
throughout, with com-
plete and correct Java-
doc descriptions and
clear, concise writing.
All tricky internal code
is thoroughly and
clearly documented.
Rationale for design
decisions is given.

Table 2: A sample rubric covering two course learning objectives.

conformance to stylistic and coding conventions. Finally, the
instructor can use a comprehensive rubric that includes the two
objectives shown in Table 2 for grading, instructing graders to
categorize all of their free-form comments according to the
corresponding facet of the rubric that applies. In this situation,
Web-CAT will be able to provide the measurements shown in
Table 3. This information would be available for each and
every student, for each and every assignment across the course.
Further, Table 3 only shows the subset of what has been col-
lected that is relevant to the two objectives in this example;
other objectives can be treated similarly. Instructors can choose
the indicators most relevant to their personal goals, while as-
sessment and accreditation committees can choose others.
Web-CAT’s plug-in architecture makes it easy for new meas-
ures to be dropped into place when necessary. Most important-
ly, however, the biggest value comes from Web-CAT’s genera-
lized reporting engine that allows various stakeholders to view
summary statistics in tables and graphs that characterize aggre-
gate data over all students, over all assignments, or progress
over time. Finally, this rich and deep data collection can be
archived and used for accreditation or program assessment later,
without requiring any special collection actions or additional
burden of the course instructor.

6. CONCLUSIONS AND FUTURE WORK
Collecting comprehensive, fine-grained information about stu-
dent performance on course tasks is important for measuring the
achievement of learning objectives. This level of information
provides excellent detail and support for assessing a wide varie-
ty of technically-oriented outcomes [12]. Whitfield [11] sug-
gests using this data for “course embedded assessment”, where
grading criteria for each assignment within a course are driven
by the course’s learning objectives, where course learning ob-
jectives are tied to degree outcomes, and where results from
individual assignments can then be mapped systematically to
program outcomes for assessment and accreditation. However,
by-hand collection and collation of this information is expen-
sive, time-consuming, and oppressive, yet individual instructors
may see little value [46].

To address this problem, we have described basic extensions to
Web-CAT plug-ins that allow for low-cost and low-effort col-
lection of this data for student programming assignments. The
approach can be used in a wide variety of computer science or
information technology courses that employ programming ac-
tivities. While we have focused our discussion on C++ assign-
ments in this paper, the same techniques are equally applicable
to other languages, including Java. This strategy leverages the
infrastructure provided by an existing open-source automated
grading tool, extending its capabilities for detailed data collec-
tion. Web-CAT also provides a general-purpose data reporting
engine based on the popular open-source tool BIRT [birt].

Support for collecting code coverage measures, static code
analysis measures, test case results, and instructor comments
have all been implemented. We are in the process of adding
explicit rubric support for hand-grading assignments, so that
course staff can employ outcomes-driven rubrics as assessment
tools and then collect and summarize the corresponding detailed
comments to the same degree of granularity as other perfor-
mance data.

While this basic infrastructure has proven useful for course-
level exploration of student performance on individual assign-
ments, the next step is to use this strategy across several courses
to compile data useful in outcomes-based program-level as-
sessment. Further, we hope to build a corpus of data on student
performance in our own courses that can be used both to gauge
the impact of educational changes and innovations and to fur-
ther other research questions arising in our curriculum.

ACKNOWLEDGEMENTS
This work is supported in part by the National Science Founda-
tion under Grant No. DUE-0618663. Any opinions, findings,
conclusions, or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of
the National Science Foundation.

Objective Indicator Score

Evaluate and vali-
date the correct-
ness of a pro-
grammatic solu-
tion

Number of student-written test cases 17
Number of methods covered by student tests 9 (100%)
Number of statements covered by student tests 127 (100%)
Number of conditionals covered by student tests 23 (84%)
Number of student tests passed 17 (100%)
Number of run-time errors produced 0
Number of instructor-written reference tests passed 24 (96%)
Number of instructor-written reference tests failed 1 (4%)
Grader rating in rubric Good
Number of grader comments in rubric category (full text of all comments in this
category available for qualitative analysis, if needed)

 0 (0%)

Document pro-
grams clearly and
effectively

Number of missing class comments 0 (0%)
Number of missing public method comments 0 (0%)
Number of missing required comment fields 2 (4%)
Grader rating in rubric Good
Number of grader comments in rubric category (full text of all comments in this
category available for qualitative analysis, if needed)

 3 (38%)

Table 3: A sample of data available through Web-CAT for two course objectives.

REFERENCES
[1] Becker, K. Grading programming assignments using

rubrics. In Proceedings of the 8th Annual Conference on
Innovation and Technology in Computer Science Educa-
tion, ACM, 2003, pp. 253-253.

[2] Edwards, S. H. Improving student performance by eva-
luating how well students test their own programs. Jour-
nal of Educational Resources in Computing, 3(3):1-24,
Sept. 2003.

[3] Edwards, S. H. Rethinking computer science education
from a test-first perspective. In Addendum to the 2003
Proceedings of the Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, ACM,
2003, pp. 148-155.

[4] Edwards, S. H. Using software testing to move students
from trial-and-error to reflection-in-action. In Proceed-
ings of the 35th SIGCSE Technical Symposium on Com-
puter Science Education, ACM, 2004, pp. 26-30.

[5] Edwards, S.H. Web-CAT Wiki, available at:
http://web-cat.sourceforge.net/.

[6] McCauley, R. Rubrics as assessment guides. ACM
SIGCSE Bulletin, 35(4): 17-18, Dec. 2003.

[7] A. Powell, S. Turner, M. Tungare, M.A. Pérez-Quiñones,
and S.H. Edwards. An online teacher peer review sys-
tem. In C. Crawford et al. (Eds.), Proceedings of the So-
ciety for Information Technology and Teacher Education
International Conference 2006, AACE , pp. 126-133.

[46] Sanders, K.E., and McCartney, R. Program assessment
tools in computer science: a report from the trenches. In
Proceedings of the 34th SIGCSE Technical Symposium on
Computer Science Education, ACM, 2003, pp. 31-35.

[9] Vastani, H. K. Supporting Direct Markup and Evalua-
tion of Students’ Projects On-line. Master’s Thesis, De-
partment of Computer Science, Virginia Tech, June 11,
2004, available at:
http://scholar.lib.vt.edu/theses/available/etd-08172004-
020310/

[10] Vastani, H., Edwards, S., Pérez-Quiñones, M.A. Support-
ing on-line direct markup and evaluation of students'
projects. Computers in Education Journal, 16(3), July-
Sept. 2006.

[11] Whitfield, D. From university wide outcomes to course
embedded assessment of CS1. Journal of Computing
Sciences in Colleges, 18(5): 210-220, May 2003.

[12] Winters, T. and Payne, T. What do students know?: an
outcomes-based assessment system. In Proceedings of the
2005 International Workshop on Computing Education
Research, ACM, 2005, pp. 165-172.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /RunLengthEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

