
 1 

Black-Box Testing Using Flowgraphs: An Experimental As-
sessment of Effectiveness and Automation Potential 

Stephen H. Edwards 
Virginia Tech, Dept. of Computer Science 

660 McBryde Hall 
Blacksburg, VA 24061-0106  USA 
edwards@cs.vt.edu, (540) 231-5723 

 
Abstract 

A black-box testing strategy based on Zweben et al.’s specification-based test data ade-
quacy criteria is explored.  The approach focuses on generating a flowgraph from a component’s 
specification and applying analogues of white-box strategies to it.  An experimental assessment 
of the fault-detecting ability of test sets generated using this approach was performed for three of 
Zweben’s criteria using mutation analysis.  By using precondition, postcondition, and invariant 
checking wrappers around the component under test, fault detection ratios competitive with 
white-box techniques were achieved.  Experience with a prototype test set generator used in the 
experiment suggests that practical automation may be feasible. 

Keywords: automatic testing, object-oriented testing, test data adequacy, formal specifi-
cation, programming by contract, interface violation detection, self-checking software 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This is a preprint of an article published in the December 2000 issue of Software Testing, Verifi-
cation and Reliability, Vol. 10, No. 4, pp. 249-262. Copyright © (2000) (copyright owner as 
specified in the Journal).  Visit the journal’s website at http://www.interscience.wiley.com. 



 2 

1 Introduction 
Modular software construction through the assembly of independently developed compo-

nents is a popular approach in software engineering. At the same time, component-based ap-
proaches to software construction highlight the need for detecting failures that arise as a result of 
miscommunication among components. In component-based software, a component's interface 
(or specification) is separated from its implementation and is used as a contract between the cli-
ents and the implementer(s) of the component [12]. In practice, failures in component-based sys-
tems often arise because of semantic interface violations among components—where one party 
breaks the contract. These errors may not show up until system integration, when they are more 
expensive to identify and fix. Even worse, internal violations may not be discovered until after 
deployment. As a result, component-based development increases the need for more thorough 
testing and for automated techniques that support testing activities. 

Testing “to the contract” is at the heart of specification-based testing.  This paper de-
scribes a strategy for generating black-box test sets for individual software components that was 
suggested by the work of Zweben, Heym, and Kimmich [19].  The strategy involves generating a 
flowgraph from a component’s specification, and then applying analogues of traditional graph 
coverage techniques.  Section 2 lays out the test set generation approach and describes how it can 
be applied to object-based or object-oriented software components.  Section 3 describes a proto-
type test set generator based on the described approach that was used to create test sets for 
evaluation.  To compensate for some of the known weaknesses of black-box testing, Section 4 
explains how the fault-detecting ability of such tests can be magnified by using interface viola-
tion checking wrappers [3].  Section 5 presents an experimental evaluation of the fault-detecting 
ability of test sets generated using the approach, as assessed through mutation analysis.  Section 
6 discusses related work, and conclusions are discussed in Section 7.  While many interesting 
and tough research questions remain open, preliminary results suggest practical levels of automa-
tion are achievable.  

2 The Flowgraph Approach 
There are a number of strategies for generating black-box test data from a component's 

behavioral description [1]. The generation approach taken here is adapted from the work of 
Zweben et al., who “propose specification-based analogues of control and data flow adequacy 
criteria for use in testing ADT modules that are specified using a model-based approach” [19].  
Their work is directly applicable to both object-based and object-oriented software components. 

For the proposed strategy to work, what assumptions are made about components? A 
component must have a well-defined interface that is clearly distinguishable from its implemen-
tation together with a formal description of its intended behavior. The research described here 
uses formally specified interfaces described in RESOLVE [16], although other model-based 
specification languages [17] are also applicable.  In such a specification, an abstract mathemati-
cal model of client-visible state is associated with each type or class, and each operation or 
method is characterized by pre- and postconditions phrased in terms of such models. More im-
portantly, however, the approach described here gracefully degrades when only semiformal or 
informal behavioral descriptions are available, as described in Section 3. 

 



 3 

2.1 Representing a Specification as a Graph 
Zweben et al. define a “flowgraph” representation for a software component’s specifica-

tion [19].  Briefly summarized, a component specification’s flowgraph is a directed graph where 
each vertex represents one operation provided by the component, and a directed edge from ver-
tex v1 to vertex v2 indicates the possibility that control may flow from v1 to v2.  Intuitively, an arc 
from v1 to v2 means that there is some legal sequence of operations on the component under con-
sideration where an invocation of v2 immediately follows an invocation of v1.  For software com-
ponents that provide initialization or finalization operations (also called constructors or destruc-
tors), those are also included as vertices in the graph.  For components that represent objects, 
every possible “object lifetime”—a finite sequence of operations beginning with initialization 
and ending with finalization—is represented by some path in the graph. 

Zweben et al. also describe the analogues of the definition and use of information at a 
vertex in a flowgraph.  All of the parameters for a specific operation, including the implicit “self” 
or “this” parameter in an object-oriented language, must be considered.  A definition occurs at a 

concept Queue_Template 
    context 
        global context 
            facility Standard_Boolean_Facility 
        parametric context 
            type Item 
 
    interface 
        type Queue is modeled by string of math[Item] 
            exemplar q 
            initialization 
                ensures     q = empty_string 
 
        operation Enqueue ( 
                alters    q : Queue 
                consumes  x : Item 
            ) 
            ensures     q = #q * <#x> 
 
        operation Dequeue ( 
                alters    q : Queue 
                produces  x : Item 
            ) 
            requires    q /= empty_string 
            ensures     <x> * q = #q 
 
        operation Is_Empty ( 
                preserves q : Queue 
            ) : Boolean 
            ensures     Is_Empty  iff  q = empty_string 
 
end Queue_Template 

 
Figure 1: A RESOLVE Queue Specification 



 4 

node for a given parameter if the operation may potentially alter its value.  A use occurs if the 
incoming value may affect the behavior of the operation. For each parameter in each operation, 
definitions and uses may be directly deduced from the postcondition of the operation [19].  Al-
ternatively, definitions and uses may be deduced by examining parameter modes: modes that 
correspond to “in” or “in/out” data flow identify uses, while “in/out” or “out” data flow identify 
definitions.  For specification languages that do not consider parameter passing modes, care must 
be taken to ensure correct identification is made; RESOLVE, however, defines parameter modes 
that are ideal for this purpose [16]. 

Given such a flowgraph, potential testing strategies become evident [1]. Zweben et al. 
describe natural analogues of white-box control- and data-flow testing strategies adapted to 
black-box flowgraphs, including node coverage, branch coverage, definition coverage, use cov-
erage, DU-path coverage, and k-length path coverage [19]. Unlike program-level testing, where a 
test case consists of input data for the program, here a test case corresponds to a sequence of op-
eration invocations with associated parameter values.  This is similar to the approach used in 
ASTOOT [2], but with model-based rather than algebraic specifications.  Because branches in 
the graph represent different choices for method calls in a sequence, it is easier to generate test 
cases that cover any given branch.  

2.2 An Example 
To ground the discussion, this section illustrates the concept of a flowgraph using a sam-

ple component specification.  Figure 1 presents the RESOLVE specification for a simple Queue 
component.  Notice that the component is generic (a template), and is parameterized by the type 
of item it contains. 

In RESOLVE, every data type implicitly provides three operations: an initialize operation 
that is implicitly invoked on each ob-
ject at its point of declaration, a final-
ize operation that is implicitly invoked 
on each object when it goes out of 
scope, and a swap operation (for data 
movement, instead of assignment) [8].  
Thus, the queue component in Figure 
1 provides a total of six operations.  
Figure 2 shows the corresponding 
flowgraph.  Because flowgraphs fre-
quently have large numbers of edges, 
graphs with more than a handful of 
vertices are difficult to draw visually 
and are more effectively represented 
as matrices, which is why queue was 
chosen for this example. 

2.3 Infeasible Paths 
As with white-box approaches, 

a flowgraph may contain paths that 
are infeasible.  In white-box control 
flow graphs, an infeasible path may 

Enqueue

Is_Empty

Dequeue

Initialize

Finalize

Swap

 
Figure 2: The Queue Flowgraph 



 5 

result from an unreachable node or edge, or it may arise when the conditions necessary to trav-
erse one edge in the path contradict the conditions necessary to traverse some other edge in the 
path.  For specifications, unreachable nodes (i.e., operations that can never be called under any 
circumstances) are exceedingly rare in practice, but infeasible paths arising from incompatible 
sequences of operations are common.  Each edge (say, from v1 to v2) in the flowgraph indicates 
that there is some legitimate object lifetime that includes v1 followed by v2; it specifically does 
not imply that every lifetime containing v1 followed by v2 is legitimate. 

Given the queue example above, the following path exists in the graph: Initialize → 
Enqueue(q, x) → Dequeue(q, x) → Dequeue(q, x) → Finalize .  This path is 
infeasible because it violates the precondition of Dequeue , a case of the client (rather than the 
component under test) violating the interface contract.  In effect, every legitimate object lifetime 
is represented by some path in the graph, but not all paths in the graph correspond to legitimate 
object lifetimes.  Such paths are infeasible. 

3 Automatically Generating Test Cases 
In principle, the steps involved in automatically generating test sets using a flowgraph are 

clear: select an adequacy criterion, generate the flowgraph for the component under test, system-
atically enumerate paths in the graph that meet the selected criterion to generate test frames, and 
finally choose specific parameter value(s) to generate one or more test cases from each frame.  
As with other black-box test generation strategies, this approach faces several daunting issues in 
practice.  While perfect solutions are not theoretically possible, one may ask whether practical 
heuristics that provide approximate solutions exist.  A prototype test set generator has been im-
plemented with some success, and this section describes the tradeoffs made in its design. 

3.1 Choosing Adequacy Criteria 
Zweben et al. describe a number of specification-based analogues of white-box control 

and data flow test adequacy criteria [19] that may be used for test set generation: all nodes, all 
branches, all definitions, all uses, all DU paths, all k-length paths, and all paths.  In essence, each 
such criterion C identifies a set of paths in the flow graph that must be “covered” by any C-
adequate test set.  The “all paths” criterion is not practical because it includes a potentially infi-
nite set of paths.  Three of the remaining criteria were selected for implementation in the initial 
prototype: all nodes, all definitions, and all uses. 

3.2 Generating Flowgraphs 
In generating a flowgraph, identifying nodes, definitions, and uses is straightforward.  

The primary issue is how to correctly and efficiently decide which edges should be included in 
the graph [19]: 

As is the case for traditional control flow graphs, the question of whether there is 
a feasible edge from A to B is, in general, undecidable, since otherwise it would 
be possible to decide whether the conjunction of any two predicate calculus ex-
pressions (representing the postcondition of A and the precondition of B, respec-
tively) is satisfiable. 

The prototype uses a simplistic, partial solution to this problem coupled with a powerful 
fallback for difficult-to-decide edges.  Experience with RESOLVE-specified components indi-



 6 

cates that the vast majority of operations have relatively simple preconditions, although postcon-
ditions are usually more complex.  As a result, it is practical in many instances to structurally 
match the precondition for one operation with one clause in the postcondition of another.  In ef-
fect, this process allows one to identify a subset of the edges that are always feasible (or always 
infeasible) for every object lifetime.  For any remaining edges, The user may select one of three 
trivial strategies: one may choose to omit all “difficult” edges, decide on an edge-by-edge basis 
which to include, or include all difficult edges. 

Choosing to omit all difficult edges is conservative; it ensures no infeasible edges are in-
cluded.  The cost of this conservatism is exclusion of some feasible edges, and hence exclusion 
of desirable test cases.  Experience with this technique indicates that it rarely leads to desirable 
results. 

Hand-selecting which of the difficult edges are to be included allows one to include only 
feasible edges and exclude only infeasible ones.  The cost of this accuracy is the effort involved 
in making these choices by hand, together with the risk of human error.  For the components 
used in the experimental analysis in Section 5, this task is relatively easy to perform by hand; 
only a handful of edges for each component used in the study were not automatically resolved.  
For larger components or fully automatic operation, the remaining choice is more appropriate. 

Choosing to include all difficult edges is liberal, in that it ensures all feasible edges are 
included.  The cost of this liberalism is the inclusion of some infeasible edges, and hence the in-
clusions of undesirable test cases that force operations to be exercised when their preconditions 
are false.  This is risky, to say the least.  Nevertheless, as explained in Section 4, it is possible to 
automatically screen out test cases that exercise infeasible edges.  Experience with the prototype 
suggests that it is much easier to include more test cases than necessary at generation time and 
automatically weed out infeasible cases later. 

3.3 Enumerating Paths 
All three of the criteria used in the prototype generate a set of easily identifiable paths for 

coverage.  One test frame can be generated for each such path P (say from v1 to v2) by simply 
finding the shortest path from the Initialize  node to v1 (the initialization subpath for P), find-
ing the shortest path from v2 to the Finalize  node (the finalization subpath P), and composing 
the three paths to form the sequence of operations in the test frame.  The primary difficulty is 
again satisfiability: one must not choose an infeasible object lifetime. 

The first solution implemented in the prototype was to generate all test frames using this 
approach and then allow those that are infeasible to be filtered out later, as described in Sec-
tion 4.  In practice, this was less than ideal because of the large number of infeasible test frames 
produced.  Even on simple data structure components where at least one feasible test frame was 
known to exist for every P generated by this process, the prototype frequently generated infeasi-
ble test frames, invariably when P contained a “difficult” edge.  In such an instance, the initiali-
zation subpath would almost always ensure feasibility of the sequence of operations from Ini-
tialize  through v1, but some edge in P itself would then be infeasible.  The example from Sec-
tion 2 is typical: Initialize → Enqueue(q, x) → Dequeue(q, x) → Dequeue(q, 
x) → Finalize  is the test frame generated when v1 = v2 = Dequeue.  

An alternative heuristic that works much more effectively in practice is to compute the 
initialization subpath for v1 (Initialize → v1,1 → … → v1,m → v1), compute the initialization 
subpath for v2 (Initialize → v2,1 → … → v2,n → v2), and then use (Initialize → v1,1 → 
… → v1,m → v2,1 → … → v2,n → v1) as the initialization subpath for P, provided that the edge v1,m 



 7 

→ v2,1 exists.  Obvious extensions are possible when P contains more than two nodes.  In addi-
tion, one can modify the method of selecting initialization and finalization subpaths by weighting 
difficult edges so that paths with a minimum number of difficult edges are selected.  Although 
these heuristics are not guaranteed to produce feasible paths, in practice they worked well at 
dramatically reducing the number produced in the experiment.  Also, note that finalization sub-
paths rarely cause feasibility problems. 

Finally, one should note that this enumeration strategy typically results in naïve test 
frames—those with the minimal number of operations and minimal number of distinct objects 
necessary.  The result is a larger number of fairly small, directed test cases that use as little addi-
tional information as possible.  

3.4 Choosing Parameter Values 
Finally, one must instantiate the test frames with specific parameter values.  This is a dif-

ficult problem for scalar parameters, but is even more difficult when testing generic components 
that may have potentially complex data structures as parameters.  As a starting point for the  pro-
totype random value selection for scalar parameter types was implemented, which was sufficient 
for initial experimentation.  Later, simple boundary value analysis (BVA) support was added so 
that scalars with easily describable operational domains could be more effectively supported.  A 
method for supporting user-defined composite types in test cases (including BVA support) was 
also designed, but there is currently no experience with its application. 

In the end, the question of satisfiability for specific parameter values is completely side-
stepped—test cases simply are generated and then those that are infeasible are later filtered.  Un-
fortunately, the side-effect of this is more critical: legitimate test frames may be thrown out in 
practice because the naïve selection of parameter values formed an infeasible test case, even 
though other feasible parameter value choices may exist.  This situation has not yet occurred for 
the components used in evaluation, but more work in minimizing this risk is necessary. 

3.5 Graceful Degredation for Informal Specifications 
Although this work presumes that components have formally specified interfaces, it is 

clear that semi-formal or informal specifications can also be supported.  One can generate a 
flowgraph from as little information as a set of operation signatures that includes parameter 
modes.  One can “liberally” include edges in the flowgraph and then generate test cases in the 
normal fashion.  This runs the risk of generating infeasible test cases, but automatic detection 
and filtering make this option practical. 

4 Automatic Detection of Interface Violations 
The effectiveness of the testing strategy described here hinges in great part on automati-

cally detecting interface contract violations for the component under test.  Previous work [3] de-
scribes a strategy for building wrapper components to perform this function. An interface viola-
tion detection wrapper (or “detection wrapper,” for short) is a decorator that provides exactly the 
same client interface as the component it encases.  In essence, such a wrapper performs a run-
time precondition check for each operation it implements before delegating the call to the 
“wrapped” component under test.  After the underlying component completes its work, the de-
tection wrapper performs a run-time postcondition check on the results.  In addition, a detection 
wrapper may also check component-level invariant properties before and after the delegated call.  



 8 

Edwards et al. describe a novel architecture for the structure of detection wrappers and discuss 
the potential for partially automated wrapper construction. 

Encasing a component under test in a detection wrapper has many significant benefits. A 
precondition violation identified by the wrapper indicates an invalid (infeasible) test case.  This 
is the primary means for addressing the satisfiability issues raised in Section 3.  A postcondition 
violation identified by the detection wrapper indicates a failure that has occurred within the com-
ponent.  Further, this indication will be raised in the operation or method where the failure oc-
curred, whether or not the failure would be detected by observing the top-level output produced 
for the test case.  Finally, invariant checking ensures that internal faults that manifest themselves 
via inconsistencies in an object’s state will be detected at the point where they occur.  Without 
invariant checking, such faults would require observable differences in output produced by sub-
sequent operations in order to be detected. 

Finally, if the component under test is built on top of other components, one should also 
encase those lower-level components in violation detection wrappers (at least wrappers that 
check preconditions).  This is necessary to spot instances where the component under test vio-
lates its client-level obligations in invoking the methods of its collaborators. 

Overall, the use of detection wrappers significantly magnifies the fault-detection ability 
of any testing strategy.  That is critically important for specification-based approaches, which in 
theory cannot guarantee that all reachable statements within the component are executed and 
thus cannot subsume many white-box adequacy criteria.  The use of violation detection wrappers 
can lead to an automated testing approach that has a greater fault revealing capability than tradi-
tional black-box strategies. 

5 An Experimental Assessment 
As discussed in Section 3, a prototype test set generator for three of Zweben’s adequacy 

criteria has been implemented.  The design of the prototype included several tradeoffs, some of 
which are quite simplistic, that might adversely affect the usefulness of the approach.  At the 
same time, the only empirical test of the fault-detecting ability of test sets following this ap-
proach is the original analysis reported by Zweben et al. [19].  As a result, an experiment was 
designed and carried out to examine the fault-detecting ability of test sets generated using this 
approach—specifically those created using the tradeoffs embodied in the prototype. 

5.1 Method 
To measure the fault-detecting effectiveness of the test sets under consideration, one can: 

• Select a set of components for analysis. 
• Use fault injection techniques to generate buggy versions of the components. 
• Generate a test set for each of the three criteria, for each of the components. 
• Execute each buggy version of each subject component on each test set. 
• Check the test outputs (only) to determine which faults were revealed without using 

violation detection wrappers. 
• Check the violation detection wrapper outputs to determine which faults were re-

vealed by precondition, postcondition, and invariant checking. 

Four RESOLVE-specified components were selected for this study: a queue, a stack, a 
one-way list, and a partial map.  All are container data structures with implementations ranging 



 9 

from simple to fairly complex.  The queue and stack components both use singly linked chains of 
dynamically allocated nodes for storage.  The primary differences are that the queue uses a senti-
nel node at the beginning of its chain and maintains pointers to both ends of the chain, while the 
stack maintains a single pointer and does not use a sentinel node.  The one-way list also uses a 
singly linked chain of nodes with a sentinel node at the head of the chain.  Internally, it also 
maintains a pointer to the last node in the chain together with a pointer to represent the current 
list position.  The partial map is the most complex data structure in the set.  It is essentially a dic-
tionary that stores domain/range pairs.  Internally its implementation uses a fixed-size hash table 
with one-way lists for buckets.  The ordering of elements in an individual bucket is unimportant; 
buckets are searched linearly. 

Although these components are all relatively small, the goal is to support the testing of 
software components, including object-oriented classes.  The components selected here are more 
representative of classes that maintain complex internal state than they are of complete programs, 
which is appropriate.  In addition, the size of the subject components was important in support-
ing a comprehensive fault injection strategy without incurring undue cost. 

The fault injection strategy chosen was based on expression-selective mutation testing 
[13].  This version of mutation testing uses only five mutation operators: ABS, AOR, LCR, 
ROR, and UOI [10]; it dramatically reduces the number of mutants generated, but has been ex-
perimentally shown to achieve almost full mutation coverage [13].  Each mutant was generated 
by applying one mutation operator at a unique location in one of the methods supported by a 
component.  The number of generated mutants was small enough to admit hand-identification of 
equivalent mutants.  All remaining mutants were guaranteed to differ from the original program 
on some legitimate object lifetime in a manner observable through the parameter values returned 
by at least one method supported by the component.  Table 1 summarizes the characteristics of 
the subject components and number of faulty versions generated. 

5.2 Results 
Because the goal was to assess test sets generated using the specific heuristics described 

in this paper rather than the more general goal of assessing the adequacy criteria themselves, the 
experiment was limited to test sets produced by the prototype.  The prototype uses a determinis-
tic process to generate test frames, however, so producing multiple test sets for the same compo-
nent and criterion would only result in random variations in parameter values, rather than any 
substantial variations in test case structure.  Since all of the subject components are data struc-
tures that are relatively insensitive to the values of the items they contain, such superficial varia-
tions in generated test sets were not explored.  As a result, a total of 12 test sets were generated, 

Component # Methods Size 
(NCSLOC) 

SLOC/Method # Mutants 

Stack 6 58 9.7 28 
Queue 6 60 10.0 27 
One-Way List 10 217 21.7 120 
Partial Map 7 138 19.7 245 
Total 29 473 16.3 420 

Table 1: Subject Components in the Experiment 



 10 

one for each of the chosen adequacy criteria for each of the subject components.  Inclusion of 
“difficult” edges in the corresponding flowgraphs was decided by hand on a per edge basis. 

For each subject component, the three corresponding test sets were run against every 
faulty version.  Table 2 summarizes the results. “Observed Failures” indicates the number of mu-
tants killed by the corresponding test case based solely on observable output (without consider-
ing violation detection wrapper checks).  “Detected Violations” indicates the number of mutants 
killed solely by using the invariant and postcondition checking provided by the subject’s detec-
tion wrapper.  In theory, any failure identifiable from observable output will also be detected by 
the component’s postcondition checking wrapper if the wrapper is implemented correctly; the 
data collected were consistent with this expectation, so every “Observed Failure” was also a 
“Detected Violation.”  The rightmost column lists the number of infeasible test cases produced 
by the prototype in each test set. 

5.3 Discussion 
On the subject components, it is clear that “all definitions” reveals the fewest faults of the 

three criteria studied, while “all uses” reveals the most, which is no surprise.  More notable is the 
magnification of fault-detecting power supplied by the use of violation detection wrappers.  In all 
cases, the use of detection wrappers significantly increased the number of mutants killed.  Fur-
ther, the increase was more dramatic with weaker test sets.  In the extreme case of the “all nodes” 
test set for one-way list, its fault-detection ability was doubled. 

Also surprising is the fact that for three of the four subjects, the “all uses” test sets 
achieved a 100% fault detection rate with the use of detection wrappers.  This unusual result 
bears some interpretation.  It appears to be the result of two interacting factors.  First, the invari-
ant checking performed by each detection wrapper is quite extensive (partly because formal 
statements of representation invariants were available for the subjects), providing the magnifica-
tion effect discussed above.  Second, the simpler subject components involved significantly 

Adequacy 
Criterion 

Subject # 
Cases 

Observed 
Failures 

% Detected 
Violations 

% Infeasible 
Cases 

Stack 5 16 57.1% 22 78.6% 0 
Queue 5 15 55.6% 21 77.8% 0 
One-Way List 10 37 30.8% 89 74.2% 0 
Partial Map 7 118 48.2% 153 62.4% 0 

All Nodes 

Total 27 186 44.3% 285 67.9% 0 
Stack 6 6 21.4% 16 57.1% 0 
Queue 6 5 18.5% 15 55.6% 0 
One-Way List 11 47 39.2% 83 69.2% 0 
Partial Map 6 92 37.6% 132 53.9% 0 

All Definitions 

Total 29 150 35.7% 246 58.6% 0 
Stack 32 26 92.9% 28 100.0% 3 
Queue 32 25 92.6% 27 100.0% 3 
One-Way List 126 106 88.3% 120 100.0% 10 
Partial Map 61 185 75.5% 214 87.3% 11 

All Uses 

Total 251 342 81.4% 389 92.6% 27 

Table 2: Expression-Selective Mutation Scores of Test Sets 



 11 

fewer complex logic conditions and nested control constructs.  As a result, the “all nodes” and 
“all uses” test sets for the stack, queue, and one-way list components actually achieved 100% 
white-box statement-level coverage of all statements where mutation operators were applied.  
This fact was later confirmed via code instrumentation.  Presumably this is atypical of most 
components, so the 100% fault detection results for “all uses” should not be unduly generalized.  
Nevertheless, the fact that a relatively weak adequacy criterion could lead to such effective fault 
revelation is a promising sign for this technique. 

The only other empirical study of specification-based testing based on these criteria is re-
ported by Zweben et al. [19].  That work reports a small study on 25 versions of a two-way list 
component written by undergraduate students.  While small in scale, it does give some indication 
of the fault-detecting ability of the various specification-based control- and data flow criteria on 
defects that occurred in real components.  In that study, “all nodes” revealed 6 out of 10 defects, 
“all definitions” revealed 6 out of 10, and “all uses” revealed 8 out of 10, all of which are compa-
rable to the “Observed Failures” results here. 

Although the results of this experiment are promising, there are also important threats to 
the validity of any conclusions drawn from it.  The subjects were limited in size for practical rea-
sons.  Although well-designed classes in typical OO designs are often similar in size, it is not 
clear how representative the subjects are in size or logic complexity.  Also, the question of how 
well mutation-based fault injection models real-world faults is relevant, and has implications for 
any interpretation of the results.  With respect to the adequacy criteria themselves, this experi-
ment only aims to assess test sets generated using the strategy described in this paper, rather than 
aspiring to a more sweeping assessment of the fault-detecting ability of the entire class of test 
sets meeting a criterion. 

6 Related Work 
The test set generation approach described here has been incorporated into an end-to-end 

test automation strategy that also includes generation of component test drivers and partial to full 
automation of violation detection wrappers [4].  The most relevant related projects in automated 
generation of specification-based test sets are DAISTS [7] and ASTOOT [2].  One key differ-
ence with the current work is that model-based specifications are used while DAISTS and AS-
TOOT are based on algebraic specifications.  Algebraic specifications often encourage the use of 
function-only operations and may suppress any explicit view of the content stored in an object.  
Model-based specifications instead focus on abstract modeling of that content, direct support for 
state-modifying methods, and direct support for operations with relational behavior.  Another 
notable difference is the use of violation detection wrappers in this approach, which provides in-
creased fault-detecting ability. 

Other specification-based testing or test generation approaches focus on finite state ma-
chine (FSM) models of classes or programs [1, 9, 14, 15].  The work of Hoffman, Strooper, and 
their colleagues is of particular relevance because it also uses model-based specifications.  An 
FSM model typically contains a subset of the states and transitions supported by the actual com-
ponent under consideration, and may be developed by identifying equivalence classes of states 
that behave similarly.  Test coverage is gauged against the states and transitions of the model.  
The work described here, by contrast, does not involve collapsing the state space of the compo-
nent under test, or even directly modeling it.  As a result, it gracefully degrades when only semi- 
or informal specifications are available.  In addition, the use of violation detection wrappers sets 
the current work apart from FSM approaches. 



 12 

Other work on test data adequacy, including both specification-based and white-box cri-
teria, is surveyed in detail by Zhu [18].  The focus of the current work is to develop and assess 
practical test set generation strategies based on existing criteria, rather than describing new crite-
ria.  Similarly, Edwards et al. [3] provide a more detailed discussion of interface violation detec-
tion wrappers and the work related to them, including alternative approaches to run-time post-
condition checking. 

There is a large body of work on experimentally assessing the fault-detecting ability of 
various testing strategies or adequacy criteria [5, 6, 11]. Frankl’s work on statistically character-
izing the effectiveness of adequacy criteria is notable.  Whereas her work focuses on statistically 
assessing the effectiveness of criteria by looking at large numbers of test sets, the work here in-
stead aims at assessing test sets created using a specific strategy. 

7 Conclusions 
This article describes a specification-based test set generation strategy based on Zweben 

et al.’s specification-based test data adequacy criteria.  The strategy involves generating a flow-
graph from a component’s specification, and then applying analogues of white-box strategies to 
the graph.  Although there are a number of very difficult issues related to satisfiability involved 
in generating test data, a prototype test set generator was implemented using specific design 
tradeoffs to overcome these obstacles.  An experimental assessment of fault-detecting ability 
based on expression-selective mutation analysis provided very promising results.  By using pre-
condition, postcondition, and invariant checking wrappers around the component under test, fault 
detection ratios competitive with white-box techniques were achieved.  The results of the ex-
periment, together with experiences with the generator, indicate that there is the potential for 
practical automation of this strategy. 

References 
1. Beizer B.  Black-Box Testing: Techniques for Functional Testing of Software and Systems. 

Wiley: New York, 1995.  
2. Doong R-K, Frankl PG.  The ASTOOT approach to testing object-oriented programs.  ACM 

Trans. Software Engineering Methodology, 1994, 3(2): 101-130.  
3. Edwards S, Shakir G, Sitaraman M, Weide BW, Hollingsworth J.  A framework for detect-

ing interface violations in component-based software.  Proc. 5th Int'l Conf. Software Reuse, 
IEEE CS Press: Los Alamitos, CA,1998, pp. 46-55.  

4. Edwards SH.  A framework for practical, automated black-box testing of component-based 
software.  Proc. 1st Int’l Workshop on Automated Program Analysis, Testing and Verifica-
tion, June 2000, pp. 106-114. 

5. Frankl PG, Weiss SN.  An experimental comparison of the effectiveness of branch testing 
and data flow testing.  IEEE Trans. Software Engineering, Aug. 1993, 19(8): 774-787. 

6. Frankl PG, Weiss SN, Hu C.  All-uses versus mutation testing: An experimental compari-
son of effectiveness.  J. Systems and Software, Sept. 1997, 38(3): 235-253. 

7. Gannon JD, McMullin PR, Hamlet R.  Data-abstraction implementation, specification, and 
testing.  ACM Trans. Programming Languages and Systems, July 1981, 3(3): 211-223. 

8. Harms DE, Weide BW.  Copying and swapping:  Influences on the design of reusable soft-
ware components.  IEEE Trans. Software Engineering, May 1991, 17(5): 424-435. 



 13 

9. Hoffman D, Strooper P.  The test-graphs metholodogy: Automated testing of classes.  J. 
Object-Oriented Programming, Nov./Dec. 1995, 8(7): 35-41.  

10. King KN, Offutt J.  A Fortran language system for mutation-based software testing.  Soft-
ware Practice and Experience, July 1991, 21(7): 686-718. 

11. Mathur AP, Wong WE.  Comparing the fault detection effectiveness of mutation and data 
flow testing: An empirical study.  Tech.  Report SERC-TR-146-P, Software Engineering 
Research Center, Dec. 1993. 

12. Meyer B.  Object-Oriented Software Construction, 2nd Edition.  Prentice Hall PTR: Upper 
Saddle River, New Jersey, 1997.  

13. Offutt J, Lee A, Rothermel G, Untch RH, Zapf C.  An experimental determination of suffi-
cient mutant operators.  ACM Trans. Software Engineering Methodology, April 1996, 5(2): 
99-118. 

14. Offutt J, Abdurazik A.  Generating tests from UML specifications.  2nd Int’l Conf. Unified 
Modeling Language (UML99), Fort Collins, CO, Oct. 1999. 

15. Offutt J, Xiong Y, Liu S.  Criteria for generating specification-based tests.  5th IEEE Int’l 
Conf. Engineering of Complex Computer Systems (ICECCS '99), Las Vegas, NV, Oct. 
1999. 

16. Sitaraman M, Weide BW, eds. Component-based software engineering using RESOLVE. 
ACM SIGSOFT Software Enigineering Notes, 1994, 19(4): 21-67.  

17. Wing JM.  A specifier's introduction to formal methods.  IEEE Computer, Sept. 1990, 
29(9): 8-24.  

18. Zhu H, Hall PAV, May JHR.  Software unit test coverage and adequacy.  ACM Computing 
Surveys, Dec. 1997, 29(4): 366-427.  

19. Zweben S, Heym W, Kimmich J.  Systematic testing of data abstractions based on software 
specifications.  J. Software Testing, Verification and Reliability, 1992, 1(4): 39-55.  

 


