
Initial End-to-End Performance Evaluation of 10-Gigabit Ethernet
�

Justin (Gus) Hurwitz, Wu-chun Feng�
ghurwitz,feng � @lanl.gov

Research & Development in Advanced Network Technology (RADIANT)
Computer & Computational Sciences Division

Los Alamos National Laboratory
Los Alamos, NM 87545

Abstract

We present an initial end-to-end performance evaluation
of Intel’s R

�
10-Gigabit Ethernet (10GbE) network inter-

face card (or adapter). With appropriate optimizations to
the configurations of Linux, TCP, and the 10GbE adapter,
we achieve over 4-Gb/s throughput and 21- � s end-to-end
latency between applications in a local-area network de-
spite using less capable, lower-end PCs. These results in-
dicate that 10GbE may also be a cost-effective solution for
system-area networks in commodity clusters, data centers,
and web-server farms as well as wide-area networks in sup-
port of computational and data grids.

1. Introduction

From its humble beginnings as shared Ethernet to its
current success as switched Ethernet in local- and system-
area networks (LANs and SANs) and its anticipated suc-
cess in metropolitan- and wide-area networks (MANs and
WANs), Ethernet continues to evolve to meet the increas-
ing demands of packet-switched networks. Furthermore, it
does so at low implementation cost while maintaining high
reliability and relative simplicity in installation (i.e., “plug-
n-play”), administration, and maintenance.

Although the recently ratified standard for 10-Gigabit
Ethernet (10GbE) differs from earlier Ethernet standards,
primarily with respect to operating only over fiber and only
in full-duplex mode, it remains Ethernet, and more impor-
tantly, does not obsolete current investments in network in-
frastructure. The 10GbE standard ensures interoperability
not only with respect to existing Ethernet but also other net-
working technologies such as SONET, thus paving the way
for Ethernet’s expanded use in MANs and WANs.

While 10GbE was mainly intended to allow for easy mi-
gration to higher performance levels in backbone infras-

�
This work was supported by the US DOE Office of Science through

LANL contract W-7405-ENG-36. This paper is also available as the fol-
lowing technical report: LA-UR 03-2713, April 2003.

tructures, we show in this paper that such performance can
also be delivered to bandwidth-hungry host applications via
the new 10GbE network interface card (or adapter) from
Intel R

�
. We first begin with an architectural overview of

the adapter in Section 2. In Sections 3 and 4, we present
the testing environments and experiments for the 10GbE
adapters, respectively. Section 5 provides results and analy-
sis. In Section 6, we examine the bottlenecks that currently
impede achieving greater performance. Section 7 compares
the 10GbE results with other high-speed interconnects. Fi-
nally, we make a few concluding remarks in Section 8.

2. Architecture of a 10GbE Adapter

The world’s first host-based 10GbE adapter, officially
known as the Intel R

�
PRO/10GbE LR server adapter, intro-

duces benefits of 10GbE connectivity into LAN and SAN
environments, thereby accommodating the growing number
of large-scale systems and bandwidth-intensive applications
such as imaging and data mirroring. This first-generation
10GbE adapter contains a 10GbE controller that is imple-
mented in a single chip and contains both the MAC and
PHY layer functions. The controller, in turn, is optimized
for servers that use the PCI and PCI-X I/O bus backplanes.

Figure 1 provides an architectural overview of the
10GbE adapter, which consists of three main components:
82597EX 10GbE controller, 512-KB of flash memory, and
1310-nm serial optics. The 10GbE controller provides an
Ethernet interface that delivers high performance by pro-
viding direct access to all memory without using mapping
registers, minimizing interrupts and programmed I/O (PIO)
read access that are required to manage the device, and off-
loading the host CPU of simple tasks such as TCP check-
sum calculations.

As is common practice with high-performance adapters
such as Myricom’s Myrinet [2] and Quadrics’ QsNet [12],
the 10GbE adapter frees up host-CPU cycles by performing
certain tasks (in silicon) on behalf of the host CPU. In con-
trast to Myrinet and QsNet adapters, however, the 10GbE

Proceedings of IEEE Hot Interconnects: 11th Symposium on High-Performance
Interconnects; Palo Alto, CA, USA; August 2003.

PCS
8B/10B

3.125Gbps
SerDes

512K flash

82597EX
Intel

XAUI

4x3.125Gbps

4x3.125Gbps

G
X

X
S

C
P

S
M
A

P
RX

Optics
TX

Optics

Intel 1310nm Serial Optics

C
P

I
−
X

MAC
DMA

PCI−X Bus I/F

XGM II

10.3Gbps OUT

10.3Gbps IN

Intel PRO/10GbE−LR

R

R

Figure 1. Architecture of the 10GbE Adapter

adapter focuses on host off-loading of certain TCP/IP tasks1

rather than on RDMA and source routing. As a result,
unlike Myrinet and QsNet, the 10GbE adapter provides
a general-purpose solution to applications, a solution that
does not require any modification to applications code to
achieve high performance, e.g., over 4 Gb/s from applica-
tion to application with an end-to-end latency near 20 � s.

3. Testing Environments

We evaluate the performance of the Intel 10GbE adapter
in three different LAN/SAN environments:

� Direct single-flow between two computers connected
back-to-back via a crossover cable,

� Indirect single-flow between two computers through a
Foundry R

�
FastIronTM 1500 switch,

� Multiple flows through the FastIron 1500 switch,

where the computers that host the 10GbE adapters are ei-
ther Dell R

�
PowerEdgeTM 2650 (PE2650) servers or Dell

PowerEdge 4600 (PE4600) servers.
Each PE2650 contains dual 2.2-GHz Intel XeonTMCPUs

running on a 400-MHz front-side bus (FSB), using a
ServerWorks R

�
GC-LE chipset with 1 GB of memory and a

dedicated 133-MHz PCI-X bus for the 10GbE adapter. The-
oretically, this architectural configuration provides 25.6-
Gb/s CPU bandwidth, up to 25.6-Gb/s memory bandwidth,
and 8.5-Gb/s network bandwidth via the PCI-X bus.

Each PE4600 contains dual 2.4-GHz Intel Xeon CPUs
running on a 400-MHz FSB, using a ServerWorks GC-HE
chipset with 1 GB of memory and a dedicated 100-MHz
PCI-X bus for the 10GbE adapter. This particular configu-
ration provides theoretical bandwidths of 25.6-Gb/s, 51.2-
Gb/s, and 6.4-Gb/s for the CPU, memory, and PCI-X bus,
respectively.

In addition to the above hosts, we use a Foundry FastIron
1500 switch for both our indirect single-flow and multi-
flow tests. In the latter case, the switch aggregates GbE
and 10GbE streams from (or to) many hosts into a 10GbE

1Specifically, TCP & IP checksums and TCP segmentation.

stream to (or from) a single host. The total backplane band-
width (480 Gb/s) in the switch far exceeds the needs of our
tests as each of the two 10GbE ports is limited to 8.5 Gb/s.

From a software perspective, all the above hosts run cur-
rent installations of Debian Linux with customized kernel
builds and tuned TCP/IP stacks. Specific kernels that we
used include 2.4.19, 2.4.19-ac4, 2.4.19-rmap15b, 2.4.20,
and 2.5.44. Because the performance differences between
these various kernel builds prove negligible, we do not re-
port the running kernel version in any of the results.

4. Experiments

In this paper, our experiments focus on the performance
of bulk data transfer. We use two tools to measure network
throughput — NTTCP [11] and IPerf [6] — and note that
the experimental results from these two tools correspond to
another oft-used tool called netperf [9].

NTTCP and IPerf work by measuring the time required
to send a stream of data. IPerf measures the amount of data
sent over a consistent stream in a set time. NTTCP, a ttcp
variant, measures the time required to send a set number of
fixed-size packets. In our tests, IPerf is well suited for mea-
suring raw bandwidth while NTTCP is better suited for op-
timizing the performance between the application and the
network. As our goal is to maximize performance to the
application, NTTCP provides more valuable data in these
tests. We therefore present primarily NTTCP data through-
out the paper. (Typically, the performance difference be-
tween the two is within 2-3%. In no case does IPerf yield
results significantly contrary to those of NTTCP.)

To estimate the end-to-end latency between a pair of
10GbE adapters, we use NetPipe [10] to obtain an aver-
aged round-trip time over several single-byte, ping-pong
tests and then divide by two.

To measure the memory bandwidth of our Dell Pow-
erEdge systems, we use STREAM [13].

To estimate the CPU load across our throughput tests, we
sample /proc/loadavg at five- to ten-second intervals.

And finally, to better facilitate the analysis of data trans-
fers, we make use of two tools, tcpdump [14] and MAG-
NET [5]. tcpdump is commonly available and used for
analyzing protocols at the wire level. MAGNET is a pub-
licly available tool developed by our research team at Los
Alamos National Laboratory.

5. Experimental Results and Analysis

We begin our experiments with a stock TCP stack. From
this starting point, we implement optimizations one by one
to improve network performance between two identical
Dell PE2650s connected via 10GbE.

The more common device and TCP optimizations result
in little to no performance gains. These optimizations in-
clude changing variables such as the device transmit queue
lengths and the use of TCP timestamps.

We then tune TCP by calculating the ideal bandwidth-
delay product and setting the TCP window sizes accord-
ingly. Running in a LAN, we expect this product to be rela-
tively small, even at 10GbE speeds. The latency is observed
to be 21 � s running back-to-back and 27 � s running through
the Foundry switch. At full 10GbE speed, this results in a
maximum bandwidth-delay product of about 52 KB, well
below the default window setting of 64 KB. At observed
speeds, the maximum product is well under half of the de-
fault. In either case, these values are within the scope of
the default maximum window settings. Minor performance
increases may be had by increasing the default window set-
tings to be equal to the maximum window settings.

As our immediate goal is to demonstrate the maximum
possible performance across the 10GbE adapters so that it
may be reproduced, we present our optimizations in a cu-
mulative manner. Further analysis of the specific benefits of
each optimization will be addressed in future work.

5.1. Baseline: Stock TCP with Standard MTU Sizes

We begin with single-flow experiments across a pair of
unoptimized (stock) Dell PE2650s using a standard 1500-
byte MTU as well as a 9000-byte jumbo-frame MTU. In
their stock configurations, the dual-processor PE2650s have
a standard maximum PCI-X burst transfer size (controlled
by the Maximum Memory Read Byte Count, MMRBC,
register) of 512 bytes and run a symmetric multiprocess-
ing (SMP) kernel. In each single-flow experiment, NTTCP
transfers 32,768 packets ranging in size from 128 bytes to
16 KB at increments ranging in size from 32 to 128 bytes.

Figure 2 shows that using a larger MTU size pro-
duces 40-60% better throughput than the standard 1500-
byte MTU. This result can be directly attributed to the addi-
tional load that 1500-byte MTUs impose on the CPU, e.g.,
interrupts every 1500 bytes instead of every 9000 bytes.
Specifically, for 1500-byte MTUs, the CPU load is approxi-
mately 0.9 on both the send and receive hosts while the CPU
load is only 0.4 for 9000-byte MTUs.

We observe bandwidth peaks at 1.8 Gb/s with a 1500-
byte MTU and 2.7 Gb/s with a 9000-byte MTU. The sharp
drops and jumps in bandwidth are addressed in Section 5.4.

5.2. Increasing the PCI-X Burst Transfer Size

Although the default maximum PCI-X burst transfer size
is 512 bytes, the 10GbE adapter supports a burst size as
large as 4096 bytes. Thus, in these experiments, we in-
crease the PCI-X burst transfer size (i.e., MMRBC register)
to 4096 bytes. As shown in Figure 3, this simple optimiza-
tion to the 10GbE hardware improves peak performance for
a 9000-byte MTU to over 3.6 Gb/s, a throughput increase
of 33% over the baseline case. With a 1500-byte MTU, in-
creasing the burst size only produces a marginal increase
in throughput, indicating that the burst size does not hinder
performance with respect to smaller MTUs.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 2048 4096 6144 8192 10240 12288 14336 16384

M
bi

t/s
ec

Payload Size (bytes)

"1500MTU,SMP,512PCI"
"9000MTU,SMP,512PCI"

Figure 2. Stock TCP: 1500- vs. 9000-byte MTU

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 2048 4096 6144 8192 10240 12288 14336 16384

M
bi

t/s
ec

Payload Size (bytes)

"1500MTU,SMP,4096PCI"
"9000MTU,SMP,4096PCI"

Figure 3. 4096-byte PCI-X Burst Transfer Size

The CPU load remains relatively unchanged from the
baseline numbers reported above.

5.3. Running a Uniprocessor Kernel

With the optimization to the PCI-X burst transfer size in
place, our next counterintuitive optimization is to replace
the SMP kernel with a uniprocessor (UP) kernel. At the
present time, the P4 Xeon SMP architecture assigns each
interrupt to a single CPU instead of processing them in a
round-robin manner between CPUs. As a result, the inter-
rupt context code of the 10GbE driver cannot take advan-
tage of a SMP configuration. Coupled with the additional
cost of kernel locking, this currently results in UP kernels
running faster than SMP kernels.

When switching from an SMP to UP kernel, Figure 4
shows that the average throughput for 9000-byte MTUs im-
proves by approximately 20% (compared to Figure 3). For
1500-byte MTUs, both the average and maximum through-
puts increase by nearly 20%.

In these tests, we observe that the CPU load was uni-
formly lower than in the SMP tests. This is primarily due to
less time being spent by the CPU in a spin-locked state.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 2048 4096 6144 8192 10240 12288 14336 16384

M
bi

t/s
ec

Payload Size (bytes)

"1500MTU,UP,4096PCI"
"9000MTU,UP,4096PCI"

Figure 4. Uniprocessor Kernel

5.4. Memory Tuning

In Section 5.1, we observed sharp decreases and in-
creases in the throughput for the baseline case of a 9000-
byte MTU. And although the frequency of the throughput
changes decreased with each optimization that we made, the
magnitude of the throughput changes increased sharply.

Using tcpdump, we trace the causes of this behavior
to ineffecient window use by both the sender and receiver.
To fully explain these causes requires a technical discussion
that is beyond the scope of this paper. Briefly, the causes are
a result of (1) a large MSS2 relative to the ideal window size
and (2) Linux’s TCP stack keeping both the advertised and
congestion windows MSS-aligned.3

On the receive side, the actual advertised window is sig-
nificantly below the expected values from Section 5, e.g., 52
KB. This behavior is a consequence of Linux’s implemen-
tation of the Silly Window Syndrome (SWS) avoidance al-
gorithm [3]. Because the advertised window is kept aligned
with the MSS, it cannot be increased by small amounts.4

The larger that the MSS is relative to the advertised window,
the harder it becomes to increase the advertised window.

On the sender side, performance is similarly limited
because the congestion window is kept aligned with the
MSS [1]. For instance, with a 21- � s latency, the theoreti-
cal ideal window size for 10GbE is about 52 KB, as noted
in Section 5. With a 9000-byte MTU (8948-byte MSS, with
options), this translates to just under 6 packets per window.
Neither the sender nor the receiver can transfer 6 complete
packets; both can do at best 5 packets. This attenuates the
ideal data rate by nearly 15%. The effect can be even more
severe at lower data rates.

We partially overcome the first limitation by simply in-
creasing the default socket buffer size. (Performance with
the larger default socket buffers is discussed in the next sec-

2Loosely speaking, MSS = MTU – packet headers.
3Linux is not unique in this behavior; it is shared by most modern TCPs.
4The window is aligned by � ��� �����	��
��������� ��������������� "!#! . This

rounds the window down to the nearest increment of MSS bytes.

tion.) However, this is a poor “band-aid” solution. There
should be no need to set the socket buffer to many times
the ideal window size in any environment; in a WAN en-
vironment, setting the socket buffer too large can severely
hurt performance. The low latencies and large MSS in
LAN/SAN environments, however, undermine the conven-
tional wisdom surrounding window settings.

Furthermore, this solution does not prevent the sender
from being artificially limited by the congestion window.
A better solution might take the form of modifications to
the SWS avoidance and congestion-window algorithms to
allow for fractional MSS increments when the number of
segments per window is small.

We first ran into this problem when working with IP over
the Quadrics interconnect. The problem manifested itself to
a lesser extent due to the lower data rates of Quadrics QsNet
(3.2 Gb/s). However, as latency decreases, bandwidth in-
creases, and perhaps most importantly, MTU size increases,
this problem will only exacerbate itself further.

5.5. Peak Performance

Figure 5 shows the performance for 1500-byte and 9000-
byte MTUs with 256-KB socket buffer sizes. The peak
bandwidth is 2.47 Gb/s with a 1500-byte MTU and 3.9 Gb/s
with a 9000-byte MTU.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 2048 4096 6144 8192 10240 12288 14336 16384

M
bi

t/s
ec

Payload Size (bytes)

"1500MTU,UP,4096PCI,256kbuf,medres"
"9000MTU,UP,4096PCI,256kbuf,medres"

Figure 5. Peak Performance, Standard MTUs

We achieve better performance with non-standard MTU
sizes. The peak observed bandwidth achieved with a 9000-
byte jumbo-frame compatible MTU (Figure 6) is 4.11 Gb/s
with an 8160-byte MTU.5 With a larger MTU of 16000
bytes, we get similar peak bandwidth (4.09 Gb/s) but with a
higher average.

Interestingly, the curve for the larger MTU shows typi-
cal asymptotic growth up to a point, at which time it falls,
and then levels off. The analysis of our tests reveal that, as
discussed in the previous section, the congestion window is
artificially capping the bandwidth. In this particular case,

58160-byte MTUs can be used in conjunction with any hardware that
supports 9000-byte MTUs.

the congestion window gets “stuck” at 2 segments. (As a
point of reference, Figure 6 also labels the theoretical max-
imum bandwidths for Gigabit Ethernet, Myrinet [7, 8], and
QsNet [12].)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 2048 4096 6144 8192 10240 12288 14336 16384

M
bi

t/s
ec

Payload Size (bytes)

Myrinet

1GbE

QsNet

"16000MTU,UP,4096PCI,256kbuf,medres"
"8160MTU,UP,4096PCI,256kbuf,medres"

Figure 6. Peak Performance, Other MTUs

6. Analysis of Performance Limits

Given that the hardware based bottleneck in the Dell
PE2650s is the PCI-X bus at 8.5 Gb/s, the peak through-
put of 4.11 Gb/s is only about half the rate that we expect.

In all of our experiments, the CPU load remains low
enough for us to believe that the CPU is not a primary
bottleneck. This is supported by the fact that disabling
TCP timestamps yields no increase in throughput: disabling
timestamps gives the CPU more time for TCP processing
and should therefore yield greater throughput if the CPU
were a bottleneck.

It is possible that the inherent complexity of the TCP re-
ceive path (relative to the transmit path) results in a receive
path bottleneck. In addition, while we have anecdotal ev-
idence that the ServerWorks GC-LE chipset is capable of
sustaining better than 90% of the PCI-X bandwidth it has
not been confirmed. In short, both the TCP receive path
and the actual PCI-X bus performance are potential bot-
tlenecks. To evaluate both, we conduct multi-flow testing
of the 10GbE adapters through our Foundry FastIron 1500
switch. These tests allow us to aggregate nearly 16 Gb/s
from multiple 1GbE-enabled hosts to one or two 10GbE-
enabled hosts (or vice versa).

In the first set of tests, we transmit to (or from) a single
10GbE adapter. These tests identify bottlenecks in the re-
ceive path, relative to the transmit path, by multiplexing the
processing required for one path across several machines
while keeping the aggregated path to (or from) a single
10GbE-enabled Dell PE2650 constant. These results un-
expectedly show that the transmit and receive paths are of
statistically equal performance. Given the relative complex-
ity of the receive path compared to the transmit path, we
initially expect to see better performance when the 10GbE

adapter is transmitting to multiple hosts than when receiv-
ing from multiple hosts. Previous experience provides a
likely explanation for this behavior. Packets from multiple
hosts are more likely to be received in frequent bursts than
are packets from a single host, allowing the receive path
to benefit from interrupt coalescing, thereby increasing the
receive-side bandwidth relative to transmit bandwidth.6.

Multiplexing GbE flows across both 10GbE adapters
yields results statistically identical to those obtained using
a single 10GbE adapter. We can therefore rule out the PCI-
X bus as a primary bottleneck. In addition, this test also
eliminates the 10GbE adapter as a primary bottleneck.

Using the Dell PE4600s, we determine that memory
bandwidth is not a likely bottleneck either. The PE4600s
use the GC-HE chipset, offering a theoretical memory band-
width of 51.2 Gb/s; the STREAM [13] memory bench-
mark reports 12.8-Gb/s memory bandwidth on these sys-
tems, nearly 50% better than that of the Dell PE2650s.
Despite this higher memory bandwidth, we observe no in-
crease in network performance. There are, unfortunately,
enough architectural differences between the PE2650 and
PE4600 that further investigation is required.

Thus, this (obviously) leaves the host software’s ability
to move data between every component in the system as the
likely bottleneck. Given that the Linux kernel’s packet gen-
erator reports a maximum total bandwidth of approximately
5.5 Gb/s (8160-bytes packets at approximately 88,400 pack-
ets/sec), the host software itself attenuates throughput by 3
Gb/s (i.e., 8.5 Gb/s - 5.5 Gb/s) and is the primary bottleneck
toward achieving higher performance.

7. Putting the 10GbE Numbers in Perspective

In this section, we discuss the actual performance that
one can expect out of Gigabit Ethernet, Myrinet, and even
QsNet (rather than the theoretical maximums shown in Fig-
ure 6) in order to provide a better reference point for the
10GbE results.

Our extensive experience with 1GbE chipsets7 allows us
to achieve near line-speed performance with a 1500-byte
MTU in a LAN/SAN environment with most payload sizes.
With additional optimizations in a WAN environment, sim-
ilar performance can be achieved while still using a 1500-
byte MTU.8

For comparison to Myrinet, we report Myricom’s pub-
lished performance numbers for their adapters [7, 8]. Us-
ing their proprietary GM API, sustained unidirectional
bandwidth is 1.984 Gb/s and bidirectional bandwidth is
3.912 Gb/s. Both of these numbers are within 3% of the
2-Gb/s unidirectional hardware limit. The GM API provide
latencies on the order of 6-7 � s. To use this API, however,
requires rewriting portions of legacy applications’ code.

6This confirms results in [4], albeit by very different means.
7e.g., Intel’s e1000 line and Broadcom’s Tigon3
8Internet2 Land Speed Record set on November 19, 2002: single-

stream TCP/IP of 923 Mb/s over a distance of 10,978 km.

Myrinet provides a TCP/IP emulation layer to avoid this
problem. The performance of this layer, however is no-
tably less than that of the GM API. Bandwidth drops to
1.853 Gb/s, and latencies skyrocket to over 30 � s.

Our experiences with Quadrics’ QsNet produced uni-
directional bandwidth and latency numbers of 2.456 Gb/s
and 4.9 � s, respectively, using QsNet’s Elan3 API. As
with Myrinet’s GM API, the Elan3 API requires applica-
tion codes to rewrite their network code, typically from a
sockets API to Elan3 API. To address this issue, Quadrics
also has a highly efficient implementation of TCP/IP that
produces 2.240 Gb/s of bandwidth and under 30- � s latency.
For additional performance results, see [12].

In summary, when comparing TCP/IP performance
across all interconnect technologies, our initial 10GbE
bandwidth number (4.11 Gb/s) is over 300% better than
GbE, over 120% better than Myrinet, and over 80% than
QsNet while our 10GbE latency number (21 � s) is roughly
400% better than GbE and 50% better than Myrinet and Qs-
Net. Finally, even when comparing our 10GbE TCP/IP per-
formance numbers with the numbers from other intercon-
nects’ specialized network software (e.g., GM and Elan3),
we find the 10GbE performance to be highly competitive.

8. Conclusion

With the current generation of SAN interconnects such
as Myrinet and QsNet being theoretically hardware-capped
at 2 Gb/s and 3.2 Gb/s, respectively, achieving 4 Gb/s of
end-to-end throughput with 10GbE makes it a viable com-
modity interconnect for SANs in addition to LANs. How-
ever, its Achilles’ heel is its 21- � s end-to-end latency, which
is about three times slower than Myrinet/GM (but 1.5 times
better than Myrinet/IP) and four times slower than Qs-
Net/Elan3 (but 1.5 times better than QsNet/IP). This dif-
ference can be attributed mainly to the host software.

In recent tests on 533-MHz FSB Intel E7505-based sys-
tems running Linux, we have achieved 4.64 Gb/s through-
put. The greatest difference between these systems and the
PE2650s is the FSB, which indicates that the CPU’s ability
to move — but not process — data, might be an important
bottleneck. These tests have not yet been fully analyzed.

To continue this work, we are currently instrumenting
the Linux TCP stack with MAGNET to perform per-packet
profiling and tracing of the stack’s control path. MAGNET
allows us to profile arbitrary sections of the stack with CPU-
clock accuracy, while 10GbE stresses the stack with previ-
ously impossible loads. Analysis of this data is giving us an
unprecedentedly high-resolution picture of the most expen-
sive aspects of TCP processing overhead [4].

While a better understanding of current performance
bottlenecks is essential, the authors’ past experience with
Myrinet and Quadrics leads them to believe that an OS-
bypass protocol implemented over 10GbE would result in
throughput approaching 7-8 Gb/s and end-to-end latencies
on the order of 10 � s. However, because high-performance

OS-bypass protocols require an on-board (programmable)
network processor on the adapter, the 10GbE adapter from
Intel currently cannot support an OS-bypass protocol.

The availability of 10-Gigabit Ethernet provides a re-
markable opportunity for network researchers in LANs,
SANS, MANs, and even WANs. The unprecedented
(commodity) performance offered by the Intel PRO/10GbE
server adapter has also enabled us9 to smash the Internet2
Land Speed Record (http://lsr.internet2.edu) on February
27, 2003, by sustaining 2.38 Gb/s across 10,037 km be-
tween Sunnyvale, California and Geneva, Switzerland, i.e.,
23,888,060,000,000,000 meters-bits/sec.

Acknowledgements

We would like to thank the Intel team — Patrick Connor,
Caroline Larson and Peter Molnar of the LAN Access Di-
vision — for their support of this effort and Eric Weigle for
his assistance throughout this project.

References

[1] M. Allman, V. Paxson, and W. Stevens, “TCP congestion
control,” RFC-2581, April 1999

[2] N. Boden, D. Cohen, R. Felderman, A. Kulawik, C. Seitz,
J. Seizovic, and W. Su, “Myrinet: A Gigabit-Per-Second
Local Area Network,” IEEE Micro, Vol. 15, No. 1, Jan-
uary/February 1995.

[3] D. Clark, “Window and Acknowledgment Strategy in TCP,”
RFC-813, July 1982.

[4] D. Clark, V. Jacobson, J. Romkey, and H. Salwen, “An anal-
ysis of TCP processing overhead,” IEEE Communications,
Vol. 27, No. 6, Jume, 1989, pp. 23-29.

[5] M. K. Gardner, W. Feng, M. Broxton, A Engelhart, and
G. Hurwitz, “MAGNET: A Tool for Debugging, Analysis
and Reflection in Computing Systems,” Proceedings of the
3rd IEEE/ACM International Symposium on Cluster Com-
puting and the Grid (CCGrid’2003), May 2003.

[6] “Iperf 1.6 - The TCP/UDP Bandwidth Measurement Tool,”
http://dast.nlanr.net/Projects/ Iperf/.

[7] “Myrinet Ethernet Emulation (TCP/IP & UDP/IP) Per-
formance,” http://www.myri.com/myrinet/performance/
ip.html.

[8] “Myrinet Performance Measurements,” http://
www.myri.com/myrinet/performance/index.html.

[9] “Netperf: Public Netperf Homepage,” http://
www.netperf.org/.

[10] “NetPIPE,” http://www.scl.ameslab.gov/netpipe/.
[11] “NTTCP: New TTCP program,” http://www.leo.org/˜ el-

mar/nttcp/.
[12] F. Petrini, W. Feng, A. Hoisie, S. Coll, and E. Frachten-

berg, “The Quadrics Network: High-Performance Clus-
tering Technology,” IEEE Micro, Vol. 22, No. 1, Jan-
uary/Feburary 2002.

[13] “STREAM,” http://www.cs.virginia.edu/stream/.
[14] “TCPDUMP Public Repository,” http://www.tcpdump.org.

9California Institute of Technology, CERN, Los Alamos National Lab-
oratory, and Stanford Linear Accelerator Center

