
A Feedback Mechanism for Network Scheduling in LambdaGrids ∗

Pallab Datta, Sushant Sharma
Computer and Computational Sciences Division

Los Alamos National Laboratory
Los Alamos, NM 87545

E-mail:{pallab, sushant}@lanl.gov

Wu-Chun Feng
Department of Computer Science

Virginia Tech
Blacksburg, VA 24061
E-mail: feng@cs.vt.edu

Abstract

Next-generation e-Science applications will require the
ability to transfer information at high data rates between dis-
tributed computing centers and data repositories. A Lambda-
Grid offers dedicated, optical, circuit-switched, point-to-
point connections, which may be reserved exclusively for an
application. Though such dedicated high-speed connections
eliminate congestion in the network, they effectively push the
network congestion out to the end systems, as processing
speeds have not kept up with networking speeds. Therefore,
developing an efficient transport protocol over such high-
speed dedicated circuits is of critical importance.

In this work, we propose the idea of a lightweight end-
system protocol, based on performance monitoring, to sig-
nificantly improve the performance of data transport over a
LambdaGrid. In particular, we focus on dynamically moni-
toring the OS task scheduling at the receiving end-system so
that potential end-system congestion may be detected early
and appropriate feedback can be transmitted back to the
sending end-system to avoid packet losses. One example
of such an evasive action is to suspend transmission for a
certain duration of time during which the OS on the receiv-
ing end-system must handle other computational processes.
With this in mind, we propose to extend the Reliable-Blast
UDP (RBUDP) protocol to take such evasive action by us-
ing a simple feedback mechanism that is activated via per-
formance monitoring. The new protocol, named RBUDP+

dramatically improves the performance of data transfer over
LambdaGrids. We demonstrate the effectiveness of our pro-
posed protocol and illustrate the performance gains achieved
via network emulation.

∗This work was supported by the U.S Department of Energy through
LANL contract W-7405-ENG-36. This manuscript is also available as Los
Alamos Technical Report LA-UR-06-1514.

1 Introduction

The optIPuter project [10] observed that network speeds
have been outstripping the ability of processor speeds to keep
up. This technology inversion resulted in the emergence of
LambdaGrids, which have fundamentally changed the way
that we think about distributed computing.
Instead of a generic Grid, where distributed computa-

tional facilities are connected by some generic network;
a LambdaGrid offers dedicated, optical, circuit-switched,
point-to-point connections between such computational fa-
cilities. Such dedicated circuit-switched connections avoid
the problems of network congestion at intermediate routers
of a shared packet-switched network. Examples of networks
that enable LambdaGrids include the National LambdaRail
(NLR) [3] and DOE’s UltraScience Net [2] in the United
States, CANARIE’s CA*net [5] in Canada, and NetherLight
in the Netherlands.
In contrast to shared packet-switched Grid infrastructures,

LambdaGrids have computational endpoints that are inter-
connected via dedicated high-speed links (e.g., OC-192 = 10
Gbps), thus providing an environment with no internal net-
work congestion but significant endpoint congestion. In addi-
tion, LambdaGrids typically connect a small number of large
computational resources (such as clusters) and might involve
data-transfer models ranging from point-to-point communi-
cation to a collection of endpoints that engage in many-to-one
or one-to-many communication. For example, a distributed
scientific computation running on a LambdaGrid might en-
gage in coordinated communication across a number of data
servers in order to fetch large quantities of data (e.g., 100 GB)
from distinct and distributed servers to feed a local computa-
tion or visualization. These and other similar scenarios pose
a new set of research challenges for network communication
in LambdaGrids.
Optical networks in LambdaGrids typically span over

large intra-continental or inter-continental distances, thus
resulting in networks with large bandwidth-delay products
(BDPs). Delivering high throughput in large BDP networks
is a long-standing research challenge, one that now has an en-

1



tire workshop devoted to it – The International Workshop on
Protocols for Fast Long-Distance Networks (PFLDnet). TCP
and its variants [7, 4, 8] have been used in shared packet-
switched networks for adjusting the sending rate depending
on the inferred state of congestion in the network. Given
that this type of congestion does not occur in a dedicated,
circuit-switched, optical network; TCP and its variants have
been shown to be inefficient in such networks. As a result,
numerous UDP-based transport protocols such as Reliable-
Blast UDP (RBUDP) [6] and Fixed-Rate Transport Proto-
col [13] have been proposed in the literature to overcome this
limitation.
In RBUDP, the sender transmits UDP data packets at a

fixed bit rate, specified by the user. After all the data has
been transmitted, the receiver sends the error sequence num-
bers corresponding to the data packets that it did not receive
(due to network congestion in a packet-switched network or
end-system congestion in a circuit-switched network) to the
sender via a TCP connection. The sender then re-transmits
the error sequence data packets via UDP. The above continues
until the receiver has received all data packets successfully.
In this manner, a reliable mechanism for packet delivery is
imposed on top of the unreliable connectionless UDP.
Although RBUDP has been demonstrated to perform

fairly well in LambdaGrid environments, its main weakness
is its inability to adapt the sending rate. This leads to un-
wanted packet losses, particularly when the receiving end-
system is swamped with too many packets to process, i.e.,
the network outstrips the ability of the processor to keep
up. Though dedicated optical connections such as those
in LambdaGrids effectively eliminate congestion in the net-
work, the network throughput of such connections (namely
10 Gbps for an OC-192 connection) often exceed the capa-
bilities of data processing at the end system [11, 12], thus
creating congestion at the end system.
In addition to receiving data, the receiving end-system is

oftentimes expected to be running other processes such as vi-
sualization and analysis of the received data which may be
computationally intensive. In such a case, the receiving end-
system’s operating system (OS) has to schedule a compu-
tationally (CPU) bound process (visualization and analysis)
and an I/O-bound process (receiving data) simultaneously.
Because the buffer size on the end-system’s network inter-
face card (NIC) is typically small, packets may be dropped
due to buffer overflow, i.e., when the receiving data process
is not scheduled by the OS at appropriate times to transfer the
packets from the line-card buffer in the NIC to physical mem-
ory. Transmitting data to such an end system using RBUDP
at a fixed rate, only exacerbates the problem of end-system
congestion.
In this work, we propose the idea of a lightweight end-

system protocol, based on performance monitoring, to sig-
nificantly improve the performance of data transport over a
LambdaGrid. In particular, we focus on dynamically moni-

toring the OS task scheduling at the receiving end-system so
that potential end-system congestion may be detected early
and appropriate feedback can be transmitted back to the send-
ing end-system to avoid packet losses. One example of such
an evasive action is to suspend transmission for a certain du-
ration of time during which the OS on the receiving end-
system must handle other computational processes. With
this in mind, we propose to extend the Reliable-Blast UDP
(RBUDP) protocol to take such evasive action by using a
simple feedback mechanism that is activated via performance
monitoring. The new protocol, namedRBUDP+ dramatically
improves the performance of data transfer over LambdaGrids.
We demonstrate the effectiveness of our proposed protocol
and illustrate the performance gains achieved via network
emulation.
The rest of this paper is organized as follows. First, we de-

scribe the problem in Section 2. We describe the end-system
task monitoring in Section 3. The receiver’s algorithm for
the explicit feedback mechanism to avoid packet losses is de-
scribed in Section 4. Section 5 presents the experimental set-
up, followed by experimental results in Section 6. We finally
conclude the paper in Section 7.

2 Problem Description

Dense wavelength division multiplexing (DWDM) allows
optical fibers to carry hundreds of wavelengths of 2.5 to 10
Gbps each for a total of terabits per second capacity per fiber.
A LambdaGrid is a set of distributed resources directly con-
nected with DWDM links, in which network bandwidth is no
longer the key performance limiter to communication. Com-
pared to shared, packet-switched IP networks, the key distin-
guishing characteristics of LambdaGrid networks are as fol-
lows:

• Very high-speed (e.g., OC-192 or OC-768) dedicated
links and long delays between interconnected sites.

• End-to-end network bandwidth that exceeds the data-
processing (i.e., computing) capabilities of the attached
end-systems.

• Optical links between end-system pairs that are viewed
as virtual dedicated connections, which is in contrast
to the commonly shared links in a traditional packet-
switched network.

Clearly, network performance can be substantially im-
proved in LambdaGrid environments if packet losses due to
end-system congestion are avoided when the receiving end-
system OS is context-switched to some process other than
the networking process. The following are some possible so-
lutions:

• A Real-Time OS (RTOS) can be employed. A Real-
Time OS allows for specifying hard deadlines for tasks.

2



The RBUDP receive process may be classified as a real-
time task with periodic hard deadlines specified so that
packets can be handled at the incoming data rate. How-
ever, a RTOS is expensive to maintain and may not be
suitable for all applications. Furthermore, device driver
and hardware support is not commonplace for a RTOS.
For example, no 10-Gigabit Ethernet NIC support cur-
rently exists in a RTOS.

• The buffer size in the network interface card (NIC) can
be increased so that packets are not dropped when the
OS is not ready to handle them. However, this is a very
expensive hardware solution that NIC vendors are gen-
erally not willing to provide. The Chelsio 10-Gigabit
NICs that we used in our experiments have 512-MB
RAM, but it is shared between transmitting and receiv-
ing queues, as well as for other tasks.

• Various parameters of the OS scheduler such as max-
imum allocated time slice, maximum dynamic bonus
priority granted to an I/O process, and so on, may be
adjusted so as to favor the RBUDP receive process, and
thus reduce packet losses. However, this is not a good
solution, as it would lead to customOS kernels for appli-
cations. Application scientists running in LambdaGrid
environments would rather not deal with customized
kernels or kernel patches to improve their network per-
formance.

Due to the limitations of the above approaches,
we propose a rate-adaptive transport protocol that is
lightweight and end-system performance aware, so as
to maximize the end-to-end throughput while minimiz-
ing packet loss in a LambdaGrid environment. Based
on the self-monitoring of the dynamic task scheduling
at the receiving end-system, our protocol would enable
the receiver to proactively deliver feedback to the sender
to adapt its sending rate, thus avoiding congestion and
packet losses at the receiving end-system. A proac-
tive feedback mechanism that thwarts the sender from
swamping the receiver with abundant data during pro-
cess context-switch intervals could potentially deliver
significantly better network performance.

3 End-System Task Monitoring

Our objective is to monitor the end-system performance,
so as to identify forecasted periods of end-system congestion.
By predicting the time at which the receiving end-system OS
may allocate a large time-slice to a CPU-intensive process
(and hence, does not respond to packet-handling interrupts
from the NIC), we know that this predicted time is when end-
system congestion may occur. If the sending end-system does
not transmit during such times, packet loss can be averted

Figure 1. Soft real-time process at the re-
ceiving end-system that monitors the task
scheduling at the end-system and sends ex-
plicit feedback to the sender

at the receiving end-system, thus improving the data-transfer
performance.
For the purpose of monitoring, the following system met-

rics may be considered: average CPU load, NIC buffer occu-
pancy, task time-slice, and task priority. Out of all the above,
we found the task time-slice, coupled with its priority, to be
the most helpful indicator. Furthermore, these metrics are
trivial to monitor in an OS. As shown in Figure 1, a soft real-
time (SRT) process can be implemented at the receiving end-
system that monitors the task scheduling at the end-system
and sends an explicit feedback notification back to the sender
to temporarily stop data transfer. This can significantly im-
prove the end-to-end system throughput by reducing packet
loss at the receiving host.
An OS typically distinguishes between an I/O-bound pro-

cess and a CPU-bound process. For example, the Linux ker-
nel 2.6.x scheduler maintains the dynamic priority of pro-
cesses, which is the static priority (related to task niceness)
plus a dynamic bonus granted based on process interactivity.
In the Linux kernel 2.6.x scheduler [9], the static priority for
user processes ranges from 0 to 40 (corresponding to niceness
values between -20 and +19). A lower number corresponds
to higher priority. The dynamic bonus granted by the kernel
to boost the priority of interactive tasks ranges from -5 to +5.
This is computed proportional to the average sleep time of
the task. Since I/O-bound processes are more interactive than
CPU-bound processes, they usually have a higher dynamic
priority. While choosing a task amongst a set of tasks ready
to run, the OS chooses the one with the highest priority.
In the experimental setup considered for our purposes, the

RBUDP process starts off as an I/O-bound process with a
very high priority. But as a large number of packets are re-
ceived at the receiver, the I/O-bound receive process quickly
uses all of its time-slice. This results in a reduction in the

3



avg sleep time of the I/O-bound process and translates into
a very low bonus, thus causing the dynamic priority of the
RBUDP process to decrease with time and then forcing the
RBUDP process to be context-switched out.

4 RBUDP+: Rate-Adaptive Protocol for
LambdaGrids

The main objective of our RBUDP+ protocol is to deliver
high end-to-end throughput over LambdaGrids by monitor-
ing end-system performance, so as to identify forecasted pe-
riods of end-system congestion. As noted in the previous
section, by predicting the time at which the receiving end-
system OS may allocate a large time-slice to a CPU-intensive
process, we can predict when end-system congestion might
occur because the receiving end-system OS will not be re-
sponding to packet-handling interrupts from the NIC. If the
receiver can transmit explicit feedback to the sender so that
the sender does not transmit during such times, packet loss
can be averted at the receiving end-system, thus improving
the data-transfer performance. Consequently, we propose a
RBUDP+ protocol that enables the receiver to send explicit
feedback to the sender.
We first note that the Linux kernel 2.6.x scheduler does

not contain any algorithms that run in worse than O(1) time.
That is, every part of the scheduler is guaranteed to execute
within a certain constant amount of time regardless of how
many tasks are on the system. The run-queue data structure
is the most basic structure in the Linux kernel 2.6.x scheduler;
there is one run-queue per processor. Essentially, a run-queue
keeps track of all runnable tasks assigned to a particular CPU.
In the Linux 2.6 kernel, we have two priority arrays, one is the
active array and the other is the expired array. Each of these
arrays consists of different queues of runnable processes each
set at a different priority level. For example, in Figure 2 we
have different processes in the active array varying between
priority levels 1 · · ·m. Each priority level can have a varying
number of tasks, each having a particular allocated time-slice
for execution, and a static priority (set relative to task nice-
ness) and dynamic priority (set equal to the priority level).
Similarly, we have a set of processes between priority lev-

els 1···m, in the expired array. A task’s static priority is stored
in its static prio variable, where p is a task, p→static prio is
its static priority. The Linux kernel 2.6.x scheduler rewards
I/O-bound tasks and punishes CPU-bound tasks by adding
or subtracting a task’s static priority. The adjusted priority
is called a task’s dynamic priority and is accessible via the
task’s prio variable (e.g. p→prio where p is a task). If a task
is interactive (the scheduler’s term for I/O-bound), its priority
is boosted.
The effective prio() function calculates a task’s dynamic

priority. effective prio() computes the bonus by the following
formulae:
bonus = CURRENT BONUS(p) - MAX BONUS/2;

Figure 2. The active and expired priority-arrays
with process-queues for different priority lev-
els

prio = p→static prio - bonus;
#define CURRENT BONUS(p)
NS TO JIFFIES((p)→sleep avg)×MAX BONUS/

MAX SLEEP AVG);
For simplicity, let us assume that our system has only one

I/O-intensive task and several memory-intensive tasks to be
scheduled at the receiver end-system. There can be different
scenarios in the kernel, which we illustrate here in this sec-
tion, and propose a feedback mechanism for the most com-
mon case. We skip the details of the other cases in this pa-
per since we conjecture that the receiver-bound I/O process
would most likely be re-queued in the active array, due to its
I/O-bound nature.
The I/O-intensive task can be in any of the priority levels

in the active array, as shown in Figure 2. At the end of its
time-slice, its dynamic priority is re-calculated, based on the
bonus (which again depends on the average sleep time of the
task). Depending on the value of the newly calculated dy-
namic priority and whether other tasks in the expired array
have surpassed their STARVATION LIMIT the task can get
re-entered in any of the priority levels in the active array or
may be migrated to the expired array.
For now, let us assume the simplest case, where we can

have a soft real-time process (SRT) that monitors the state of
the I/O-intensive process in the kernel. Assuming that the I/O
process associated with the RBUDP data-receive is the kth

process in the active priority array, we can deterministically
estimate the point of time when the SRT process can send a
explicit feedback message back to the sender end-system so
as to stop the transfer. This explicit feedback message con-
tains two pieces of information: (1) when to stop transmis-
sion and (2) for how long to stop transmission. The former is

4



Input: All the tasks in the active array with their individual
time-slices Ti. The time-slice value of the I/O intensive task
is TI/O.
Let the time instant at which the I/O intensive task is

scheduled be given by t.
Let the avg sleep time of each task be denoted by

avg sleep timei.
Output: (a) The time instant when the data transfer needs to
be stopped temporarily from the sender.

(b) The duration (D) for which the data transfer is
stopped temporarily.
Algorithm: The time instance at which data transfer needs
to be stopped temporarily is given by t + TI/O and the noti-
fication is sent at the time instant t, the I/O task is scheduled.
(Assumption: all the tasks will use their individual time-
slices and will not enter the sleep/wait queue).
The duration for which data transmission needs to be stopped
temporarily =

∑
i
Ti ∀ Ti " avg sleep timei

Note: The above algorithm assumes that the new dynamic
priority of the I/O task would be such that it gets scheduled
after tasks in the active array whose avg sleep time are neg-
ligible compared to their time-slices.

Figure 3. Algorithm for Feedback Notification

calculated as the time period that the RBUDP receive process
is scheduled for; the latter is the time period for which the
RBUDP receive process is context-switched out.
The main challenge is to determine the time-period for

which the SRT process asks the sending end-system to sus-
pend data transmission. There are different possible scenar-
ios at the end of the time-slice of the I/O-bound task: it can
be enqueued into a queue in the expired array, or it might
be re-queued into the active array after re-calculation of its
dynamic priority. Because the RBUDP receive process is
I/O-bound and generally has a very high priority, the prob-
ability of it getting re-enqueued into the active array is very
high. Hence, we assume that the RBUDP receive process is
re-entered in the active array at the end of its time-slice of
execution.
Since we cannot be exactly sure at the beginning of the ex-

ecution of the receiver task, as to what its next dynamic pri-
ority would be, we can conservatively estimate that its new
dynamic priority would not be less than δ of its current pri-
ority. Assuming the I/O-bound RBUDP receive process has
a new dynamic priority which is not less than δ of the cur-
rent priority, we can estimate the time period for which the
sender should be asked to suspend its transmission. Suppose
the current priority of the receive task is p→prio. We can
then look ahead all the tasks that are in the queues of prior-
ity level higher than or equal to p→prio - δ. We take each
task in each of these priority levels and add their time-slice
values for all tasks with smaller avg sleep time values. This
can be used as an estimate for which the I/O-bound process

does not get scheduled, and hence, the sender should not be
instantiating transmission from its end. One of the assump-
tions made here in the computation of this time period is that
all the other remaining processes in the system finish execu-
tion, according to their time-slice values, and do not enter the
wait/sleep queue during its execution.
The above calculation assumes that all the tasks that get

scheduled after the I/O-bound process, do not re-enter at a
priority level higher than p→prio - δ if they are re-entered in
the active array. This is based on the intuition that these pro-
cesses initially had a lower priority as compared to the receive
process. Hence, they get lower priority values in subsequent
scheduling iterations. The detailed algorithm for feedback
notification is presented in Figure 3.

Figure 4. The receiver process moves to the
expired array at the end of its time-slice.

Now, we analyze some of the other scenarios which can
occur in the kernel and propose some insights about when
and how feedback can be sent to the sending end-system to
prohibit data transfer.
It can happen that the receiving I/O bound task is queued

to the expired array after re-calculation of its dynamic prior-
ity (as shown in Figure 4). Feedback needs to be sent to the
sending end-system at the beginning of the time-slice inter-
val of the receiving process as described before to suspend
data transfer for a certain interval of time. We need to esti-
mate the time interval for which the data transfer needs to be
stopped temporarily. Assume that all the other tasks in the
active array are CPU-intensive tasks, and they get inserted
into the run-queues of the expired array after execution and
re-calculation of their dynamic priorities. Then the total time
interval for which the data transfer needs to be suspended can
be easily computed to be the summation of the time-slices of
all the tasks in the active run-queue and the summation of
the time-slices of the tasks ahead of the I/O-intensive task in

5



the expired array. This algorithm however explicitly assumes
that each task gets enqueued to the expired run-queue after
re-calculation of their dynamic priority at the end of each
time-slice interval. It also assumes that each task executes
to its completion at the end of their individual time-slices and
does not enter the wait-queue in between. It has a compu-
tational complexity of O(n), where n is the total number of
active tasks in the system.

5 Experimental Set-Up

In order to emulate a LambdaGrid network, we used the
following experimental set-up. We connected two machines
(both the machines were AMD Opteron’s with a clock of 2.2
Ghz and a cache of 1024MB and 1GB DDR RAM) back-to-
back with Chelsio 10-Gigabit Ethernet (10GigE) adapters [1].
The Maximum Transfer Unit (MTU) is 1500 bytes. We emu-
late an end-system to end-system file transfer by transferring
a 700MB file between the two machines using the 10GigE
Ethernet cards.
Though our set-up does not explicitly incorporate a vari-

able network-delay element to emulate different round-trip
times (RTTs), our RBUDP+ protocol will work with any de-
lay inserted between the end-systems. To emulate Lambda-
Grids with different RTT’s, the receiver simply delays the
feedback by an amount equivalent to RTT/2, since RTT/2 is
the time that will be taken by feedback to reach the sender on
an actual LambdaGrid network. As the sender also knows
the RTT, instead of continuing to send the data for time
equal to time-slice t allotted to the RBUDP receive process
on receiver side, it will send data for a time-period equal to
t − (RTT/2).
We transferred a file of size 700MB via the RBUDP trans-

port protocol [6] and our proposed RBUDP+ transport proto-
col, using the experimental setup described above. For both
protocols, we measured the end-system to end-system trans-
fer time for sending rates between 0.8-3.4 Gbps. We per-
formed emulation studies under two scenarios: (1) the receiv-
ing end-system was kept under no additional computational
load, and (2) the receiving end-system was loaded with a syn-
thetic load. In order to emulate a computational load, we cre-
ated a synthetic benchmark that is both CPU- and memory-
intensive. We did not enable any offload engine support that
is available on the Chelsio network interface cards.

6 Experimental Results

This section presents our experimental studies for
the RBUDP protocol [6][12] and our proposed protocol
RBUDP+. The experiments were conducted for a file
of size 700MB. We also vary the sending rates of the
RBUDP/RBUDP+ at no load between 0.8-3.4 Gbps. The
experimental studies for the above settings are repeated for

Figure 5. Comparison of data transfer times for
RBUDP+ and RBUDP at no load conditions

Figure 6. Comparison of data transfer times for
RBUDP+ and RBUDP in loaded conditions

RBUDP and our proposed protocol RBUDP+ in the pres-
ence of a synthetic load that is both CPU- and memory-
intensive. The synthetic load can be varied to tune the load of
the receiving end-system.
The experiments were repeated for varying synthetic load

at the receiving end-system. Typically the RBUDP protocol
should perform better than theRBUDP+ protocol, under no
load conditions, since the RBUDP+ protocol interrupts the
sending process from swamping data to the receiving end-
system and it does that, based on a predictive estimate of how
the tasks gets scheduled in the end-system.
As shown in Figure 5, the RBUDP+ protocol performs

slightly worse as compared to the traditional RBUDP pro-
tocol. This is because in the absence of any other load,
the normal RBUDP scheme keeps pumping data from the
sender to the receiver and the I/O-bound process never gets
context-switched out. In comparison, the RBUDP+ proto-

6



Figure 7. Comparison of standard deviation of
the simulated data for RBUDP+ and RBUDP at
no-load conditions

Figure 8. Comparison of standard deviation of
the simulated data for RBUDP+ and RBUDP in
loaded conditions

col aggressively or proactively stops the sender from sending
data at certain instances during its data transfer. This results
in RBUDP+ consuming slightly more time for the total data
transfer as compared to the RBUDP scheme.
From Figure 5, we observe that the total data transfer time

actually decreases steadily up to a transmission rate of 2.8
Gbps and then increases slowly for both the schemes.
Figure 6 shows the performance of the proposedRBUDP+

protocol in comparison to the RBUDP protocol in the pres-
ence of the memory-intensive synthetic benchmark. It also
shows the effective total transfer time of the RBUDP+ proto-
col when we account for the time that is saved at the sender
end (when we stop the sender from blasting data). As can
be seen from Figure 6, there is a total time savings of the or-
der of 3% during which other applications can be scheduled

at the sending end. At the receiver end we see a savings of
the order of 10-25%which can again used to schedule certain
other compute intensive applications. It also shows how the
proposed RBUDP+ protocol outperforms the RBUDP pro-
tocol in the presence of computational loads at the receiv-
ing end. Hence we can infer that the RBUDP protocol only
performs well in situations when the receiver is extremely
lowly loaded. In the presence of other computational loads
or memory-intensive applications, the I/O-bound process at-
tached to the RBUDP transfer gets context-switched out more
often, and hence suffers from the total time taken to transfer
the data.
If we examine Figure 6 more closely we can see that the

RBUDP+ protocol without taking into account the time sav-
ings at the sender end, performs slightly worse than the stan-
dard RBUDP protocol at low sending rates. As the sending
rates are increased beyond 2.4 Gbps, the RBUDP+ proto-
col starts performing better than the RBUDP protocol. This
might be because, at such high rates the receiver might get
swamped with too much data and may not be able to handle
all of it. The RBUDP+ protocol prohibits such a scenario by
proactively stopping the sender from sending any data by pre-
dictively estimating the time instances for which I/O-bound
process will get context-switched out and also sending the
feedback at the appropriate time.
Figure 7 and Figure 8 illustrate the standard deviation of

the simulation results for both the RBUDP+ and the RBUDP
protocol under varying transmission rates, in no-load and
loaded conditions. A standard deviation is a measure of how
much spread variation there is in the data. As can be seen
the standard deviation were much higher for the RBUDP
transfers as compared to the RBUDP+ protocol. Hence the
RBUDP+ protocol achieves more steady transfer time as
compared to the RBUDP protocol.
Table 1 presents the 99% confidence intervals for all the

emulation results for our proposed protocol RBUDP+ and
RBUDP under both loaded and no-loaded conditions. As can
be observed, the confidence intervals are pretty close, except
for RBUDP which produces fluctuating total transfer times at
high transfer rates in the presence of system load.

Discussion

From the above simulation results, we can observe that the
RBUDP+ protocol outperforms the RBUDP protocol in the
presence of high-computational and memory-intensive loads
at the receiver end and also at high data transfer rates. This
can be attributed to the proactive nature of RBUDP+ to stop
the sender from sending data during time-intervals when the
I/O-bound is not scheduled at the receiving end.
We can hence derive some heuristic approach that fine

tunes the selection of the traditional RBUDP approach and
the proposed RBUDP+ protocol, based on inputs on system
load at the receiving end, and the bandwidth for transmission.

7



Table 1. 99% confidence intervals for all simulations
Rates RBUDP+ RBUDP RBUDP+-Load RBUDP-Load
0.8Gbps (7.14, 7.41) (6.99, 6.995) (41.83, 44.15) (41.23, 42.90)
1.2Gbps (4.87, 5.14) (4.62, 4.63) (40.34, 41.62) (39.4, 42.14)
1.6Gbps (3.71, 4.51) (3.52, 3.53) (38.14, 42.04) (38.53, 41.06)
2.0Gbps (3.29, 3.63) (2.73, 3.06) (38.60, 42.00) (38.67, 40.15)
2.4Gbps (2.77, 3.09) (2.09, 2.35) (39.08, 41.92) (37.7, 41.5)
2.8Gbps (2.39, 3.34) (1.94, 2.24) (39.75, 41.22) (42.83, 51.75)
3.2Gbps (3.39, 3.99) (2.15, 2.7) (55.41, 65.87) (63.35, 86.73)
3.4Gbps (3.73, 4.64) (2.5, 3.05) (81.46, 181.03) (88.21, 207.46)

This might be one of the probable approaches to study in our
future work.

As has been observed above the throughput of the
RBUDP+ protocol is significantly better than the RBUDP in
the presence of heavy loads. This can be attributed to lower
loss rates at the receiving end, thus preventing the sender
from re-transmitting large amounts of lost packets. We ob-
served some initial number on the loss rates at the receiver
for both the protocols, and this confirms this assertion. Thus
the RBUDP+ protocol can be extremely efficient in multime-
dia transmission or real-video applications, where there may
not be sufficient time to re-transmit the lost frames.

7 Conclusion

Recent advances in DWDM networks have fundamentally
changed the communication requirements for future Lambda-
Grids, where there is sufficient network bandwidth but lim-
ited end-system capacity. This motivates our work of shifting
the network transmission management from the network to
the end-systems. We propose a receiving end-system feed-
back mechanism, which accounts for the dynamic prioriti-
zation of tasks and prevents the sender from swamping the
receiver with more and more data. as well as a receiver-based
rate allocation scheme

In this work, we demonstrated the impact of the end-
system computational load on high-speed data transfer. To
improve the performance of data transfer on a end-system
under additional computational load, we have proposed
a lightweight dynamic task priority monitoring protocol,
named RBUDP+.

We performed emulation studies and demonstrated the ef-
fectiveness of the protocol in terms of low data transfer time
and also significantly lower loss rates at the receiver. Hence
the proposed protocol can be applicable to high-speed data
transfer over LambdaGrids for various high-performance net-
work applications.

Acknowledgments

We express our sincere gratitude to Venkatram Vish-
wanath, who was an intern at LANL, and the Electronic Vi-
sualization Group at UIC, for providing the Quanta-RBUDP
code for our simulation studies.

References

[1] Chelsio t210 10 gigabit ethernet adapter.
http://www.chelsio.com/products/T210.htm, 2005.

[2] DoE ultrascience net. http://www.csm.ornl.gov/ultranet, 2005.
[3] The National Lambda Rail. http://www.nlr.net, 2005.
[4] L. Brakmo and L. Peterson. Tcp vegas:end to end conges-

tion avoidance on a global internet. IEEE Journal of Selected
Areas in Communications, 13(8):1465–1480, 2003.

[5] CANARIE. Canarie network. http://www.canarie.ca, 2005.
[6] E. He, J. Leigh, O. Yu, and T. A. DeFanti. Reliable blast

udp:predictable high performance bulk data transfer. Proceed-
ings IEEE Cluster Computing, Chicago, Illinois, 2002.

[7] V. Jacobson. Congestion avoidance and control. Computer
Communication Review, 18(4), August 1998.

[8] M. Mathis, J. Mahdavi, S. Flyod, and A. Romanow. Tcp se-
lective acknowledgement options. RFC2018, Internet Engi-
neering Task Force (IETF), October 1996.

[9] T. L. . Scheduler. http://josh.trancesoftware.com/linux/linux
cpu scheduler.pdf, 2005.

[10] L. Smarr, A. Chien, T. DeFanti, J. Leigh, and P. Papadopou-
los. The optiputer. Communications of the Association for
Computing Machinery, 47(11), 2004.

[11] R. Wu and A. Chien. Gtp:group transfer protocol for lambda
grids. Proceedings of CCGrid, Chicago, Illinois, 2004.

[12] C. Xiong and et.al. Lambdastream-a data transport protocol
for streaming network intensive applications over photonic
networks. In Proceedings of PFLDNet, Lyon, France, January
2005.

[13] X. Zheng, A. P. Mudambi, and M. Veeraraghavan. Frtp:
Fixed rate transport protocol – a modified version of sabul for
end-to-end circuits. Proceedings IEEE BroadNets Workshop,
2004.

8


