
Anthony Allevato and Stephen Edwards
allevato@vt.edu, edwards@cs.vt.edu

Virginia Tech Department of Computer Science
http://web-cat.orgInstrumenting C++ Pointers with Meaningful Runtime Diagnostics

Dereferee

int* get_array(int size) {
 int* array = new int[size];
 return array;
}

void foo() {
 int* p = get_array(5);
 for (int i = 0; i < 5; i++) {
 p[i] = i * i;
 }
 delete [] p;
}

#include <dereferee.h>
checked(int*) get_array(int size) {
 checked(int*) array = new int[size];
 return array;
}

void foo() {
 checked(int*) p = get_array(5);
 for(int i = 0; i < 5; i++) {
 p[i] = i * i;
 }
 delete [] p;
}

Related WorkSimplicity and Transparency

Minimally Invasive Design
Dereferee’s checked pointer class supports a full arsenal of overloaded
operators to ensure that checked pointers are functional in every way that
standard C++ pointers are. We provide a richer set than many other
instrumented pointer implementations, including even the mathematical
and relational operators in order to diagnose problems arising from
improper array usage and pointer arithmetic.

Other instrumented pointer libraries use preprocessor tricks such as
rede�ning the new token in order to assist in collecting diagnostic
information. While this is a simple and workable approach, it also has the
e�ect of breaking some valid C++ syntactic constructs. While such cases
may be unlikely to arise in an educational setting, this would not be
acceptable for a more general toolkit design.

Support is also provided for implicit conversions between
checked(Type*) and standard C++ Type* pointers. This mixed-mode
design makes it possible to instrument only those parts of a project that are
known problem areas, to convert large projects component-by-
component while still garnering diagnostic bene�ts at each stage of the
process, or to seamlessly interface with third-party code that is unaware
of Dereferee.

Lastly, since we have designed Dereferee to assist all developers in their
debugging and not just those in the classroom, we have made it possible to
disable the instrumentation with just one simple preprocessor de�nition.
Set this once you have tested your code to your satisfaction and the
checked(Type*) macro will evaluate merely to Type*. Thus, you can gain all
of the diagnostic bene�ts provided during development with no
performance penalties in your �nal product.

Dereferee was designed for transparency and ease of use. Adding it to a project
requires only three simple steps:

 • Include <dereferee.h>
 • Link to the Dereferee static library and the listener module appropriate for your
 platform and compiler con�guration
 • Change pointer declarations in your code from Type* to checked(Type*)

Build and run your program, and Dereferee will notify you of any memory-related
errors that may exist in your code, even uncovering some problem areas that may
have gone silently undetected under an uninstrumented runtime environment.
Additionally, the toolkit will produce a report at the end of execution that shows
memory usage statistics and details of any memory leaks that were detected.

Motivation
Many computer science programs incorporate C++ at some stage in their
curricula. We have seen in our program that one of the most challenging
aspects of the language is memory management and proper use of
pointers. The learning curve appears to be equally steep for students
regardless of their background; these concepts are foreign to students new
to programming, and even those who have experience in a language such
as Java or Python have not been required to strictly manage the lifetime of
dynamic memory as they must in C++.

Unfortunately, the tools typically used to teach C++, such as gcc and
Microsoft Visual Studio, are professional tools that do not provide
adequate feedback for inexperienced users in an educational setting.
Furthermore, the advanced debugging and diagnostic features that they
o�er are overwhelming to new users, so they regress to less useful ad hoc
techniques, such as inserting output statements and repeatedly making
small, questionably targeted modi�cations in order to track down and �x
bugs in their code. This behooves us to develop a model where we can push
to the students as much information as possible about the errors that they
are making, rather than requiring them to pull these data actively.

Dereferee is a C++ toolkit that was developed to address these issues by
providing highly detailed diagnostics for pointer- and memory-related
issues, while at the same time interfering as little as possible with the
student’s learning and development processes.

Standard C++ Instrumented with Dereferee

The Web-CAT project began as a web-based automated grading system for assessing how
rigorously students test their code, but it now hosts a number of educationally-oriented tools
for students in CS1 and CS2 courses as well. Some of our other work is featured below.

Electronic Submission Plug-Ins for Eclipse and
Microsoft Visual Studio
With Web-CAT currently being used at 23 institutions and growing, we provide plug-ins for the
most popular development environments to allow students to automatically zip up and submit
their projects to the grader. Once submitted, the student’s results will be displayed in their web
browser.

These plug-ins are not restricted to the Web-CAT grader. They can be used to make submissions
via HTTP, FTP, or e-mail, and can be extended to support other proprietary systems as well.

Integrated Unit Testing for C++ in Eclipse and
Microsoft Visual Studio
In our introductory programming courses, we place a great deal of emphasis on unit testing and
assess students on how thoroughly they test the components that they write. When they make
the transition from Java to C++, we wish to provide them with the same level of simplicity and
integration that they were a�orded previously.

We have adopted the CxxTest† framework for unit testing in C++, due to its relative syntactic
simplicity compared to other similar C++ libraries. A set of plug-ins for Eclipse automatically
collects the test cases that a student has written as a part of the project and then executes them
at the end of each successful build, concisely displaying the results in a convenient panel. Other
convenience features, such as a wizard to create a test suite for a class that automatically de�nes
stubs for the methods being tested, are also provided.

A CxxTest integration package for Microsoft Visual Studio is also currently under development.

Understanding Pointers
During the execution of a program, a pointer can be considered to have an associated
state. This state describes which operations can be legally performed on the pointer
and which would result in incorrect or unde�ned behavior. These states are as
follows:

 • Alive: The pointer points to a currently allocated block of memory.
 • Null: The pointer is null.
 • Out of scope: The pointer variable has gone out of scope or has not yet been
 declared.
 • Dead: A dead pointer is one that does not point to a valid block of memory.
 In order to give as detailed information as is possible, we break this into three
 cases, depending on the reason that the pointer is dead: the pointer was never
 initialized, the memory it points to was deleted, or it was moved out of bounds
 due to pointer arithmetic.

Each instrumented pointer keeps track of its state, and this state is tested before each
operation (dereference, assignment, arithmetic, and so on) so that an error can be
reported if the pointer was misused.

The diagram to the right shows how the most common pointer operations a�ect the
state of the pointer throughout the execution of a program.

Extensibility
Dereferee has been designed to be highly extensible. A
user can write a “listener” module that hooks into the
memory manager in order to customize the toolkit’s
functionality, as described below.

Controlling How and Where Errors Are
Reported

The pre-written listener modules included with Dereferee
send error messages to standard output or standard
error. This may not be appropriate in all cases; a user
could instead write a custom module that displays errors
in a graphical user interface, or collects statistical
information about the number of nature of errors that
occur for later analysis.

In our introductory programming courses, we use a
listener module that integrates with the CxxTest unit
testing framework (see sidebar) so that memory-related
errors are handled in the same manner as a user-supplied
test assertion failure.

Obtaining Backtraces to Assist in Debugging

As discussed earlier, many libraries that provide
debugging support for memory management rede�ne
the new token and use the __FILE__ and __LINE__ macros
to associate with each block of memory the source code
location at which it was allocated. Since Dereferee avoids
using the preprocessor in this manner in order to
maintain as much syntactic compatibility as possible, a
di�erent approach was required.

In order to provide users with as much information as
possible, the memory manager requests an execution
backtrace for each call to new. Since this is naturally a
platform-speci�c task, we push the responsibility to the
listener so that new modules can be easily written to
support any platform that is desired.

As of this writing, Dereferee ships with canned support
for the following compiler and platform con�gurations:
Microsoft Visual C++ 2005 or higher under Windows; and
gcc 3.4 or higher under Mac OS X, Cygwin, and any variant
of Unix that supports the BFD library and /proc �lesystem.
Furthermore, the Visual C++ listener module integrates
with the environment’s debugger; if Dereferee raises an
error during execution, the program is suspended on a
breakpoint so that the cause of the error can be
immediately investigated.

When a program fails due to pointer or memory misuse, the crash that results is not a
terribly useful diagnostic to determine what went wrong. Worse, the fault may not
cause an immediate failure, but rather silently propagate to a later point or go
undetected entirely. By using Dereferee, you can catch a number of memory-related
errors precisely at the point of failure and determine the exact reason for them:

 • Using a dead pointer as the source of an assignment to a checked pointer
 • Calling delete on memory allocated with new[], or delete[] on memory allocated
 with new (array/non-array mismatch)
 • Deleting a dead pointer
 • Dereferencing a dead pointer
 • Dereferencing a null pointer
 • Indexing (with operator[]) a pointer to memory that was not allocated as an array
 • Indexing an array out of bounds

Types of Errors Detected by Dereferee
Dereferee also provides iterator-like semantics for pointer arithmetic, raising an
error if a pointer is moved outside the bounds of its original memory block, except in
the case of permitting a pointer to “one past the end” of an array to exist, but not be
accessed (analogous to the end() iterator of a collection).

The toolkit also strictly enforces several pre-conditions on pointers that are
described in the C++ standard but are not tested by most runtimes for performance
reasons. These include consistency checks when comparing the values of pointers; for
example, it does not make sense to compare two pointers with an inequality
operator if they do not point into the same array, and Dereferee will warn of this.

Lastly, if the last live pointer to a block of memory goes out of scope or is
re-assigned, then this is indicative of a memory leak and Dereferee reports the
problem immediately at the point where the leak occurred.

Acknowledgments

Dereferee owes its existence to prior work by Scott M. Pike and Bruce
W. Weide of The Ohio State University and Joseph E. Hollingsworth of
Indiana University Southeast. Their checked pointer toolkit,
Checkmate, inspired and formed the basis for the work that eventually
became Dereferee.

When using the plug-in for the �rst time, the user “sets and forgets” their con�guration in
their environment’s preferences. These settings include a URL from which to obtain the
“targets” (projects and assignments) to which the user can submit their �les.

The Web-CAT grader provides a URL that automatically generates this content based on
the courses and assignments that are currently published on the server, so an instructor
needs to take no additional action to make their assignments available to the submitter.

Once the user has selected a project to submit, they choose the target
assignment on the server and enter their log-in credentials, if required.
The �les in their project are then automatically zipped up and
transmitted, without having to leave their development environment.

† The CxxTest unit testing framework can be found on the web at http://cxxtest.sourceforge.net.

In Eclipse, the CxxTest results view has been designed to mimic the
appearance and functionality of the results view for JUnit tests under Java, in
order to ease the transition from Java to C++ for students.

In the event of a test case failure, the reason for the failure is displayed in the Detail
window and markers are placed on the source code lines where the errors occurred so
that they can be easily located by the user.

Web-CAT is supported in part by NSF under grants DUE-0618663 and DUE-0633594, and by Microsoft Corporation.

out of
scope

alive

null

dead

delete p

p = NULL

p = new Tp = NULL

p = NULL

T* p;

}

}

p = new T

