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Abstract. Dynamic voltage scaling (DVS) allows a program to execute
at a non-peak CPU frequency in order to reduce CPU power, and hence,
energy consumption; however, it is oftentimes done at the expense of per-
formance degradation. For a program whose execution time is bounded
by peripherals’ performance rather than the CPU speed, applying DVS
to the program will result in negligible performance penalty. Unfortu-
nately, existing DVS-based power-management algorithms are conserva-
tive in the sense that they overly exaggerate the impact that the CPU
speed has on the execution time. We propose a new DVS algorithm that
detects the CPU-boundedness of a program on the fly (via a regression
method on the past MIPS rate) and then adjusts the CPU frequency ac-
cordingly. To illustrate its effectiveness, we compare our algorithm with
other DVS algorithms on real systems via physical measurements.

1 Introduction

Dynamic voltage and frequency scaling (DVS) is a mechanism whereby soft-
ware can dynamically adjust CPU voltage and frequency. This mechanism al-
lows systems to address the problem of ever-increasing CPU power dissipation
and energy consumption, as they are both quadratically proportional to the
CPU voltage. However, reducing the CPU voltage may also require the CPU
frequency to be reduced and results in degraded CPU performance with respect
to execution time. In other words, DVS trades off performance for power and
energy reduction.

The performance loss due to running at a lower CPU frequency raises several
issues. First, a user who pays to upgrade his/her computer system does not
want to experience performance degradation. Second, running programs at a
low CPU frequency may end up increasing total system energy usage [1–3].
In order to control (or constrain) the performance loss effectively, a model that
relates performance to the CPU frequency is essential for any DVS-based power-
management algorithm (shortened as DVS algorithm hereafter).

A typical model used by many DVS algorithms predicts that the execution
time will double if the CPU speed is cut in half. Unfortunately, this model
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overly exaggerates the impact that the CPU speed has on the execution time. It
is only in the worst case that the execution time doubles when the CPU speed is
halved; in general, the actual execution time is less than double. For example, in
programs with a high cache miss ratio, performance can be limited by memory
bandwidth rather than CPU speed. Since memory performance is not affected by
a change in CPU speed, increasing or decreasing the CPU frequency will have
little effect on the performance of these programs. We call this phenomenon
— sublinear performance slowdown. Consequently, researchers have been trying
to exploit this program behavior in order to achieve better power and energy
reduction [4–7].

One common technique to exploit the sublinear performance slowdown de-
composes program workload into regions based on their CPU-boundedness. The
decomposition can be done statically using profiling information [4] or dynam-
ically through an auxiliary circuit [5] or through a built-in performance moni-
toring unit (PMU) [6, 7]. In this paper, we propose a new PMU-assisted, on-line
DVS algorithm called β-adaptation that provides fine-grained, tight control over
performance loss and takes advantage of sublinear performance slowdown. This
new β-adaptation algorithm is based on an extension of the theoretical work
developed by Yao et al. [8] and by Ishihara and Yasuura [9]. Via physical mea-
surements, we will demonstrate the effectiveness of the β-adaptation algorithm
when compared to several existing DVS algorithms for a number of applications.

The rest of the paper is organized as follows. Section 2 characterizes how
current DVS algorithms relate performance to CPU frequency. With this char-
acterization as a backdrop, we present a new DVS algorithm (Section 3) along
with its theoretical foundation (Section 4). Then, Section 5 describes the exper-
imental set-up, the implemented DVS algorithms, and the experimental results.
Finally, Section 6 concludes and presents some future directions.

2 Related Work

There have been some attempts to exploit the sublinear performance slowdown
(where increasing or decreasing the CPU frequency will have little effect on the
performance of a program) to achieve more power and energy reduction. For
example, Li et al. [5] propose to set the CPU to a low speed whenever an L2
cache miss occurs, whereas Hsu and Kremer [4] use off-line profiling to identify
memory-bound program regions. The former approach requires an auxiliary cir-
cuit, and the latter approach needs source code and compiler support. These
requirements make their approaches more difficult to implement in practice.

Another approach is to use built-in performance monitoring unit (PMU) to
assist in the on-line detection of sublinear performance slowdown. Our work
and Choi et al.’s recent work [6, 7] belong to this category. Both use a regres-
sion method and PMU support to perform the on-line construction of a simple
performance-prediction model so as to capture the degree of CPU-boundedness.
In general, the design of PMU-assisted on-line DVS algorithms is not an easy
task. First, the PMU is notorious for its incomplete set of event counting and



inconsistency across generations of the CPU. Second, the correlation of event
counts to power and performance is not yet clear. Hence, for now, a PMU-
assisted, on-line, DVS algorithm ought to minimize its dependency on event
counts and rely as much as possible on those event counts that are consistent
across CPU generations.

Our work differs from Choi et al.’s work in the definition of CPU-boundedness,
and thus, the detection mechanism. Choi et al.’s work is based on the ratio of
the on-chip computation time to the off-chip access time. In contrast, our al-
gorithm defines CPU-boundedness as the fraction of program workload that is
CPU-bound. Because of the different definitions, the set of events monitored
by the PMU for each algorithm is different. In Section 5.5, we argue that our
DVS algorithm is equally effective but has a simpler implementation. Moreover,
we provide a theoretical foundation of why our DVS algorithm is effective in
achieving energy optimality. We believe that the same theoretical result can be
applied to their work as well.

3 β-Adaptation: A New DVS Algorithm

Here we describe a new, interval-based, PMU-assisted, DVS algorithm that pro-
vides fine-grained, tight control over performance loss as well as exploits the
sublinear performance scaling in memory-bound and I/O-bound programs. The
theoretically-based heuristic algorithm is based on an extension of the theoretical
work developed by [8] and [9] (details in Section 4):

If the CPU power draw is a convex function of the CPU frequency, then
for any program whose performance is an affine function of the CPU fre-
quency, running at a constant CPU speed and meeting the deadline just
in time will minimize the energy usage of executing the program. If the
desired CPU frequency is not directly supported, the two immediately-
neighboring CPU frequencies can be used to emulate the desired CPU
frequency and result in an energy-optimal DVS schedule.

To account for the sublinear performance slowdown, the following model that
relates performance to the CPU frequency is often used [6, 7, 10]:

T (f) = Wcpu ·
1

f
+ Tmem (1)

The total execution time T (f) at frequency f is decomposed into two parts. The
first part models on-chip workload in terms of CPU cycles. Its value is affected by
the CPU speed change. The second part models the time due to off-chip accesses
and is invariant to changes in the CPU speed. Note that this breakdown of the
total execution time is inexact when the target processor supports out-of-order
execution because on-chip execution may overlap with off-chip accesses [11].
However, in practice, the error tends to be quite small [6, 7].

The model T (f) treats program performance as an affine function of the CPU
frequency f and thus allows us to apply the aforementioned theoretical result.



We simply execute a program at CPU frequency f∗ such that D = T (f∗) where
D is the deadline of the program. However, there are two challenges in using the
theorem this way. First, in many cases there is no consensus on how to assign
a deadline to a program, e.g., scientific computation. Second, to use T (f), we
need to know the values of the coefficients, Wcpu and Tmem. These coefficients
are oftentimes determined by the hardware platform, program source code, and
data input. Thus, calculating these coefficients statically is very difficult.

We address these challenges by defining a deadline as the relative performance
slowdown and by estimating the model’s coefficients on the fly (without any off-
line profiling nor compiler support). The relative performance slowdown δ

δ =
T (f)

T (fmax)
− 1 (2)

where fmax is the peak CPU frequency, has been used in previous work [6, 7, 11].
It is widely accepted in programs that are difficult to assign deadlines in terms
of absolute execution time. It also carries more timing requirement information
than CPU utilization and IPC rate. Providing this user-tunable parameter δ in
our DVS algorithm allows fine-grained, tight control over performance loss.

To estimate the coefficients more efficiently, we first re-formulate the original
two-coefficient model in Equation (1) as a single-coefficient model:

T (f)

T (fmax)
= β ·

fmax

f
+ (1 − β) (3)

with

β =
Wcpu

Wcpu + Tmem · fmax
(4)

The coefficient β is, by definition, a value between 0 and 1. It was introduced
by one of the authors in [4] to quantify, for a program, the performance impact
to the CPU speed change. The metric represents the fraction of the program
workload that scales linearly with the CPU frequency. If a program has β = 1,
it means the execution time of the program will double when the CPU speed is
halved. In contrast, a program with β ≈ 0 will have its execution time remained
the same even running at the slowest CPU speed.

The coefficient β is computed at run time using a regression method on the
past MIPS rates reported from the PMU. Specifically, our DVS algorithm keeps
track of the average MIPS rate for each executed CPU frequency and applies the
least-square fitting at each interval to dynamically re-compute the new β value:

β =

∑

i(
fmax

fi
− 1)(

mips(fmax)

mips(fi)
− 1)

∑

i(
fmax

fi
− 1)2

(5)

where mips(f) is the average MIPS rate for CPU frequency f . Note that our
mechanism assumes a constant number of total instructions in a program, regard-
less of the running CPU frequency. This assumption has been verified through



For every I seconds, do the following:

1. Use Equation (5) to compute β.
2. Compute frequency f∗.

f∗ = max

(

fmin,
fmax

1 + δ/β

)

3. Figure out fj and fj+1.

fj ≤ f∗ < fj+1

4. Compute the ratio r.

r =
1/f∗ − 1/fj+1

1/fj − 1/fj+1

5. Run r · I seconds at fj.

6. Run (1 − r) · I seconds at fj+1.

7. Update mips(fj) and mips(fj+1).

Fig. 1. Algorithm β-adaptation. Parameter δ is the relative performance slowdown and
parameter I is the length of an interval in seconds.

extensive experiments. In practice, the value of β converges very quickly for the
benchmarks we tested.

The rest of the algorithm simply applies the theoretical result to compute the
desired CPU frequency f∗ for each interval, once the coefficient β is updated,
plus some bookkeeping on mips(f). The derivation of f∗ comes by equating
Equation (2) with Equation (3). Figure 1 outlines the entire algorithm.

4 Theoretical Foundation

In the previous section, we claim a theoretical result for energy-optimal DVS
scheduling which extends both Yao et al.’s work in [8] and Ishihara and Yasuura’s
work in [9]. In this section we provide evidence to support our claim.

The energy-optimal DVS scheduling problem considered here is taken from [4].
That previous work only provides a problem formulation. In this paper we pro-
vide a theorem that characterizes the energy-optimal DVS schedule for the prob-
lem. The theorem is also closely related to previous work such as Miyoshi et al.’s
“critical power slope” [2].

A DVS system is assumed to export n settings {(fi, Pi)}, where Pi is the CPU
power dissipation (in watts) at CPU frequency fi. Without loss of generality, we
assume 0 < fmin = f1 < · · · < fn = fmax. We also denote the total execution
time of a program running at setting i as Ti. Finally, to facilitate discussion, we
define Ei = Pi ·Ti, where Ei is the energy consumption (in joules) when running
for Ti seconds at CPU frequency fi.

The DVS scheduling problem is formulated as follows: Given a program and a
deadline D (in seconds), find a DVS schedule (t∗1, · · · , t

∗

n) such that if the program
is executed for t∗i seconds at setting i, the total energy usage E is minimized, the
deadline D is met, and the required work is completed. Mathematically speaking,



t∗ = argmin{E =
∑

i

Pi · ti :
∑

i

ti ≤ D,
∑

i

ti/Ti = 1, ti ≥ 0} (6)

To simplify the discussion of the theorem, we handle a few corner cases first.
First, the condition D ≥ mini Ti has to be satisfied so that the problem is feasible.
Second, if the condition D ≥ maxi Ti is satisfied, the problem becomes the
classical fractional Knapsack problem [12]. In this case, the energy-optimal DVS
schedule will execute the entire program at setting i∗ where i∗ = argi min{Ei}.
For the case of T1 = · · · = Tn, the above DVS schedule is also energy-optimal.
What is left is the case mini Ti < D < maxi Ti, which we assume to be true for
the following theorem.

Theorem 1. If

Ti =
c1

fi
+ c0, c1 6= 0

and
P1 − 0

f1 − 0
≤

P2 − P1

f2 − f1
≤

P3 − P2

f3 − f2
≤ · · · ≤

Pn − Pn−1

fn − fn−1

then

t∗i =











1/f∗−1/fj+1

1/fj−1−fj+1
· Tj i = j

D − t∗j i = j + 1
0 otherwise

where
fj ≤ f∗ < fj+1

Proof. (See the Appendix).

Theorem 1 says that for any program whose execution time is an affine function
of the CPU frequency, if the DVS settings in a CPU are well-assigned (explained
below), then we can run the program at a CPU frequency that finishes the
execution right at the deadline and results in an energy-optimal schedule. If the
desired CPU frequency is not directly supported, it can be emulated by the two
immediately-neighboring CPU frequencies.

For any DVS-enabled processor whose power draw can be modeled as a
convex function of its frequency, the processor’s DVS settings are always well-
assigned. However, some realistic processors do not have well-assigned DVS set-
tings by default. In these processors, the lowest frequency f1 can be emulated
by the combination of frequency 0 (i.e., the CPU in sleep mode) and the sec-
ond lowest frequency f2 with a lower power dissipation, i.e., P1−0

f1−0 > P2−P1

f2−f1
. As

a result, completing a task before its deadline and putting the CPU into sleep
mode is more energy-efficient than completing the task at the deadline. This is
the phenomenon observed by Miyoshi et al. [2] and motivated them to devise a
technique called “critical power slope”. The phenomenon can be eliminated by
making adjustments to DVS settings so that they become well-assigned.



Finally, Theorem 1 extends the work presented by Yao et al. [8] and by
Ishihara and Yasuura [9]. First, both works assume that c0 = 0. Second, Ishihara
and Yasuura’s work assumes a fixed relationship between f and V in a DVS
setting; namely,

f = k · (V − VT )α/V (7)

where k, VT , α are positive constants. Unfortunately, today’s DVS processors
may not be able to support such an assumption. This is because these processors
only provide a discrete set of CPU frequencies and voltages, whereas the above
equation requires a continuous range of CPU frequencies to be supported for a
discrete set of voltages. Theorem 1 loosens these assumptions to facilitate DVS
algorithms on realistic processors.

5 Experiments

In this section, we describe our experimental environment in which we evaluate
and compare algorithm β-adaptation with several other DVS algorithms. We
also present an in-depth discussion of the experimental results.

5.1 Experimental Setup

In order to acquire high-fidelity experimental data, we set-up our experiments
using physical measurements, as shown in Figure 2(a). The experimental re-
sults were collected through a Yokogawa WT210 digital power meter [13]. The
power meter continuously samples the instantaneous wattage at every 20 µs.
The profiling and tested computer both run the Linux 2.4.18 kernel. All the
benchmarks were compiled by GNU compilers with optimization level -O2. All
the benchmarks were run to completion; each run took over a minute.
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Computer
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Wall 
Power Outlet
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Fig. 2. The experimental setup.



The benchmarks are taken from SPEC’s CPU95 benchmark suites. The SPEC

benchmarks [14] emphasize the performance of the CPU and memory, but not
other computer components such as I/O (disk drives), networking or graphics.
We chose to use the SPEC benchmarks because they demonstrate a range of
performance sensitivity to the CPU frequency change, i.e., they have a wide
range of β values [4]. The experimental data are collected by running these SPEC
benchmarks with the reference data input.

The hardware platform in our experiments is an HP NX9005 notebook com-
puter. This computer includes a mobile AMD Athlon XP 2200+ processor, 256-
MB DDR SDRAM, 266-MHz front-side bus, a 30-GB hard disk, and a 15-inch
TFT LCD display. The mobile AMD Athlon XP processor has been used in
Sun’s Fire B100x blade servers [15]. It has a total of 384-KB cache space. The
processor exports two registers that the software can write the target frequency
and voltage values into. In our experiments, we restrict the processor to have five
settings as shown in Figure 2(b). The transition time from one setting to another
is 100 microseconds. During the measurements, the battery was removed, and
the monitor was turned off.

Finally, when presenting the experimental results, we associate with each
application its β value. Recall that the metric β represents the fraction of the
program workload that is very sensitive to the CPU speed change. That is, the
higher the β of a program, the more CPU-bound its performance. The β value
for each benchmark was derived by profiling total execution times for all settings
and then applying a least-squares fit on Equation (3).

5.2 Implemented DVS Algorithms

To evaluate the effectiveness of our DVS algorithm β-adaptation, we have im-
plemented a number of other DVS algorithms. Though we do not claim that
the implemented DVS algorithms represent a comprehensive comparison of all
existing approaches, we feel that the range is wide enough to evaluate the effec-
tiveness of our algorithm and to gain new insights from the experimental results.
The following is a brief description of each algorithm we implemented.

2step: This algorithm assumes dual CPU speeds in the processor and monitors
the CPU utilization percentage periodically. If the percentage is higher than
a pre-defined threshold, the algorithm will set the CPU to the fast speed; if
it is lower than another pre-defined threshold, the algorithm will set the CPU
to the low speed. This DVS algorithm is considered to be the best algorithm
in Grunwald et al.’s empirical study on several interval-based algorithms using
CPU utilization [16]. In our implementation, the two thresholds are 50% and
10% and the two speeds are the maximum and the minimum CPU speeds in the
processor.

nqPID: This algorithm was proposed by Varma et al. [17] as a refinement of
the 2step algorithm. Recognizing the similarity of DVS scheduling and a clas-
sical control-systems problem, the authors took the equation describing a PID



controller (Proportional-Integral-Derivative) and modified it to suit the DVS
scheduling problem. This algorithm significantly improved the control over per-
formance loss that the 2step algorithm lacks. In addition, the authors found out
that the algorithm’s effectiveness does not depend on careful tuning of parame-
ters, which is a nice feature given that 2step’s effectiveness is critically dependent
on the choice of application-specific threshold values [16].

freq: This algorithm is similar to strategies that reclaim the slack time between
the actual processing time and the worst-case execution time (e.g., [18, 19]).
Specifically, the algorithm keeps track of the amount of remaining CPU work
Wleft and the amount of remaining time before the deadline Tleft. The desired
CPU frequency fnew at each interval is simply

fnew =
Wleft

Tleft
.

The algorithm assumes that the total amount of work in CPU cycles is known
a priori, which, in practice, is often unpredictable [1] and not always a constant
across frequencies [10].

mips: This algorithm is taken from [20] and represents a DVS strategy guided
by an externally specified performance metric. Specifically, the new frequency
fnew at each interval is computed by

fnew = fprev ·
MIPStarget

MIPSobserved

where fprev is the frequency for the previous interval, MIPStarget is the exter-
nally specified performance requirement, and MIPSobserved is the real MIPS rate
observed in the previous interval. In our experiments, each benchmark has its
own MIPStarget, which is derived by measuring the MIPS rate for the entire
application and then dividing it by (1 + δ).

5.3 Experimental Results

Table 1 presents the experimental results for the five interval-based DVS al-
gorithms. When a program is memory-bound or I/O-bound (β close to zero),
there is substantial opportunity to reduce CPU energy consumption with neg-
ligible performance loss. In contrast, when a program is CPU-bound, there is
little opportunity to reduce CPU power and energy within a tight performance-
loss bound of 5%. Moreover, none of these five DVS algorithms could produce
a DVS schedule that had the exact performance degradation of 5%; the actual
performance loss varied from one benchmark to another.

Among the five interval-based DVS algorithms, the β-adaptation algorithm
outperforms the others. In a sense, it verifies that our mechanism for comput-
ing CPU-boundedness on the fly is of low overhead and that the algorithm is
effective in providing tight control over performance loss due to DVS as well



Table 1. The effectiveness of 5 different DVS algorithms. Each table entry is in the
format of relative-time/relative-energy with respect to the total execution time and
system energy usage when running the application at the highest setting throughout
the entire execution.

program β 2step nqPID freq mips β-adapt.

swim 0.02 1.00/1.00 1.04/0.70 1.00/0.96 1.00/1.00 1.04/0.61

tomcatv 0.24 1.00/1.00 1.03/0.69 1.00/0.97 1.03/0.83 1.00/0.85

su2cor 0.27 0.99/0.99 1.05/0.70 1.00/0.95 1.01/0.96 1.03/0.85

compress 0.37 1.02/1.02 1.13/0.75 1.02/0.97 1.05/0.92 1.01/0.95

mgrid 0.51 1.00/1.00 1.18/0.77 1.01/0.97 1.00/1.00 1.03/0.89

vortex 0.65 1.01/1.00 1.25/0.81 1.01/0.97 1.07/0.94 1.05/0.90

turb3d 0.79 1.00/1.00 1.29/0.83 1.03/0.97 1.01/1.00 1.05/0.94

go 1.00 1.00/1.00 1.37/0.88 1.02/0.99 0.99/0.99 1.06/0.96

as exploiting the sublinear performance slowdown for significantly more CPU
power and energy savings. Algorithms mips and nqPID arguably rank second.
Algorithm mips delivers better control over performance loss for all eight bench-
marks that we tested, whereas algorithm nqPID performs better with respect to
power and energy reduction but at the expense of more substantial performance
loss. This is especially obvious for the CPU-bound benchmarks. Algorithms freq
and 2step clearly rank last.

So, what have we learned from this experiment? First, the number of in-
structions is a better metric for specifying the CPU work requirement than the
number of CPU cycles. For the benchmarks we tested, we found that the number
of instructions tends to remain constant across all settings. In contrast, the num-
ber of CPU cycles varies significantly depending on the executed DVS schedule.
For example, the swim benchmark, when running at the lowest setting, has only
60% of the CPU execution cycles running at the highest setting. Typically, algo-
rithm freq uses the worst-case execution cycles which in our case is the number
of CPU cycles at the highest setting. This approach exaggerates the amount of
the CPU work to be done and results in less effective energy reduction. This
explains why algorithm mips performs better than algorithm freq.

Second, a large window size of past PMU reports is better than a small
window size of past PMU reports. In the experiments we found that the MIPS
rate varies significantly from interval to interval, especially for CPU-intensive
applications. However, the accumulated MIPS rate converges quickly. Thus, the
use of the MIPS rate in a global manner seems to be more effective than the use of
the rate in a local manner. This partially explains the effectiveness of algorithm
β-adaptation compared to algorithm mips. One concern, however, for using a
large window size is that the DVS algorithm may be less responsive for programs
that expose multiple execution phases of varying degrees of CPU-boundedness.
For the SPEC benchmarks, which are known to have the aforementioned behavior,
this does not seem to be a problem. More details can be found in Section 5.4.



Finally, we confirmed that CPU utilization by itself does not provide enough
information about system timing requirements. As a result, the control over
performance loss is unsatisfactory. This can be seen from the experimental results
of algorithm 2step and algorithm nqPID. Algorithm 2step does not seem to
perform any DVS scheduling. This is because the CPU for SPEC benchmarks is
active almost all the time, i.e., its CPU utilization is always full. In this case,
there exists no optimal threshold values for 2step to make it more effective.
Algorithm nqPID refines algorithm 2step by removing the threshold mechanism
from the end user. While it is more effective than algorithm 2step in terms of
CPU power and energy reduction, the lack of enough information about deadlines
makes it impossible to provide tight control over performance loss.

5.4 The Impact of Multiple-Phase Execution Behavior

To better address the impact of multiple-phase programs to the DVS algorithm
β-adaptation, we compare it with a profile-based, off-line DVS algorithm called
hsu [4]. The algorithm hsu uses PMU-assisted off-line profiling and source code
analysis to identify the most energy-profitable region in a program to slow down
without causing the performance loss to surpass a pre-defined level. Off-line
profiling is performed on a section-by-section basis while the DVS scheduling
decisions are made in a global manner, competitively comparing the different
sections. This global view of the impact of DVS on different code sections allows
more effective DVS scheduling, especially for multiple-phase programs such as
the SPEC benchmarks.

Algorithm hsu also uses the relative performance slowdown δ to specify con-
trol over performance loss. Thus, it allows us to compare the two algorithms on a
fair basis. In the experiments we executed the profile-based algorithm hsu with
two different training inputs, denoted as hsu(train) and hsu(ref) respectively.
The two sets of training inputs are provided along with the SPEC benchmark
codes. Table 2 shows the experimental results of both algorithms for the CFP95
benchmark suite.

We conclude that the effectiveness of algorithm β-adaptation is compara-
ble to that of algorithm hsu. Both algorithms achieve a significant amount of
CPU power and energy reduction with tight control over performance loss. It
is interesting to note that the two algorithms seem to complement each other.
Algorithm β-adaptation performs better in CPU-bound benchmarks from mgrid
to fpppp, whereas algorithm hsu performs better in memory-bound benchmarks
from swim to hydro2d. We are in the process of investigating the causes for this
phenomenon.

As mentioned in Section 2, the effectiveness of profile-based DVS algorithms
is highly determined by its training data input. In our experiments, we found
that algorithm hsu chose different program regions to slow down in seven of the
10 benchmarks. Running the reference data input as the training input does
not necessarily yield a better result, for example, apsi. We suspect that the
instrumented program for profiling has somewhat altered the instruction access
pattern and is considerably different from the original code. According to Hsu’s



Table 2. The comparison of our new on-line DVS algorithm β-adaptation with an
off-line DVS algorithm hsu. Each table entry is in the format of relative-time/relative-
energy with respect to the total execution time and system energy usage when running
the application at the highest setting throughout the entire execution.

program β hsu(train) hsu(ref) β-adapt.

swim 0.02 1.01/0.75 1.04/0.59 1.04/0.61

tomcatv 0.24 1.03/0.70 1.06/0.60 1.00/0.85

hydro2d 0.19 1.03/0.75 1.03/0.79 1.02/0.84

su2cor 0.27 1.01/0.88 1.02/0.83 1.03/0.85

applu 0.34 1.03/0.87 1.03/0.87 1.04/0.85

apsi 0.37 1.03/0.85 1.04/0.91 1.05/0.83

mgrid 0.51 1.01/1.00 1.01/1.00 1.03/0.89

wave5 0.52 1.00/1.00 1.00/1.00 1.04/0.87

turb3d 0.79 1.04/0.95 1.04/0.95 1.05/0.94

fpppp 1.00 1.00/1.00 1.00/1.00 1.06/0.95

dissertation [21], the SUIF2 compiler infrastructure, on which algorithm hsu was
built, also has a major impact on the experimental results.

5.5 A Comparison with Choi et al.’s Work

In this section, we compare and contrast our work with Choi et al.’s work in [6,
7]. Recall that both works are based on the same Equation (1). The difference
is in the calculation of equation coefficients. Our work calculates β defined in
Equation (4), whereas Choi et al.’s work calculates αf defined as follows:

αf = f ·
Tmem

Wcpu
(8)

Analytically, the two metrics are equivalent:

β =
1

1 + αf · fmax/f
(9)

However, there are several major differences in terms of implementation.
First, the β metric is invariant to a CPU frequency change, whereas the αf met-
ric is defined with respect to a particular CPU frequency f . Thus, the number
of coefficients calculated in Choi et al.’s DVS algorithm is more than the num-
ber of coefficients calculated in algorithm β-adaptation. Second, the formula in
calculating αf is more complex. This is due to the two-coefficient model they
use, in contrast to the one-coefficient model we use. Finally, the number of PMU
event counts needed for calculating β is smaller than that for calculating αf .
Since a CPU can simultaneously count a finite number of events, counting too
many events may introduce a larger time overhead.

Finally, our new DVS algorithm has a simpler implementation than Choi et
al.’s work. However, we cannot do an empirical comparison given the current



setting we have. Choi et al. implemented their DVS algorithms on Intel Xscale-
based processors which does not provide counting for the number of retired in-
structions. On the other hand, our hardware platform, Athlon XP processor, does
not provide counting for the number of executed instructions. In fact, this is one
of the big issues in using the PMU to assist DVS scheduling — the CPU events
may not be compatible nor consistent across different hardware platforms. This
is also why Choi et al. presented two platform-dependent implementations [6, 7]
of the same DVS algorithm [6].

5.6 Sensitivity Analysis of Algorithm Parameters

In this section, we present a sensitivity analysis of the parameters in algorithm
β-adaptation, i.e., δ for the relative performance slowdown and I for the length
of an interval, as shown in Figure 1.

For the SPEC CPU95 benchmarks, the average execution time increases at
a pace of 3% for every 5% increase in δ, whereas the average energy consump-
tion stays around 20% after δ passes 30%. As δ increases, the algorithm slows
down CPU-bound programs which have lower performance-power ratios. Hence,
setting δ at a small value such as 5% is recommended.

In terms of the interval size I, the average execution time is a U-shape curve.
Since setting I to a large value, such as five seconds, did not let the program run
at the converged f∗ for a sufficiently long time and setting I to a small value
such as 10 milliseconds introduced a significant amount of time overhead, we
recommend setting I at a value between 50 milliseconds to 1 second.

6 Conclusions and Future Work

In this paper, we proposed a new, PMU-assisted, interval-based, DVS algorithm
that detects the CPU-boundedness of a program on the fly and adjusts the CPU
speed accordingly. The algorithm is no arbitrary heuristic. It is based on an
extension of the previous theoretical work for energy-optimal DVS scheduling
problem. The algorithm has also proven to be effective in comparison with a
number of DVS algorithms through physical measurements. That is, the new
algorithm provides fine-grained, tight control over performance loss as well as
exploits the sublinear performance slowdown. Finally, the algorithm is simple to
implement.

Our new DVS algorithm can be refined in various ways. One particular direc-
tion is to use compiler hints as additional scheduling support. While this idea is
not new (e.g., [19, 22]), the type of hint that the compiler should provide so that
the overall DVS algorithm is effective is still a research topic for general-purpose
systems. To relieve the compiler from the difficulty of giving exact timing in-
formation off-line, we could have the compiler simply identify and distinguish
execution phases of a program in terms of CPU-boundedness in an approximate
manner. Algorithm β-adaptation can then be refined to compute the β value
for each of these phases to further improve its effectiveness for memory-bound
programs.
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Appendix

To prove Theorem 1, we first show that the following chain of inequalities is
true.

0 ≥
E2 − E1

T2 − T1
≥

E3 − E2

T3 − T2
≥ · · · ≥

En − En−1

Tn − Tn−1

This is not difficult to prove because

Ei − Ei−1

Ti − Ti−1
−

Ei+1 − Ei

Ti+1 − Ti
= fi ·

(

Pi+1 − Pi

fi+1 − fi
−

Pi − Pi−1

fi − fi−1

)

+fi ·
c0

c1
·

(

Pi+1 − Pi

fi+1 − fi
· fi+1 −

Pi − Pi−1

fi − fi−1
· fi−1

)

≥ 0

and
Ei+1 − Ei

Ti+1 − Ti
=

fifi+1

fi − fi+1
·

[(

Pi+1

fi+1
−

Pi

fi

)

+
c0

c1
(Pi+1 − Pi)

]

≤ 0.

Then we define ri = ti/Ti and introduce a new function Emin(d) as follows.

Emin(d) = min{
∑

i

ri · Ei :
∑

i

ri · Ti = d,
∑

i

ri = 1, ri ≥ 0}

Since the sequence {Ei+1−Ei

Ti+1−Ti
}i=1,···,n−1 is non-increasing, function Emin(d) is

equivalent to the piecewise-linear function that connects points {(Ti, Ei)}. Since
the slopes of chords in this piecewise-linear function are all non-positive, Emin(d)
is non-increasing. Thus, we seek for a solution of Emin(D) as Emin(D) ≡
min{Emin(d) : d ≤ D}. For Tj+1 < D ≤ Tj, Emin(D) is the function value at D
in the chord connecting points (Tj , Ej) and (Tj+1, Ej+1). The proof is completed
by solving the linear system of t∗j + t∗j+1 = D and t∗j/Tj + t∗j+1/Tj+1 = 1. ut




