
 1

A Framework for Practical, Automated Black-Box Testing of
Component-Based Software

Stephen H. Edwards
Virginia Tech, Dept. of Computer Science

660 McBryde Hall
Blacksburg, VA 24061-0106 USA

edwards@cs.vt.edu, +1 540 231 5723

Abstract
This paper outlines a general strategy for automated black-box testing of software com-

ponents that includes: automatic generation of component test drivers, automatic generation of
black-box test data, and automatic or semi-automatic generation of component wrappers that
serve as test oracles. This research in progress unifies several threads of testing research, and
preliminary work indicates that practical levels of testing automation are possible.

Keywords: test drivers, test oracles, self-checking software, test adequacy, integration
testing, modular construction, and built-in test

This is a preprint of an article to be published in the June 2001 issue of Software Testing, Verifi-
cation and Reliability, Vol. 11, No. 2. Copyright © (2001) (copyright owner as specified in the

Journal). Visit the journal’s website at http://www.interscience.wiley.com.

 2

1 Introduction
The move toward component-based software development offers many promises for im-

proved productivity and quality, but it also highlights the need for effective methods of testing
reusable software parts. Indeed, components that are independently developed or commercially
purchased underscore the need to detect errors well before system integration time. As compo-
nents increase in complexity, this need only becomes more urgent. Adopting a systematic ap-
proach to testing components and automating as much of the approach as possible is one solu-
tion. To this end, this paper outlines a general strategy for automated black-box testing of soft-
ware components. The strategy involves a three-pronged attack, covering automatic generation
of component test drivers, automatic generation of test data, and automatic or semi-automatic
generation of wrappers serving the role of test oracles. In combination, these thrusts build to-
ward a complete, “end to end” component testing strategy that is almost entirely automated.
This work unifies several threads of testing research into a coherent whole. While many interest-
ing and tough research questions remain open, preliminary results suggest practical levels of
automation are achievable for components that include formal behavioral descriptions.

Section 2 describes the assumptions about components that are necessary for the ap-
proach to work, and presents an example component specification satisfying these assumptions.
Section 3 discusses a critical piece of the strategy presented here: the use of pre- and postcondi-
tion checking wrappers around the component under test. Building on this foundation, Section 4
lays out the vision for an automated testing framework. Section 5 briefly discusses related work,
followed by open research issues and future directions in Section 6.

2 An Example Component: One-Way List
The strategy proposed here builds on one key requirement: a component must have a

clear description of its intended behavior. Such a description is important when automating the
tasks of generating test data or checking test results. The initial requirement for the research de-
scribed here is that a component must have a formally specified interface described in a model-
based specification language. RESOLVE [18] has been selected as the specification language
for this research, although other model-based specification languages [20] are also applicable.
The choice of specification language was made for two pragmatic reasons: the researchers in-
volved were familiar with the language, and using it provides a natural collaboration path for
fielding tools. Researchers at The Ohio State University and at West Virginia University are col-
laborating on a Software Composition Workbench based on RESOLVE technology that is an
ideal environment in which to evaluate and apply the testing tools described in this paper.

Although the initial research requirement is that all components have formally specified
interfaces, the tools making up the approach do provide graceful fallback positions if only semi-
formal or informal component behavioral descriptions are available. Informal descriptions re-
quire more human intervention in the process, however, since there is no easy way to automati-
cally extract behavioral requirements. The end result is a strategy that can still be applied, even
without any formal behavioral descriptions, but at the cost of reduced automation and greater
programmer intervention.

In general, a software component may be as simple as an individual class or module, or
as sophisticated as a Java Bean or COM object. In the interests of simplicity, this paper will pre-
sent examples in terms of object-oriented classes, although the techniques are easily generalized
for much larger-grained components.

 3

To ground the discussion of formally specified components in this paper, Figure 1 pre-
sents the RESOLVE specification of a one-way list component that was originally described by
Sitaraman et al. [17]. This generic component is parameterized by the type of LWHP it will con-
tain. A one-way list is an ordered sequence of items, all of the same type. One may move for-
ward in the sequence, accessing individual elements in turn, or jump to either end of the se-
quence. Zweben presents a similar component that supports bi-directional movement [22]. A
one-way list may be implemented as a singly linked chain of dynamically allocated nodes, as a
dynamically allocated array, or by building on other components like a stack, a queue, or a vec-

FRQFHSW 2QHB:D\B/LVW
FRQWH[W

JOREDO FRQWH[W
IDFLOLW\ 6WDQGDUGB%RROHDQB)DFLOLW\

SDUDPHWULF FRQWH[W
W\SH ,WHP

LQWHUIDFH

W\SH /LVW LV PRGHOHG E\ �
OHIW � VWULQJ RI PDWK>,WHP@�
ULJKW � VWULQJ RI PDWK>,WHP@

�
H[HPSODU V
LQLWLDOL]DWLRQ

HQVXUHV V �HPSW\BVWULQJ� HPSW\BVWULQJ�

RSHUDWLRQ 0RYHB7RB6WDUW �DOWHUV V � /LVW�
HQVXUHV V �HPSW\BVWULQJ� �V�OHIW
 �V�ULJKW�

RSHUDWLRQ 0RYHB7RB)LQLVK �DOWHUV V � /LVW�
HQVXUHV V ��V�OHIW
 �V�ULJKW� HPSW\BVWULQJ�

RSHUDWLRQ $GYDQFH �DOWHUV V � /LVW�
UHTXLUHV V�ULJKW � HPSW\BVWULQJ
HQVXUHV WKHUH H[LVWV [� ,WHP

�V�OHIW �V�OHIW
 � [! DQG �V�ULJKW � [!
 V�ULJKW�

RSHUDWLRQ $GGB5LJKW �DOWHUV V � /LVW� FRQVXPHV [� ,WHP�
HQVXUHV V ��V�OHIW� � �[!
 �V�ULJKW�

RSHUDWLRQ 5HPRYHB5LJKW �DOWHUV V � /LVW� SURGXFHV [� ,WHP�
UHTXLUHV V�ULJKW � HPSW\BVWULQJ
HQVXUHV V�OHIW �V�OHIW DQG �V�ULJKW � [!
 V�ULJKW

RSHUDWLRQ 6ZDSB5LJKWV �DOWHUV V� � /LVW� DOWHUV V� � /LVW�
HQVXUHV V��OHIW �V��OHIW DQG V��ULJKW �V��ULJKW DQG

V��OHIW �V��OHIW DQG V��ULJKW �V��ULJKW

RSHUDWLRQ $WB6WDUW �SUHVHUYHV V � /LVW� � %RROHDQ
HQVXUHV $WB6WDUW LII V�OHIW HPSW\BVWULQJ

RSHUDWLRQ $WB)LQLVK �SUHVHUYHV V � /LVW� � %RROHDQ
HQVXUHV $WB)LQLVK LII V�ULJKW HPSW\BVWULQJ

HQG 2QHB:D\B/LVW

Figure 1—A RESOLVE Specification for One-Way List

 4

vector, among other alternatives. Figure
2 sketches an equivalent abstract base
class template in C++.

The mathematical model of the
one-way list shown in Figure 1 is a pair
of mathematical strings (finite se-
quences). There is no explicit notion of a
“current position” or “cursor.” Instead,
the current location is implicit in the fact
that the string is partitioned into left and
right segments. Intuitively, items to the “left” are those that are “behind” the current location
(closer to the front of the sequence), while those to the “right” are in front (toward the rear). The
preconditions (UHTXLUHV clauses) and postconditions (HQVXUHV clauses) of each operation sup-
ported by the component are described in terms of this mathematical model. In postconditions,
the hash symbol (#) is used to refer to the incoming value of a parameter, rather than its outgoing
value.

3 The Central Focus: Built-In Test Capabilities
The cornerstone of the automated testing framework is a micro-architecture for providing

built-in test (BIT) support in software components. This architecture builds on current research
in systematically detecting interface violations in component-based software [5]. In essence,
each software component provides a simple “hook” interface (with no run-time overhead) that
can be used in adorning the component with sophisticated BIT capabilities. Figure 3 illustrates
this idea. Sophisticated “decorator” components (wrappers) that provide a number of self-
checking and self-testing features can then be used to encase the underlying component.

The innovative properties of this strategy are:

• BIT wrappers are completely transparent to client and component code.
• BIT wrappers can be inserted or removed without changing client code (only a decla-

ration need be modified). This capability does not require a preprocessor, and can be
used in most current languages.

• When BIT support is removed, there is no run-time cost to the underlying component.
• Both internal and external assertions about a component's behavior can be checked.
• Precondition, postcondition, and abstract invariant checks can be written in terms of

the component’s abstract mathematical model [5], rather than directly in terms of the
component's internal representation
structure.

• Checking code is completely separated
from the underlying component.

• Violations are detected when they occur
and before they can propagate to other
components; the source of the violation
can be reported down to the specific
method/operation responsible.

• Routine aspects of the BIT wrappers can
be automatically generated.

WHPSODWH �FODVV ,WHP!
FODVV 2QHB:D\B/LVW ^
SXEOLF�

2QHB:D\B/LVW ���
YLUWXDO a2QHB:D\B/LVW ���
�� ���
YLUWXDO YRLG 5HPRYHB5LJKW �,WHP	 [� ��
�� ��� RWKHU GHWDLOV HOLGHG IRU VSDFH

`�

Figure 2—A C++ Interface for One-Way List

 Component

Client Interface

BIT Access

Figure 3–Component Provides
“Hooks” for BIT Infrastructure

 5

• The approach works well with formally specified components, but does not require
formal specification.

• The approach provides full observability of a component's internal state without
breaking encapsulation for clients.

• Actions taken in response to detected violations are separated from the BIT wrapper
code.

Figure 4 illustrates a component encased in a two-ply BIT wrapper. The inner layer of
the wrapper is responsible for directly and safely accessing the component's internals, perform-
ing internal consistency checks, and then converting the internal state information into a pro-
gram-manipulable model of the component's abstract state [5]. The outer layer is responsible for
using this model to check that clients
uphold their obligations in using the
underlying component, to check that the
component maintains any invariant
properties it advertises, and to double-
check the results of each operation to
the extent desired for self-testing pur-
poses. Client code accesses the compo-
nent just as if it were unadorned.

Figure 5 outlines the class decla-
ration for a BIT wrapper in the context
of the one-way list example. Although

Client

Component

Abstract Layer :
check client
obligations,
operation
postconditions,
external invariants

Representation
Layer : check for
internal consistency,
convert to abstract
model

Figure 4–A Wrapper Surrounds the Component,
Implementing All Necessary Testing Functions

Representation Layer

Abstract Layer

WHPSODWH �FODVV ,WHP� FODVV 2QHB:D\B/LVWB%DVH!
FODVV 2:/B%,7B:UDSSHU �

SXEOLF 2QHB:D\B/LVW �,WHP! ^
SXEOLF�

2:/B%,7B:UDSSHU ���
YLUWXDO a2:/B%,7B:UDSSHU ���
�� ���
YLUWXDO YRLG 5HPRYHB5LJKW �,WHP	 [��
�� ��� RWKHU GHWDLOV HOLGHG IRU VSDFH

SULYDWH�
2QHB:D\B/LVWB%DVH XXW� �� ZUDSSHG OLVW

`�

Figure 5—A C++ One-Way List BIT Wrapper

 6

describing the implementa-
tion of such a wrapper is be-
yond the scope of this arti-
cle, full details appear else-
where [5]. Figure 6 provides
pseudocode for the checking
process used in the wrapper
by outlining one operation.

Two issues that are
critical in the design of a
BIT wrapper are interference
and overhead. First, one
must be sure that the wrap-
per does not interfere with
the behavior of the underly-
ing component, so that only
that component’s inherent
behavior will affect the re-
sults of tests. A BIT wrap-
per guarantees that it makes
no modifications to the
wrapped object, and instead
performs virtually all actions on a copy of the object’s abstract state [5]. This leads to the second
issue: the overhead imposed by a BIT wrapper. The goals for BIT wrappers have led to a design
that encourages more comprehensive (and expensive) checks that are easily enabled or disabled
through simple declaration changes. The expectation is that BIT wrappers will be used during
functional testing and integration, but will be removed for non-functional tests (time or space
performance, for example) or for delivery.

The BIT strategy is designed to provide maximal support during unit testing, debugging,
and integration testing. By outfitting a component with a BIT wrapper during unit testing, much
more thorough testing can be achieved with the ad hoc strategies most developers employ. For
every test case executed, a large number of internal consistency checks are performed, any one
of which has the potential of revealing errors. Since these checks are automatically performed
for any and all operations executed by the component in each test case, they have the effect of
multiplying the tester's ability to detect errors. When errors are found, the full visibility of inter-
nal state provided by the BIT strategy is helpful during debugging. In particular, the strategy
provides the programmer with additional capabilities for both input and output of internal state
information, as well as the ability to modify internal state information for debugging purposes.
None of these capabilities require any additional design or coding time from the developer, be-
yond the inclusion of the original BIT hooks in the underlying component. Finally, during inte-
gration testing, BIT wrappers can provide firewalls between components for incremental integra-
tion. As new units are added to the system, the wrappers will detect any unforeseen interactions.
This strategy supports bottom-up, top-down, and hybrid incremental integration strategies.

WHPSODWH �FODVV ,WHP� FODVV 2QHB:D\B/LVWB%DVH!
YRLG 2:/B%,7B:UDSSHU�,WHP� 2QHB:D\B/LVWB%DVH!��

5HPRYHB5LJKW �,WHP	 [�
^

�� 6WRUH DEVWUDFW YDOXH LQIRUPDWLRQ
0RGHOB2IB/LVW LQFRPLQJBVHOI� LQFRPLQJBVHOI�
0RGHOB2IB,WHP RXWJRLQJB[� RXWJRLQJB[�

�� SVHXGRFRGH�
&KHFN LQWHUQDO LQYDULDQW SURSHUWLHV IRU XXW
3URMHFW DEVWUDFW YLHZ RI XXW·V VWDWH LQ LQFRPLQJBVHOI
$VN [WR SURMHFW LWV DEVWUDFW YDOXH LQWR LQFRPLQJB[
&KHFN DEVWUDFW LQYDULDQW SURSHUWLHV IRU LQFRPLQJBVHOI
&KHFN SUHFRQGLWLRQ RQ LQFRPLQJ YDOXHV

XXW�5HPRYHB5LJKW �[�� �� LQYRNH ZUDSSHG XQLW

�� SVHXGRFRGH�
&KHFN LQWHUQDO LQYDULDQW SURSHUWLHV IRU XXW
3URMHFW DEVWUDFW YLHZ RI XXW·V VWDWH LQ RXWJRLQJBVHOI
$VN [WR SURMHFW LWV DEVWUDFW YDOXH LQWR RXWJRLQJB[
&KHFN DEVWUDFW LQYDULDQW SURSHUWLHV IRU RXWJRLQJBVHOI
&KHFN SRVWFRQGLWLRQ RQ LQFRPLQJ�RXWJRLQJ YDOXHV

`

Figure 6—Implementing a BIT Wrapper Method

 7

4 The Vision: An Automated Testing Framework
The BIT infrastructure provides a natural mechanism for supporting semi- or fully auto-

matic testing. Simply put, the framework described here rests on three legs:

• Automatic (or semi-automatic) generation of a component's BIT wrapper.
• Automatic generation of a component's test driver.
• Automatic (or semi-automatic) generation of test cases for the component.

All three generation
strategies rely on the same in-
formation: a complete behav-
ioral description of the compo-
nent's interface contract. By
combining these generation
strategies, it is possible to create
a test driver, a test suite, and a
BIT wrapper directly from a
component's specification. If
the BIT wrapper also provides
comprehensive checks on the
postconditions of all exported
operations—in effect, acting as
a test oracle—then the combina-
tion will produce a highly
automated testing and debug-
ging capability, as outlined in
Figure 7.

4.1 Generating BIT
Wrappers

A generator has been designed and implemented to process RESOLVE-style component
specifications and C++ template interfaces to generate BIT wrappers [16]. The underlying prin-
ciples for creating such wrappers are independent of any particular specification technique or
implementation language, and they can be readily extended to other languages [5].

The external interface of a BIT wrapper is identical to that of the corresponding base
component. Semantically, they differ in how they behave when either the pre- or postcondition
of some operation is violated. In particular, where a regular component guarantees nothing if an
operation is invoked under conditions violating its precondition, a BIT wrapper instead guaran-
tees it will perform a specific notification action. A BIT wrapper that only checks for precondi-
tion violations is called a one-way checking wrapper.

Similarly, a two-way checking wrapper guarantees to:

1. Carry out its precondition notification action if the precondition does not hold, or
2. Establish that the postcondition is true upon operation completion, or
3. Carry out its postcondition notification action if the postcondition does not hold.

Test Driver

Component

Figure 7–General Testing Setup

Test
Suite

Test
Output

Defect
Report

Representation Layer

Abstract Layer

 8

Both one-way and two-way checking wrappers are extremely useful. One-way wrappers
correspond with the traditional notion of a “defensive shell” that protects a component from er-
rant clients. Two-way wrappers, on the other hand, are more akin to “self-checking” or “self-
verifying” components that confirm their own work as well as spotting erroneous client behavior.

While constructing BIT wrappers is a straightforward process, it raises the question of
how one can automatically generate pre- and postcondition checks. For most components,
checking each precondition is straightforward and can thus be automated. By using the model
conversion approach described in [5], many precondition and postcondition assertions can be
converted to code by a simple transliteration process. For example, complete pre- and postcondi-
tion checks can be automatically generated for the one-way list specification in Figure 1.

However, some assertions are non-trivial. For example, code for checking assertions
containing quantifiers cannot be generated mechanically [2]. To provide greater support for
automated BIT wrapper construction in the face of such difficulties, three possibilities are being
explored: semi-automatic generation, dynamic assertion verification, and “armored” components
that use reference implementations.

4.1.1 Semi-Automatic Generation
It is possible to automatically generate checking code for many preconditions as well as

for many clauses in postconditions. One possible approach to solving this problem is to auto-
matically generate everything that is appropriate, and allow a human to provide the code for
those checks that cannot be automated. Experience with the prototype wrapper generator indi-
cates it is a simple process to separate the human-contributed checks from all of the other infra-
structure code necessary to support a BIT wrapper. Further, the person creating the checks will
write them in abstract client-level terms—i.e., the mathematical model of the component’s
state—instead of in terms of the implementation of the component under test [5].

4.1.2 Dynamic Assertion Verification
Another alternative uses current generation verification tools. While current verification

tools often have trouble with complex quantified assertions that arise during static formal verifi-
cation, the simpler assertions that arise at run-time in a BIT wrapper, where all variables have
specific values, are more amenable to existing proof tools. It is possible to automatically gener-
ate a complete BIT wrapper that relies on a verification/proof engine for assertion checking with
specific parameter values at run-time, an approach termed “dynamic verification” [19].

4.1.3 “Armored” Components Using Reference Implementations
If a reference implementation for a component (even an inefficient one) exists, it is pos-

sible to automatically generate a BIT wrapper that executes both the unit under test and the refer-
ence implementation and then uses the results of the reference implementation to judge the cor-
rectness of the unit under test. This form of testing, also called back-to-back testing, is some-
times used on a larger scale but for the same purpose in conformance or compliance testing. If
one wishes to ensure that a candidate implementation meets some published API standard, for
example, a trusted reference implementation can be used as a judge in assessing the candidate
implementation over a standard test suite. In effect, the same approach can be used in-the-small
and in an automated fashion within a BIT wrapper.

Such an approach invites intriguing enhancements, since it is possible to recover from in-
ternal errors; the wrapper, which stands between the client and the two implementations, can se-

 9

lectively pass on the reference implementation results when the unit under test fails. Further, the
BIT infrastructure can easily be extended to allow the “good” data produced by the reference
implementation to be used to force recovery on the unit under test [5]. This leads to a defensive
wrapper that is close to bulletproof.

4.2 Generating Test Drivers
Compared to the difficulties involved in generating BIT wrappers, generating test drivers

is a simpler problem. The research described here is based on an interpreter model for test driv-
ers: a test driver can be viewed as a command interpreter that reads in test cases and translates
them into actions on the component under test. From this point of view, it is straightforward to
parse a component's interface definition, identify its operations, and construct an interpreter. All
filtering of invalid operation requests is handled by the BIT wrapper encasing the component un-
der test, as is run-time checking of produced output. The major weaknesses of this approach are
in effectively handling components that rely on inversion of control or that have a substantial
human interaction component.

A test driver generator based on this strategy has been designed and is currently being
implemented. RESOLVE/C++ serves as the underlying implementation language for compo-
nents in this preliminary work [18], so a subset of C++ was adopted as a test case definition lan-
guage. Figure 8 shows a sample test case for the one-way list component. In this test case, /LVW
is the test driver’s name for the unit under test—an 2:/B%,7B:UDSSHU surrounding a concrete class
implementing the 2QHB:D\B/LVW specification and instantiated to contain integer elements.

The architecture for the interpreter/test driver uses the envelope and letter paradigm for
handling internal values, and uses an exemplar-based dispatching strategy for handling opera-
tions on user-defined objects [3]. As a result, the core interpreter engine does not directly refer
to the component under test or any of its methods. This means that support for any unit under
test can be added without requiring any changes to or recompilation of the interpreter engine it-
self. Instead, the driver generator creates a “glue” source file that, when compiled and then
linked with the existing interpreter object files, produces a custom driver for the component un-
der test. Preliminary experience with this approach indicates that an interpreter provides signifi-
cant timesavings over direct compilation of test cases when large test sets are used.

4.3 Generating Test Data
There are a number of strategies for generating black-box test data from a component’s

behavioral description [1]. The generation approach taken here is based on flowgraphs and is
described more thoroughly elsewhere [6]. It is adapted from black-box test adequacy criteria
described by Zweben et al. This black-box
test adequacy work describes how one can
construct a flow graph from a behavioral
specification. This directed graph has a sin-
gle entry, representing object creation, and a
single exit, representing object destruction.
Every “object lifetime”—composed of some
legal sequence of operations applied to a
given object—is represented as some (possi-
bly cyclic) path through the graph.

^
/LVW O�
,QWHJHU [�
[������
O�$GGB5LJKW �[��
O�5HPRYHB5LJKW �[��

FRXW �� �RXWSXW ! � �� O
��

 �� [�� HQGO�

`

Figure 8—A One-Way List Test Case

 10

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%

100.0%

S
ta

ck

Q
ue

ue

O
ne

-W
ay

 L
is

t

P
ar

tia
l M

ap

S
ta

ck

Q
ue

ue

O
ne

-W
ay

 L
is

t

P
ar

tia
l M

ap

S
ta

ck

Q
ue

ue

O
ne

-W
ay

 L
is

t

P
ar

tia
l M

ap

all defs all nodes all uses

BIT Wrapper

Output Only

Figure 9—Defect Detection Rates

Given such a flow graph, possible testing strategies become evident [1]. Zweben et al.
describe natural analogues of white-box control- and data-flow testing strategies adapted to
black-box flow graphs, including node coverage, branch coverage, all definition coverage, all use
coverage, all DU-path coverage, and all k-length path coverage. Further, because branches in the
graph represent different choices for method calls in a sequence, instead of logical control-flow
decisions, it is easier to generate test cases that exercise all branches.

As with other black-box test generation strategies, this approach faces two open issues:
how to correctly and efficiently decide which edges should be included in a graph, and how to
address the problem of satisfiability in choosing test data values to be used in individual test
cases. While perfect solutions to these problems are not computable, practical heuristics that
provide approximate solutions are available [6]. When combined with a BIT wrapper surround-
ing the component under test, invalid test cases can be automatically screened and removed, al-
lowing overly optimistic heuristics to be used in practice. Further, the internal checks performed
by BIT wrappers have the possibility of revealing defects that are not directly observable from
the output produced by operations. This property can lead to an automated testing approach that
has a greater defect revealing capability than traditional black-box strategies [6].

A preliminary evaluation of the effectiveness of this approach provided encouraging evi-
dence for its feasibility [6]. An experiment was conducted on four RESOLVE-specified compo-
nents (a stack, queue, one-way list, and partial map), where defects were seeded using a muta-
tion-based approach [21]. Faults were injected using expression-selective mutation [12]. This
version of mutation testing uses only five mutation operators: ABS, AOR, LCR, ROR, and UOI
[9]; it significantly reduces the number of mutants generated, but has been experimentally shown
to achieve nearly complete mutation coverage [12]. All equivalent mutants were identified by
hand and removed from the collection to ensure that the mutants used in the study were guaran-
teed to differ from the original on some legitimate object lifetime in a manner observable
through the parameter values returned by at least one of the component’s methods.

Test sets for each of three adequacy criteria were used in the evaluation. The results of
the experiment indicate that a black-box analog to the “all uses” criteria was extremely effective
in identifying faults, detecting 100% of the faults seeded in three of the four components, and
87.3% of the faults seeded in the most com-
plicated component in the experiment (the
partial map).

Further, the experiment also used
hand-written BIT wrappers and separately
tabulated the number of defects detectable
by observing a component’s output versus
those detected by the internal checks per-
formed by the BIT wrapper. Figure 9 pro-
vides a graphical summary of the percentage
of mutants killed for each adequacy criterion
and component, together with the increased
detection rate provided by BIT wrappers.

The use of two-way checking BIT
wrappers provided an improvement in defect
revealing capability in every case where
they were used, ranging from 8%–200%

 11

more mutants killed. The greatest improvement was seen in the weakest test sets; for example,
the all definitions test set for the queue component only revealed 18.5% of defects by examining
test output alone, but this rate increased to 55.6% with a BIT wrapper. Further, the test sets that
achieved 100% detection of seeded defects required the use of BIT wrappers to do so, since not
all defects were detected by component output.

The magnification effect that BIT wrappers provide for revealing defects is interesting to
explore. Because all mutants used in the study were observably different from the original for
some object lifetime, any seeded defect could have been uncovered solely by observing the out-
put of some test case. However, not all test cases that cause a defect to be executed necessarily
produce observably different behavior. As an example, suppose the 2QHB:D\B/LVW component
described in Section 2 is implemented as a singly linked chain of dynamically allocated nodes,
stored together with an integer recording the length of the list. A number of seeded defects for
such a component lead to internal corruption of encapsulated data during one object method call
that can then be observed on subsequent method calls. For the 2QHB:D\B/LVW, the stored length
may become incorrect, the chain of nodes may be broken, pointer(s) referring to node(s) in the
chain may become invalid, and so on. Unfortunately, a test case that causes such a defect to be
executed but fails to follow it with the proper combination of additional method calls may fail to
produce any observable difference in output. Because the BIT wrappers used in this experiment
performed consistency checks on the internal state of the wrapped component, such corruption
was detected as soon as it occurred. All of the additional defects detected by BIT wrappers that
were not detected by observable output in this experiment were of this nature. This also explains
why the magnification effect was greatest when testing was weakest—as test suites become more
sophisticated and cover more combinations of methods in individual test cases, they are more
likely to reveal such a defect; using a BIT wrapper, on the other hand, identifies the corruption as
soon as it occurs, even in simpler test suites.

The preliminary results provided by this experiment are promising, although difficult to
generalize. A more complete presentation of the experiment, its results, and threats to its validity
and generality appears in [6]. However, these results, together with experience using the genera-
tor, indicate that there is the potential for practical automation of this testing strategy.

5 Related Work
The BIT wrappers here are built on a philosophy perhaps best phrased by Bertrand Meyer

as design-by-contract [11]: preconditions of operations are the responsibility of callers while
postconditions are the obligations of implementers, and implementers may thus assume that the
preconditions hold at the time of invocation. Others have proposed different allocations of re-
sponsibilities [10, 14]. One key difference in the approach advocated here is that responsibility
for checking whether or not obligations are met should be separated from both client and imple-
menter. In addition to decoupling checking code from both the client and the component, this
also opens up the opportunity of performing checks in client-level, abstract terms instead of in
component-level implementation details. This results in highly reusable wrappers that easily can
be added to or removed from a system.

Many others have also discussed the idea of run-time assertion checking. The Annotation
Pre-Processor described by Rosenblum [15] is a good example. However, such approaches typi-
cally do not distinguish between the abstract view of component state perceived by clients and
the concrete, implementation details seen by implementers. In addition, such approaches are
rarely integrated into an overall strategy for automated testing. Eiffel provides another well-

 12

known approach for pre- and postcondition checking at runtime [11]. A more complete discus-
sion of differences between BIT wrappers and Eiffel assertion checking is provided in [5], but
the Eiffel approach is not combined with a systematic approach to producing test drivers or test
data.

The flowgraph-based test data generation research summarized in Section 4.3 is related to
a large body of prior work, including DAISTS [7] and ASTOOT [4]. A more complete discus-
sion of prior work in this area appears in [6].

Other published approaches to specification-based testing of object-based and procedural
software components [2, 4, 7, 8, 13] have influenced this work. The research described here dif-
fers, however, in the way it incorporates run-time interface violation checking, a strategy for
generating test data, a design for unit and integration test drivers, and the way it separates testing
infrastructure code completely from all units under test in a system.

6 Conclusions and Future Work
This paper briefly sketches a general strategy for automated black-box testing of software

components. The strategy is based on combining three techniques: automatic generation of
component test drivers, automatic generation of test data, and automatic or semi-automatic gen-
eration of wrappers serving the role of test oracles. This research in progress unifies several
threads of testing research into a coherent whole. Several difficult research questions remain
open, but work to date indicates that practical levels of testing automation are possible.

The primary goals for future work include:

• Applying the technique on a larger scale to more realistic examples.
• Evaluating the costs and the benefits of this testing approach relative to existing test-

ing techniques, both more traditional manual approaches and alternative automated
approaches based on formal behavioral specifications.

• Evaluating the effectiveness of the test data generation approach more comprehen-
sively.

• Empirically evaluating alternative heuristics, both for generating flow graphs from
specifications and for selecting specific data values to be used in generated test cases.

• Experimentally assessing the overhead incurred by BIT wrappers.
• Exploring the practicality of including nonfunctional properties, such as time or space

utilization in a suitable specification framework, within an extension of this approach.
• Exploring the limits of semi-automatic generation of postcondition checking code in

BIT wrappers.
• Assessing the feasibility of dynamic verification of postconditions as an alternative

implementation strategy for BIT wrappers.
• Completing and evaluating the test driver generator.
• Developing and evaluating an end-to-end automation tool based on these efforts.

Acknowledgements
The ideas and feedback provided by members of the Reusable Software Research Group

at The Ohio State University and at West Virginia University have helped shape and direct this
research. In addition, several graduates students have contributed to the exploratory work de-
scribed here: Vinay Annojjula, Sharmin Banu, Nikhil Bobde, Duxing Cai, Didem Durmaz, Rajat

 13

Gupta, Bob Hall, Mandar Joshi, Hunter Nuttal, Jason Snook, Kent Swartz, Manoj Thopcherneni,
and Wei Wang. Their contribution is gratefully acknowledged.

References
1. Beizer B. Black-Box Testing: Techniques for Functional Testing of Software and Systems.

Wiley: New York, 1995.
2. Bennett B, Sitaraman M. Validation of results in testing abstract data types: A method for

automation. In Proc. 1st Int'l Conf. Software Quality, Dayton, Ohio, Oct. 1991.
3. Coplien JO. Advanced C++ Programming Styles and Idioms. Addison-Wesley: Reading,

MA, 1992.
4. Doong R-K, Frankl PG. The ASTOOT approach to testing object-oriented programs. ACM

Trans. Software Engineering Methodology, 1994; 3(2): 101-130.
5. Edwards S, Shakir G, Sitaraman M, Weide BW, Hollingsworth J. A framework for detect-

ing interface violations in component-based software. In Proc. 5th Int'l Conf. Software Re-
use, IEEE CS Press: Los Alamitos, CA,1998, pp. 46-55.

6. Edwards SH. Black-box testing using flowgraphs: An experimental assessment of effec-
tiveness and automation potential. Software Testing, Verification and Reliability, Dec.
2000; 10(4), pp. 249-262.

7. Gannon JD, McMullin PR, Hamlet R. Data-abstraction implementation, specification, and
testing. ACM Trans. Programming Languages and Systems, July 1981; 3(3): 211-223.

8. Hoffman D, Strooper P. The test-graphs metholodogy: Automated testing of classes. J.
Object-Oriented Programming, Nov./Dec. 1995; 8(7): 35-41.

9. King KN, Offutt J. A FORTRAN language system for mutation-based software testing.
Software Practice and Experience, Jul. 1991, 21(7): 686-718.

10. Liskov B, Guttag J. Abstraction and Specification in Program Development. McGraw-Hill:
New York, 1986.

11. Meyer B. Object-Oriented Software Construction, 2nd Edition. Prentice Hall PTR: Upper
Saddle River, New Jersey, 1997.

12. Offutt J, Lee A, Rothermel G, Untch RH, Zapf C. An experimental determination of suffi-
cient mutant operators. ACM Trans. Software Engineering Methodology, April 1996; 5(2):
99-118.

13. Parrish A, Cordes D. Applying conventional unit testing techniques to abstract data type
operations. Int'l J. Software Eng. and Knowledge Eng., Mar. 1994; 4(1): 103-122.

14. Perry DE. The Inscape environment. In Proc. 11th Intl. Conf. On Software Eng. IEEE CS
Press: Los Alamitos, CA, 1989, pp. 2-12.

15. Rosenblum DS. A practical approach to programming with assertions. IEEE Trans. Soft-
ware Eng., Jan. 1995; 21(1): 19-31.

16. Shakir G. A Systematic Generator for Detecting Interface Violations in Component-Based
Software. M.S. Report, Dept. of Computer Science and Elec. Engineering, West Virginia
Univ., Morgantown, WV, 1999.

17. Sitaraman M, Welch LR, Harms DE. On specification of reusable software components.
Int’l J. Software Eng. and Knowledge Eng., 1993; 3(2): 207-229.

18. Sitaraman M, Weide BW, eds. Component-based software engineering using RESOLVE.
ACM SIGSOFT Software Enigineering Notes, 1994, 19(4): 21-67.

 14

19. Wang C, Musser DR. Dynamic verification of C++ generic algorithms. IEEE Trans. Soft-
ware Eng., May 1997; 23(5): 314-323.

20. Wing JM. A specifier's introduction to formal methods. IEEE Computer, Sept. 1990;
29(9): 8-24.

21. Zhu H, Hall PAV, May JHR. Software unit test coverage and adequacy. ACM Computing
Surveys, Dec. 1997, 29(4): 366-427.

22. Zweben S, Heym W, Kimmich J. Systematic testing of data abstractions based on software
specifications. J. Software Testing, Verification and Reliability, 1992, 1(4): 39-55.

