
Massively Parallel Genomic Sequence Search on

the Blue Gene/P Architecture

Heshan Lin∗, Pavan Balaji†, Ruth Poole‡, Carlos Sosa§ Xiaosong Ma¶ and Wu-chun Feng‖

∗Department of Computer Science, North Carolina State University

Email: hlin2@ncsu.edu

†Mathematics and Computer Science Division, Argonne National Laboratory

Email: balaji@mcs.anl.gov

‡IBM Systems & Technology Group, IBM

Email: rjpoole@us.ibm.com

§Biomedical Informatics and Computational Biology, University of Minnesota, Minneapolis, MN 55455

Blue Gene Software Development, IBM, Minneapolis, MN Email: cpsosa@us.ibm.com

¶Department of Computer Science, North Carolina State University

Computer Science and Mathematics Division, Oak Ridge National Laboratory

Email: ma@cs.ncsu.edu

‖Department of Computer Science, Virginia Tech

Email: feng@cs.vt.edu

Abstract—This paper presents our first experiences in mapping
and optimizing genomic sequence search onto the massively
parallel IBM Blue Gene/P (BG/P) platform. Specifically, we
performed our work on mpiBLAST, a parallel sequence-search
code that has been optimized on numerous supercomputing
environments. In doing so, we identify several critical perfor-
mance issues. Consequently, we propose and study different
approaches for mapping sequence-search and parallel I/O tasks
on such massively parallel architectures. We demonstrate that our
optimizations can deliver nearly linear scaling (93% efficiency)
on up to 32,768 cores of BG/P. In addition, we show that such
scalability enables us to complete a large-scale bioinformatics
problem — sequence searching a microbial genome database
against itself to support the discovery of missing genes in genomes
— in only a few hours on BG/P. Previously, this problem was
viewed as computationally intractable in practice.

I. INTRODUCTION

Genomic sequence search forms an important class of

applications that are used widely and routinely in life sciences.

Newly discovered sequences are commonly searched against

a database of known nucleotide or amino acid sequences.

Similarities between the new sequence and a sequence of

known functions can help identify the functions of the new

sequences and to find sibling species from a common ancestor.

For example, in 2003, sequence searching helped biologists to

identify the similarities between the recent SARS virus and

the more well-studied coronaviruses [10], thus enhancing the

biologists’ ability to combat the new virus.

With the explosive growth of sequence databases, genomic

sequence search has emerged as one of the most compute-

and data-intensive applications in scientific computing. Parallel

sequence search applications, such as mpiBLAST [7], [28],

have previously proposed designs to achieve parallelism in

both the required computation as well as the data I/O. While

these designs work well for computer systems with hundreds

to thousands of nodes and fast I/O subsystems, it is not

clear whether such designs would still be effective on next-

generation high-end supercomputers (e.g. BG/P) with tens of

thousands of processors. For example, two unique problems

with genomic sequence search that were not readily noticeable

on small- and medium-sized clusters become apparent in

massive petascale systems:

• The run times for different searches are highly irreg-

ular. Because fast sequence-alignment algorithms are

heuristics-based, the amount of processing required as

well as the results size of a given task are hard to

predict [8]. Tasks containing the same amount of input

data could have computation times that differ by orders

of magnitude, thus creating huge idle periods for some

processes, and consequently, resulting in under-utilization

of resources. To further complicate the situation, the

nodes available in the system are segregated into two

types of processes—masters and workers, which possess

widely different execution characteristics. Hence, keep-

ing all processes busy, and thus, keeping all resources

utilized, is a challenge.

• The I/O time for output can be large for systems with

limited I/O capabilities such as Blue Gene/P. Thus, even

if the computation required to search the queries is

efficient, the output can easily become a bottleneck on

such systems. Hence, efficiently processing this output

data and writing it to a file system is critical to achieve

high performance for sequence-search applications.

In this paper, we propose two tightly coupled optimizations

to mpiBLAST: (i) fine-grained and dynamically load-balanced

task scheduling and (ii) scalable, asynchronous output pro-

cessing. With fine-grained and dynamically load-balanced task

scheduling, we allow flexible placement of master and worker

processes to balance their computation loads. In addition,

different worker processes can dynamically re-group and thus

avoid long idle periods caused by the large difference in the

computational times for different tasks. With asynchronous

output processing, we obtain the performance benefit of par-

allel I/O without the synchronization overhead imposed by

traditional collective I/O techniques.

Together with detailed descriptions of the above designs,

we present extensive evaluation of these designs on large-

scale BG/P systems. Our experimental results demonstrate that

these two enhancements allow the application to scale almost

linearly (93% efficiency) to 32768 cores of BG/P. We also

show that those optimizations allow us to tackle a real compu-

tational biology problems, i.e., sequence searching a microbial

genome database against itself to support the discovery of

missing genes in genomes. This problem, previously viewed

as computationally intractable, completed in only a few hours

on BG/P.

The rest of the paper is organized as follows. Section II

provides a brief overview of mpiBLAST and the BG/P archi-

tecture. Section III surveys related work. In Section IV, we

present the details of our proposed task mapping and I/O op-

timizations. Section V discusses the performance evaluation of

the proposed optimizations on the BG/P architecture. Finally,

we present our conclusions in Section VI.

II. BACKGROUND

In this section, we provide a brief background about the

mpiBLAST sequence-search application (in Section II-A) and

the BG/P architecture (in Section II-B).

A. mpiBLAST

The original software architecture of mpiBLAST [7] follows

a master-worker design. Our previous work enhanced it with

a hierarchical design [28], which organizes all processes into

equal-sized partitions and has a supermaster process dedicated

to supervise all the partitions. The supermaster is responsible

for assigning tasks to different partitions and handling inter-

partition load balancing. Within each partition, one process

is designated as the master, and the other processes serve as

workers. During the execution, first a copy of the database is

replicated to each partition. After the database replication is

done, the master process in a partition periodically fetches a

batch of query sequences from the supermaster and assigns

them to the workers within its partition. After all the queries

in the current query batch have been searched and the corre-

sponding output has been written by workers, the master starts

to fetch the next query batch from the supermaster. The same

procedures repeat until all input queries are completed.

mpiBLAST employs a distributed result-processing scheme,

which originated from pioBLAST [9], to improve its output

performance. Specifically, after a worker finishes searching a

query against a database fragment, it prepares and stores the

local results in memory buffers and only sends the metadata

information needed for result merging (e.g., the size and the

similarity score of each result element) to the master process.

Once the master receives information for all results for a query,

it calculates the output offsets of qualified results and sends

the offsets back to the corresponding workers. The workers

then call MPI-IO functions to write locally buffered, non-

contiguous data to the file system in parallel.

Although the current mpiBLAST design works well on

hundreds to thousands of processors with fast I/O subsystems,

it has several disadvantages when the program is deployed

on petascale machines with tens of thousands of processors

and relatively limited I/O capability. First, after a master

fetches a query batch, it has to wait until all workers finish

the corresponding work before fetching the next query batch,

thereby wasting compute power on workers that finish their

assignments earlier. Second, each master can only manage one

copy of the database. This prevents the system from mapping

an arbitrary number of workers to a master, which is important

to designing task scheduling algorithms that can maximize the

resource utilization. Third, the existing parallel I/O approach is

not scalable when processing jobs with large output on systems

like BG/P, which will be explained in Section V-B.

B. Overview of the Blue Gene/P Architecture

The Blue Gene/P architecture supports a distributed mem-

ory, message-passing programming model [17]. It uses system-

on-a-chip (SoC) technology to deliver four 850-MHz PowerPC

450 processors, capable of achieving a theoretical peak perfor-

mance of 13.6 gigaflops/chip [22]. Each such SoC constitutes a

Compute Node. A Compute Node attached to a processor card

with 2 GB of memory creates the compute and I/O cards. Two

rows of 16 compute cards then make up a node card. Next, a

midplane consists of 16 node cards stacked in a rack. A rack

holds two midplanes for a total of 32 node cards.

The PowerPC 450 core itself contains the first-level (L1)

cache, which is 64-way set associative. The second level (L2R

and L2W) of caches, one dedicated per core, are 2 KB in size.

They are fully associative and coherent; they act as prefetch

and write-back buffers for L1 data. The L2 cache line is 128

bytes in size. Each L2 cache has one connection toward the

L1 instruction cache running at full processor frequency. Each

L2 cache also has two connections toward the L1 data cache,

one for the writes and one for the loads, each running at full

processor frequency. The third-level (L3) cache is 8-way set

associative and 8 MB in size with 128-byte lines. Both banks

can be accessed by all processor cores. The L3 cache has three

write queues and three read queues: one for each processor

core and one for the 10-Gigabit network.

There can be up to two I/O cards per node card. When these

nodes do not have a local file system, I/O operations need to

be sent to an external device. In order to reach this external

device (outside the environment), a compute node sends data to

an I/O node, which in turn carries out the I/O requests [22].

In the BG/P systems used in our study, the file system are

configured with the Global Parallel File System (GPFS) [19],

[17].

Applications on Blue Gene/P may run in three different

modes: Symmetrical MultiProcessing (SMP) Node mode, Vir-

tual Node mode (VN), and Dual Node mode (DUAL). In the

first mode, each compute node executes a single task with

a maximum of four threads. Node resources (primarily the

memory and the torus network) are shared by all threads. In

VN mode, four single-threaded tasks are run on each node,

one task per core. Each task gets 1/4 of the total memory of

the node. Finally, in the DUAL mode, two tasks can be run

on a node. Each task gets half of the memory and cores and

can consist of at most two threads.

III. RELATED WORK

A. Parallel Genomic Sequence Search

Early parallel sequence-search software adopted the query

segmentation approach [3], [4], [5], where a sequence-search

job is parallelized by having individual compute nodes inde-

pendently search disjoint subsets of queries against the whole

sequence database. This embarrassingly parallel approach

scales well when the database can fit in the memory of a

compute node. However, query segmentation will suffer high

paging overhead when searching databases much larger than

the memory of a compute node, because the database needs

to be repeatedly scanned when searching multiple queries.

This issue motivated database segmentation [2], [7], [11],

[9], where the sequence database is partitioned and dis-

tributed across compute nodes. By fitting large databases into

the aggregate memory of multiple compute nodes, database

segmentation eliminates the paging issue and allows timely

sequence analysis to keep up with fast growing database

sizes. Nonetheless, this approach introduces computation de-

pendency between individual nodes because the distributed

results generated at different nodes need to be merged to

produce final output. The parallel overhead caused by results

merging will increase as the system size grows, consequently

limiting the program’s scalability on large-scale deployments.

Recent efforts in designing large-scale sequence-search ap-

plications achieved high scalability by adopting a combination

of both segmentation approaches. Rangwala et. al. devel-

oped a parallel BLAST implementation optimized for Blue

Gene/L [18]. Oehmen et. al. reported ScalaBLAST [16], a

highly efficient parallel BLAST built on top of the Global

Array [14] toolkit. These tools organize processors into equal-

sized groups and assign a subset of input queries to each

group. Within a processor group, each processor searches the

assigned queries on a distinct portion of the database. Both

tools employs static load balancing approaches, assuming the

execution time of a BLAST search task is predictable from the

sizes and/or the numbers of the input queries. For instance,

in ScalaBLAST, the input queries are split among processor

groups such that the query batch assigned to each group

contains presumably same amounts of “work units”. The work

units of a query batch is calculated based on a “trial-and-

error” model that takes into account both the total number

of characters and the number of queries in a batch. Although

such a static load-balancing design scales well by avoiding

centralized task scheduling, our recent study discovered that

the execution time of a sequence search task is often hard to

predict based on the simple metrics of its input data [8]. We

also found that searching different jobs with same amounts of

input data could yield in execution time differing by orders

of magnitude. These findings led us to believe that in order

to address a broad class of sequence-search jobs, dynamically

load balancing is imperative to designing massively parallel

sequence-search applications.

B. Optimization of Non-contiguous I/O

In many parallel scientific applications, processes need

to access data files in a non-contiguous manner [6], [15],

[20], [21], [27]. There are two techniques widely adopted

to optimize non-contiguous I/O performance used in popular

parallel I/O libraries such as ROMIO [26].

The first technique is data sieving, introduced in the PAS-

SION I/O library [24], which targets non-contiguous I/O

requests issued from one process. It replaces the original small,

non-contiguous I/O requests with larger ones, with additional

in-memory data manipulation to pick out portions of data

specified in the original read request(s), or to update portions

of data specified in the original write request(s). Since these

operations are much faster than disk seeks, data sieving can

considerably improve non-contiguous I/O performance at the

cost of accessing extra amounts of data. However, when many

processes access shared files with fine-grained and interleaved

write patterns, such as the output of parallel sequence-search

applications, data sieving incurs too much extra data access

and yields unsatisfactory I/O performance.

The second technique, collective I/O, was designed to im-

prove parallel non-contiguous I/O performance by having mul-

tiple processes coordinate their operations to combine small,

non-contiguous I/O requests into large, sequential ones [12],

[23], [26]. The most popular collective I/O strategy used

today is two-phase I/O [23]. With a two-phase write, involved

processes first exchange data to form a contiguous write

request, then write such buffered blocks to the file system

in parallel. While collective I/O has been widely used in data-

intensive parallel numerical simulations, it could incur high

synchronization cost when computational phases of a parallel

program are not balanced.

IV. SCALING MPIBLAST TO MASSIVELY PARALLEL

SYSTEMS

As described in Section I, while existing designs of mpi-

BLAST work well for small-to-medium scaled supercomputers

with fast I/O subsystems, several issues need to be addressed in

order to scale to massively parallel systems. In this section, we

discuss two approaches that we propose to allow mpiBLAST

to scale on such systems.

A. Fine-grained and Dynamically Load-balanced Task

Scheduling

As discussed in Section I, the existing design of mpiBLAST

falls short in two aspects with respect to maximizing resource

utilization. First, the irregular run times of different workers

can result in large idle times for worker processes. Second,

the amount of work performed by the masters and workers

is unequal, and the current design is not flexible enough

to handle arbitrary mappings of number of workers to each

master without losing performance. In this section, we present

various designs that allow us to efficiently handle these issues.
1) Fine-grained Data Management for Flexible Master-

Worker Ratios: mpiBLAST adopts a hierarchical approach to

handle the input of query data. In this approach, the number

of masters to workers is not entirely flexible. For example,

for a database of size S, fragmenting the database into F

fragments might result in the best performance. This means

that each inner-partition must contain F workers and one

master process. Given the vastly different work roles of the

masters and workers, such stringent restrictions on the number

of workers assigned to each master can lead to idleness for

either the master (if the work the master performs is much

less than what the workers perform) or the workers (if the

work the workers perform is much less than what the master

performs).

To handle such issues, we present a fine-grained data man-

agement approach that allows flexibility to assign an arbitrary

ratio of the number of masters to the number of workers.

Specifically, in this approach, each inner-partition will still

have exactly one master but an arbitrary number of workers.

To avoid performance degradation, database fragmentation is

still performed in the ideal fragment size, F, as described

above. However, now each inner-partition can have multiple

copies of the entire database. Thus, each master can handle

multiple worker groups simultaneously, allowing for a more

fine-grained and flexible ratio for the total number of masters

in the system to the total number of workers. Note also that

a worker can store multiple database fragments.
2) Efficient Load Balancing Using Dynamic Worker Group

Management: BLAST search time has been found highly

variable and unpredictable [8]. To the best of our knowledge,

there is no effective way to estimate the execution time of a

given BLAST search in the existing literature. Without a priori

knowledge of queries’ processing time, a greedy algorithm

that assigns fine-grained tasks to idle processes appear to

be a sufficient solution to load balancing. The challenge

then becomes reducing the scheduling overhead that may be

exacerbated when using small task granules, at both inter- and

intra-partition levels.

At the inter-partition level, a natural load balancing design

would be having the master request a query segment from

the supermaster whenever a partition is idle. After all query

sequences in the segment are finished, the master then requests

another query segment from the supermaster. However, doing

so may hurt the inner-partition load balance, as the workers

that finish their assignments faster will have to wait the

slower workers to finish their own assignments, after which the

master will fetch another query segment. This inner-partition

imbalance will worsen as the query segment size (defined as

the number of query sequences in the segment) decreases

below a certain level, where there is insufficient work to be

balanced across all workers.

To handle these issues we propose a dynamic worker group

management approach where the master prefetches several

queries from the supermaster. The idea is to have masters

maintain a window of outstanding work; whenever a worker is

done with its current assignment, it requests the master for next

assignment. The set of workers that work on one particular

query is dynamically created as different workers become

available, consequently minimizing the idle time caused by

workers’ waiting for new query segment to be fetched.

The scheduling process running on the master is described

in Algorithm 1. At the start, the master constructs a list

of query sequences, QL, sorted by their ids that are being

processed in the partition. A query sequence qi in QL is

corresponding to |F | individual tasks, with each task search-

ing qi against a distinct database fragment. A query qi is

completed once all of its tasks have been completed. The

master sends a prefetching request for more query segments

to the supermaster when it observes that the number of total

uncompleted tasks of the query sequences in QL is less than

the number of workers. To overlap network communications

with local job scheduling, the master receives the query

segment in the background with nonblocking MPI calls. In

doing so, the inner-partition imbalance is alleviated as a idle

worker does not need to wait other workers to finish their

assignments before getting to tasks of a new query segment.

At the inner-partition level, our scheduling algorithm avoids

synchronization between workers by enabling flexible task

sharing between workers in different replication groups. As

described in Algorithm 1, in mpiBLAST workers report to the

master to request a new task once it finishes the current task.

Upon receiving a task request from a worker (wj), the master

scans QL in FIFO order to look for an uncompleted task. For

the current query qc being examined, if the worker has cached

some database fragments that needed by qc’s uncompleted

tasks, the task that contains the cached fragment with smallest

id will be assigned to the worker. If no tasks can be found for

this worker, the scheduling algorithm will search qc +1 in QL

for a task. The scheduling process repeated until all queries

are completed.

B. Parallel Output Strategies

Our cross- and inner-partition dynamic task scheduling

and query prefetching greatly improves the search throughput

for large sequence search jobs. These techniques allow the

workers to proceed without being delayed by synchronization.

(e.g., waiting for new queries to be assigned or for peers

processing the same query to finish). As a tradeoff, such

fully dynamic and asynchronous query processing does bring

a new challenge, especially on petascale machines with tens of

thousands of cores: concurrent output to the shared result file.

Algorithm 1 Master Scheduling Algorithm

Let QL = {q1, q2, ...} be the list of unfinished query

sequences

Let F = {f1, f2, ...} be the set of database fragments

Let Unassignedi ⊆ F be the set of unassigned database

fragments for query sequence qi

Let W = {w1, w2, ...} be the set of workers in this partition

Let Di ⊆W be the set of workers that cached fragment fi

Let Ci ⊆ F be the database fragments cached by worker

wi

Receive database fragments distribution from workers

Require: |W | 6= 0
Initialize QL by fetching a query segment from supermaster

while QL is not empty do

if number of all unassigned fragments in QL < |W | then

Issue segment prefetching request to supermaster

end if

if Receive a query segment QS from supermaster then

for qi ∈ QS do

Append qi to QL

Unassignedi ← F

end for

end if

Receive task request from worker wj

qc ← QL.head

assignmentj ← < ∅, 0 >

while qc 6= QL.tail and assignmentj = < ∅, 0 > do

if ∃fi ∈ Unassignedc and wj ∈ Di then

Find fk such that k = min{l|fl ∈ Cj ∧ fl ∈
Unassignedc}
assignmentj ← < qc, fk >

end if

if |Unassignedc| = 0 then

QL.head← QL.head.next

end if

qc ← qc.next

end while

end while

In this section, we discuss efficient parallel I/O techniques

suitable for the sequence search workload on large-scale

platforms.

The optimizations of non-contiguous I/O operations have

been well studied for parallel numerical simulations, which

often possess predictable data access patterns and balanced

computation models. However, the unique aspects of parallel

sequence-search applications complicate the I/O design as

follows:

• The output data distribution is fine-grained as well as

irregular, and varies from one query to another. Straight-

forward, uncoordinated I/O can result in poor I/O perfor-

mance.

• Unlike in timestep simulations, where the computation

time is well balanced across processes, here the computa-

tion time could be significantly imbalanced across work-

ers searching the same query on different database frag-

ments. In addition, there is no inherent synchronization in

the computation core between searching different queries.

Therefore, using synchronous parallel I/O techniques may

incur high parallel overhead and have negative impacts on

load balancing.

The above observations suggest that traditional non-

contiguous I/O optimization techniques, specifically data siev-

ing and collective I/O (described in Section III-B), may not be

suitable for massively parallel sequence search. In this paper,

we investigate an alternative I/O optimization for parallel

sequence search which employs an asynchronous, two-phase

writing technique. We compares it with with existing parallel

I/O optimizations by evaluating three alternative output strate-

gies on the BG/P system: WorkerIndividual, WorkerCollective,

and WorkerMerge (as illustrated side by side in Fig. 1). Among

them, the first two are based on existing I/O techniques, and

the last one (WorkerMerge) is our proposed I/O optimization.

Recall that we presented the results processing protocol in

Section II-A. In this section, we focus our discussion on how

the non-contiguous data buffered at workers are written to the

file system.

1) WorkerIndividual: This I/O approach has been used in

the previous mpiBLAST design. Once the workers receive

write offsets of buffered output blocks from the master, they

go ahead and issue write requests to the shared file system

to write out the buffered output blocks. Fig. 1(a) depicts the

procedure of the WorkerIndividual strategy with an example

setting consisting of three workers, assuming the database

is also segmented into three fragments. Whenever a worker

finishes a search assignment, it checks with the master to

receive offset information for previously completed queries.

If such information is available, the worker will first write

local qualified output blocks to the shared file system before

searching its next assignment. Note that as the results merging

cannot be finalized until all workers complete searching the

query sequence qi, a worker likely will not be able to proceed

with output immediately after it finishes searching the query.

Instead of blocking this worker until the write offsets for qi

are available, the scheduler let it go ahead to request the next

query sequence, qi+1 and start computation again.

The writing of non-contiguous output data can be done

in two ways. The intuitive way is to perform a seek-and-

write operation for every block via POSIX I/O calls. This

solution is inefficient as it will result in many small I/O

requests unfavored by typical file systems. An alternative

approach is to use the non-contiguous write method provided

by MPI-IO [13]. Specifically, each worker first creates a

file view that describes the locations to be written, then

simply calls MPI_File_write() to issue writes of all

output data at once. MPI-IO libraries such as ROMIO [26]

provide optimizations for this type of non-contiguous write

with data sieving [25] according to the file access pattern.

Our experiments on BG/P show that using MPI-IO non-

contiguous write has considerable better performance than

qi

Merge blocks
info

qi+1

Calculate
offsets of qi

Worker 1 Worker 2 Worker 3 Master

qi+2

qi

qi+1

qi+2

qi

qi+1

qi+2

Search

Merge

1 Send evalue+size

1

2 Send offsets

3 Write data

1

1

2

2

2

3

3

3 3

Output of qi Output of qi+1
Output File

(a) WorkerIndividual

qi

Merge blocks
info

qi+1

Calculate
offsets of qi

Output of qi Output of qi+1

qi

qi+1

qi+2

qi

qi+1

qi+2

1

1
1

2

2

2

Search

Merge

1 Send evalue+size

2 Send offsets

3

Write data4

Exchange data

3 3

Wait

4 4 4

qi+2

Worker 1 Worker 2 Worker 3 Master

Output File

(b) WorkerCollective

qi

Merge blocks
info

qi+1

Calculate
offsets of qi

qi+2

qi

qi+1

qi+2

qi

qi+1

qi+2

1

1
1

2

2

2

4

Output of qi Output of qi+1

Search

Merge

1 Send evalue+size

2 Offsets

3

3

Worker 1 Worker 2 Worker 3 Master

Output File

3

Write data4

Exchange data

(c) WorkerMerge

Fig. 1. Three output strategies compared in this study. WorkerIndividual
adopts the data sieving I/O technique when possible. WorkerCollective is
based on the collective I/O technique. WorkerMerge is based on the proposed
asynchronous, two-phase I/O technique.

using individual POSIX I/O calls. Hence in our experiments

we use MPI-IO calls for this output strategy.

The major advantage of WorkerIndividual is that it does

not introduce any synchronization overhead in the I/O phase.

Workers alternate between computation and I/O, without

blocking on other workers. This strategy is expected to work

efficiently if the non-contiguous writing performance is well

sustained by the underlying file system. The disadvantage,

however, is that the non-contiguous accesses may be ineffi-

cient.

2) WorkerCollective: Collective I/O appears to be a nat-

ural solution when we have a large number of small, non-

contiguous I/O requests accessing a shared file with an inter-

leaving pattern. A corresponding output strategy for parallel

sequence search, which we call WorkerCollective, lets the

workers coordinate their write efforts into larger requests. As

illustrated in Fig. 1(b), after receiving write offsets from the

master, rather than performing individual writes, the workers

will issue a MPI-IO collective write request. Like in the case

of WorkerIndividual, the results merging of qi likely will not

be done right after the search of this query is completed. To

overlap the master’s result processing with workers’ searching,

all the workers involved in searching qi continue with query

processing, until between assignments they found that the file

offset information regarding qi has arrived. At this point, a

worker will enter the collective output call for qi.

The advantage of this strategy lies in its better I/O per-

formance compared to the non-contiguous write approach,

by combining many small write requests into several large

contiguous ones through extra data exchange over the network,

However, even with the overlap discussed above, this strategy

still incurs frequent synchronization, as collective I/O calls

are essentially barriers that force workers to wait for each

other (as shown with the white boxes in Fig. 1(b)). While

suitable for time-step simulations, this communication pattern

is undesirable for parallel sequence-searches, which have

imbalanced computation intervals.

3) WorkerMerge: Recognizing the limitations of the afore-

mentioned approaches, we propose WorkerMerge, an output

strategy that performs asynchronous, decentralized writes with

merged I/O requests. With this strategy, after the master

finishes result merging for query qi, it appoints one of the

workers to be the writer for this query. To minimize data

communication, we select the worker with the largest volume

of qualified output data to play the writer role, who will collect

and write the entire output for this query. The workers involved

in searching qi are notified about the output data distribution

and the writer assignment, and send their output data for qi

to the writer. In the example depicted in Fig. 1(c), worker 2

is selected as the merger for query qi. After receiving output

offsets, worker 1 and worker 3 send their output blocks to

worker 2 using non-blocking MPI sends, then continue with

the next search assignment. After worker 2 finishes searching

query qi+1, it receives output blocks sent by worker 1 and 3,

then performs a contiguous write.

In implementing this strategy, the memory constraint of

involved processes has to be taken into account. We defined a

maximum write buffer size (MBS), to coordinate incremental

output communication, similar to the scheme used in common

2PIO implementations [23]. Specifically, a write leader will

only gather MBS amount of data from the peer workers

before issuing a write to the file system. The MBS value

is set to 4MB in our current implementation.

Such data collection is conducted using non-blocking MPI

communication to overlap with search computations. A writer

checks the status of the collection between searching two

assignments. Whenever the output data for a write operation

has been collected, it issues an individual write call to output

a large chunk of data.

The WorkerMerge strategy takes advantage of collective I/O

and removes the synchronization problem. It seamlessly works

with our dynamically load-balanced scheduling algorithm and

allows a large number of workers to be efficiently supervised

by a master.

One may argue that the MPI-IO standard does provide

asynchronous collective I/O with split collective read/write

operations [13]. The split collective operations do allow the

overlap of I/O and computation by separating a single blocking

collective call into a pair of “begin” and “end” operations.

However, our framework cannot benefit from them for two

reasons. First, split collective I/O is not yet supported in

popular MPI-IO libraries [26]. Second, in our target scenario,

the data distribution (in terms of an MPI file view) is computed

dynamically depending on the local result merging process,

therefore a new file view needs to be constructed for each

query’s output. Since the MPI File set view call has only

a blocking form, there is no way to remove inter-worker

synchronization even with split collective write functions.

In our current design, the result from each query is written

by one writer process. For queries that generate large amounts

of output data, using multiple writers may be beneficial.

However, this will inevitably add synchronization overhead

in the I/O process, which is what our design tries to avoid.

Our work targets large BLAST jobs processing many queries

on supercomputers. Here, with a large number of concurrent

groups working on queries and our proposed asynchronous

writing, the underlying I/O parallelism in the system is ex-

pected to be well utilized. Therefore the main issue is whether

the individual writers will have enough memory space to

buffer the single-query output, which can be addressed by the

incremental buffering and writing strategies already adopted

in parallel I/O libraries such as ROMIO.

V. PERFORMANCE RESULTS

In this section we present the performance evaluation of

our optimizations of mpiBLAST on BG/P systems. We first

compare the scalability of different output strategies, then we

evaluate the overall system scalability with a real bioinformatic

genome search problem.

A. Experiment Platforms

We use several Blue Gene/P systems located at Argonne

National Laboratory (ANL) and IBM Rochester with different

compute-to-I/O node ratios. At ANL, we use a one-rack BG/P

system named Surveyor, which has a compute-to-I/O node

ratio of 64:1. At IBM Rochester, we use a 8-rack system and a

one-rack system, configured with compute-to-I/O node ratios

of 64:1 and 128:1 respectively. In all systems, each node is

equipped with 2GB memory, and GPFS is provided as a shared

file system.

B. Comparison of Output Strategies

In this section, we evaluate the scalability of three I/O

strategies discussed in Section IV-B. To stress test the program,

we use nt, one of the largest nucleotide sequence databases

downloaded from NCBI, as the experimental database. The nt

database contains in total over 6 million GenBank, EMB L, D,

and PDB sequences, with a raw size of 23 GB and a formatted

size of 7.4GB at the time the experiments were conducted. We

use sequences randomly sampled from the nt database itself

as the query sequences.

First, we evaluate the three output strategies by configuring

mpiBLAST to use only one partition. In doing so, we focus

solely on I/O scalability and isolate other factors such as load

balancing between partitions. The nt database is partitioned

into 128 fragments. At the beginning of the program execution,

a database copy is replicated across sets of 32 workers. That

is, every 32 workers in the whole system form a replication

group. The first group of workers serves as the I/O group. Each

worker in the I/O group reads in their assigned fragments in

parallel and broadcasts those fragments to the corresponding

workers in all other replication groups using MPI communi-

cation.

The query set is 512 randomly sampled nt sequences whose

sizes are less than 5KB each. Our past experiences suggest

that searching these sequences is not very compute-intensive,

and consequently incurs high I/O demands. Fig. 2 shows the

execution time for searching the queries with an increasing

number of worker processes on two BG/P systems with

different I/O-to-compute node ratios. We observe that in the

two tested systems, both WorkerCollective and WorkerMerge

approaches scale well as the number of workers grows, with

WorkerMerge consistently outperforming the WorkerCollec-

tive by a considerable margin. This suggests that the I/O

approaches used in both output strategies are scalable, and the

their write throughput can be sustained by the I/O subsystems

on either system. However, the performance of WorkerCollec-

tive is significantly affected by the synchronization overhead

associated with periodic collective I/O operations.

On the other hand, WorkerIndividual works well only with

small numbers of processes. In fact, the performance of

WorkerIndividual is almost the same as that of WorkerMerge

in small scale tests. However, because of the non-scalable

I/O approach, the performance of WorkerIndividual degrades

rapidly as system size grows. Interestingly, the trends of the

degradation are different on the two tested systems. On the

IBM Rochester system, which has an compute-to-I/O node

ratio of 128:1, WorkerIndividual starts performing worse than

WorkerMerge at 128 workers, but still outperforms Worker-

Collective. From 128 to 256 workers, the performance of

WorkerIndividual degrades so much that there is a negative

scaling impact on the overall performance. On the ANL

system, which has better I/O capability with an compute-to-

Profile 128 Workers - IBM Rochester 128 Workers - ANL

Strategies WorkerIndividual WorkerCollective WorkerMerge WorkerIndividual WorkerCollective WorkerMerge

Time(s) Percent Time(s) Percent Time(s) Percent Time(s) Percent Time(s) Percent Time(s) Percent

Init 14.83 1.06% 14.82 0.81 16.91 1.75% 29.41 2.99% 21.87 1.16% 28.21 2.88%

BLAST 939.61 67.50% 946.93 51.37 941.33 97.22% 937.89 95.22% 943.56 50.39% 937.66 95.78%

Write 397.03 28.52% 793.09 43.03% 0.24 0.23% 4.29 0.44% 828.72 44.27% 0.13 0.01%

Other 40.65 2.92% 88.39 4.80% 9.73 1.01% 13.32 1.35% 78.21 4.18% 13.01 1.33%

Total 1392.12 100% 1843.27 100% 968.22 100% 984.93 100% 1872.36 100% 979.02 100%

TABLE I
EXECUTION BREAKDOWNS OF VARIOUS OUTPUT STRATEGIES ON TWO SYSTEMS WITH DIFFERENT I/O TO COMPUTE NODE RATIOS.

 0

 1000

 2000

 3000

 4000

 5000

32 64 128 256

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
s
)

Number of Workers

WorkerIndividual
WorkerCollective

WorkerMerge

(a) Rochester 128:1

 0

 1000

 2000

 3000

 4000

 5000

32 64 128 256

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
s
)

Number of Workers

WorkerIndividual
WorkerCollective

WorkerMerge

(b) ANL 64:1

Fig. 2. Node scalability results of searching 512 randomly sampled nt

sequences against nt database itself with increasing number of worker
processes. The compute-to-I/O node ratio is 128:1 in the Rochester system
and 64:1 in the ANL system.

I/O node ratio of 64:1, WorkerIndividual works well until 128

workers, and increases slightly at 256 workers.

Nonetheless, the WorkerMerge strategy consistently outper-

forms other strategies on both systems. With 256 workers,

WorkerMerge outperforms the WorkerCollective by a factor

of 2.7, and WorkerIndividual by a factor of 4.9 on the

IBM Rochester system. On the ANL system, it outperforms

WorkerCollective and WorkerIndividual by a factor of 2.7 and

1.9, respectively.

To further understand the results, we present the breakdowns

of the executions with 128 worker processes on both systems

in Table I. For each time fraction, the average execution times

of all workers is reported. The most surprising observation in

these results is that the execution time spent on the BLAST

functionality is almost identical across different tests. It is,

in fact, the time spent on writing the output that makes the

most dramatic difference between various output strategies

and system configurations. Specifically, WorkerMerge, which

performs the best, spends less than 1 second or 0.3% of

the total execution time on the actual writing. While for

WorkerCollective, about 800 seconds or over 40% of the time

is spent on writing the results. It is worth noting that we bench-

mark the write time in WorkerCollective by measuring the

execution time spent on the collective I/O operations including

setting file views and performing collective writes. Hence the

write time measured for WorkerCollective is dominated by

the synchronization cost. As for WorkerIndividual, the write

time differs by an order of magnitude on the two systems

with different I/O capability. For the same BLAST job, it

takes around 400 seconds to write the output on the Rochester

system but only slightly more than 4 seconds on the ANL

system. Note that the write time is measured as the time spent

on calling MPI File write() function. One possible reason for

this behavior is that when the I/O subsystem is not capable

to process the non-contiguous I/O requests quickly enough,

more and more successive non-contiguous I/O requests enter

the file system resulting severe I/O contention.

The actual amount of data generated by the BLAST job in

the above experiments is about 285 MB. According to our I/O

benchmarks on the IBM Rochester system, the peak perfor-

mance we measured with one MPI process doing sequential

I/O is 105 MB/s, which implies that the complete output data

can be written to the file system within a few seconds with

sequential, contiguous I/O. This explains why the writing cost

is trivial in WorkerMerge. The results of WorkerIndividual

tests show that uncoordinated, non-contiguous writing results

in poor I/O performance. Collective I/O, on the other hand,

improves the actual I/O performance but hurts the overall

system performance with significant synchronization costs.

WorkerMerge performs the best because it can achieve high

I/O performance while allowing involved processes to collab-

orate asynchronously.

Next, we compare the performance of output strategies by

scaling the number of partitions. As can be seen in Fig. 2,

WorkerIndividual works well with a small number of workers

and can deliver almost the same throughput as WorkerMerge

for 128 workers or less. Since the I/O subsystem in BG/P

scales with the system size, one might wonder whether Work-

erIndividual can achieve a similar performance as Worker-

Merge if we limit the number of worker processes in a partition

and grow the number of partitions. Such a hypothesis can

be verified by examining the scalability of various strategies

within our hierarchical scheduling framework. In this group

of tests, we fix the partition size at 128, and increase the

system size from 512 to 2048 cores. The input is a set of

2048 sequences randomly sampled from the nt database. The

experiments are performed on the ANL system. As Fig. 3

shows, both WorkerCollective and WorkerMerge scale well as

the system size grows, while WorkerMerge holds a significant

winning margin. It is evident that WorkerIndividual scales

poorly even when the I/O system scales with the system size.

As a result, the overall system performance stops decreasing

from 1024 to 2048 cores.

 0

 500

 1000

 1500

 2000

 2500

512 1024 2048

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
s
)

Number of Cores

WorkerIndividual
WorkerCollective

WorkerMerge

Fig. 3. Scalability of three output strategies on multiple partitions.

C. Load Balancing

In this section, we compare two existing static load-

balancing approaches with our dynamic load-balancing design.

The first static approach splits the input queries among equal-

sized processor groups so that the queries assigned to each

group have the same total lengths, as used by Rangwala et.

al. in their parallel BLAST implementation for BG/L [18].

We call this approach LengthSplit. The second static approach,

used in ScalaBLAST [16], splits queries by taking into account

the number of queries in addition to the total query lengths.

Specifically, each group is assigned a batch of queries that

contains the same mount of “work units”, which is calculated

as follows for N queries:

N∑

i=0

length(qi) + N ∗ weight factor (1)

We will refer to this approach as WeightSplit. In our experi-

ments, the weight factor is configured as 225 as used in [16].

In our experiments, we again use nt as the test database.

According to our previous study [8], the compute-intensive

sequences in the nt database are likely to be longer than

5KB. So we create an input query set by collecting the first

1024 sequences in the nt database that are shorter than 20KB;

thus some long sequences in the query set can be expected to

cause search imbalances. We do not include sequences longer

than 20KB as those sequences could take hours to search

based on our past experiences, preventing the experiments

from finishing within the queue time limit on the test platform.

To implement the static load-balancing approaches, we

use 1024 nodes on the ANL BG/P system divided into

groups of 128 nodes and launch an instance of mpiBLAST

in each group. We split the input queries into 8 batches

using LengthSplit or WeightSplit depending on the static load-

balancing approach, and have each mpiBLAST instance search

a distinct batch of queries1. In comparison, in the dynamic

load-balancing approach, we configure mpiBLAST to run on

all processors performing load balancing among the 8 groups.

For each approach, the maximum, average, and minimum

processing time spent on each group are reported in Fig. 4 with

the overall program execution time being the maximum group

execution time. From the disparity between the maximum and

average group execution times, we can see that the synthesized

input query set creates large load imbalances among all

three approaches. Interestingly, the performance of both static

approaches is very similar; in both cases, the maximum group

execution time is about 2.3 times higher than the average group

execution time. On the other hand, although the dynamic load-

balancing approach is also affected by search imbalances, it

brings down the ratio of maximum execution time to average

execution time to 1.8, resulting in performance improvements

by a factor of 1.39 and 1.42 compared to LengthSplit and

WeightSplit respectively.

 0

 200

 400

 600

 800

 1000

 1200

 1400

LengthSplit WeightSplit Dynamic

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
s
)

MAX
AVG
MIN

Fig. 4. Performance comparison of static and dynamic load-balancing
approaches. LengthSplit and WeightSplit are two static load-balancing ap-
proaches used in other large-scale sequence-search applications. Dynamic is
the dynamic load-balancing approach used in mpiBLAST.

1We were not able to compare our load balancing approach directly to other
sequence-search tools adopting static load balancing because the source codes
of those tools are not publicly available.

D. Scalability Tests

To evaluate the scalability of mpiBLAST, we run and profile

a large-scale, sequence-search job — sequence searching the

entire microbial genome database against itself — in order

to address two vitally important problems in computational

biology: (1) discovering missing genes in genomes and (2)

inferring structure in genomic sequence databases.2

1) Problem Description: Sequence searching the entire

microbial genome database against itself has several utilities

in computational biology as described in [1]. A summarized

description of these utilities is noted below:

Discovering Missing Genes: Genome annotation identifies the

location of genes and the coding regions in a genome, deter-

mines what those genes do, and then annotates this information

to the genome. Part of the above process entails accurately

determining the location and structure of protein-encoding

and RNA-encoding genes via computational analysis. If done

improperly, we end up predicting false genes or missing real

genes.

A popular method for locating genes, known as the simi-

larity method, requires the comparison of genomic segments

with a database of gene sequences found in similar organisms.

If the sequence is conserved, then the segment that is being

evaluated is likely to be a coding gene. Genes that do not fit

a given genomic pattern and do not have similar sequences in

current annotation databases may be systemically missed.

To detect missed genes, we use the similarity method

and compare raw genomes against each other rather than

comparing a raw genome to a database of known genes. For

instance, if gene x in genome X and gene y in genome Y have

been missed and x is similar to y, then the similarity method

will find both. However, the only way of identifying this is

to perform an all-to-all comparison of the entire microbial

genome database against itself, which is highly compute-

intensive.3

Adding Structure to Genetic Sequence Databases: One

of the major issues with sequence searching is the structure

of the sequence database itself. Currently, these databases

are “structured” as a flat file in human-readable format, e.g.,

ASCII text, and each new sequence that is discovered is simply

appended to the end of the file. Without more intelligent

structuring, the query sequence needs to be compared to

every sequence in the database (several millions currently)

forcing the best-case to take just as long as the worst-case. By

organizing and providing structure to the database, searches

can be performed more efficiently by being able to discard

irrelevant portions entirely. One way to provide structure to

the sequence database is to create a sequence similarity tree

2Note: Several of the co-authors on this paper were involved in a similar
endeavor that won the SC—07 Storage Challenge Award, but by running in
a significantly different environment, a distributed ad-hoc grid consisting of
over 12,000 processors from six U.S. supercomputing sites and a petabyte
files at the Tokyo Institute of Technology.

3When this computation was done as part of the SC—07 Storage Challenge,
it required 12,000+ processors to compute over a two-week period and write
to a petabyte file system.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 5000 10000 15000 20000 25000 30000 35000

S
p
e
e
d
u
p

Number of Processors

linear speedup
mpiBLAST

Fig. 5. Speedup of searching a quarter million of microbial genome sequences
against the microbial genome database itself.

where “similar” sequences are closer together in the tree

than dissimilar sequences. The connections in the tree are

created by determining how “similar” the sequences are to

each other; sequence search can be used to determine the

sequence similarity. To create every connection, however, an

“all-to-all” sequence search must be performed where the input

query being the same as the database, resulting in an output

size of N2 values (where N is the number of sequences in

the database).

2) Performance Results: We first systematically evaluated

the combination of mpiBLAST’s hierarchical scheduling and

its optimized parallel output strategy by searching 0.25 mil-

lion query sequences randomly sampled from the microbial

genome database against the database itself. We performed

initial profiling by varying the partition size, the number of

database replicas per partition, and the number of database

fragments. This profiling allowed us to identify the ideal

values for different parameters for our system — 64 database

fragments, 128 as the partition size, and 16 as the replication

group size.

Based on this profiled information, in this experiment, we

increase the system size from 1 rack to 8 racks and measure

the speedup achieved as illustrated in Fig. 5. As can be seen,

our enhancements allow mpiBLAST to scale almost linearly

from 4096 cores to 32768 cores, achieving a 93% parallel

efficiency at the largest test scale. This near-perfect speedup

demonstrates that the synergy of mpiBLAST’s scalable task

and I/O scheduling design can take full advantage of the

massive parallelism offered by the BG/P system.

Finally, we leverage the processing power of BG/P system,

enhanced by our optimizations, to solve the problem of

searching the entire microbial genome against itself. To avoid

data loss of possible hardware failures during the long run, we

split the database into 64 query files, each consisting of about

85MB of sequence data, and continue submitting jobs to the

8-rack system until the whole genome search is completed.

This problem, previously considered to be computationally

intractable in practice, was completed within 12 hours.

VI. CONCLUDING REMARKS

In this paper, we presented several issues that arise when

scaling parallel sequence search applications such as mpi-

BLAST to massive scale systems such as BG/P. Specifically,

issues related to task-mapping and data I/O that are unnotice-

able on small and medium clusters with a fast I/O subsystem

can form significant bottlenecks on massively parallel systems

with limited I/O capabilities. We presented several designs to

alleviate these bottlenecks, performed extensive evaluations to

understand their performance benefits, and used the best of the

designs to enhance mpiBLAST. We also demonstrated that

these designs allow the application to scale almost linearly

(93% efficiency) on upto 32768 cores of BG/P.

VII. ACKNOWLEDGMENTS

We thank IBM Rochester for providing access to Blue

Gene/P development systems and acknowledge the support of

the the Biomedical Informatics and Computational Biology

(BICB) program at University of Minnesota, Rochester. On

an individual basis, we are grateful to Carl Obert and John

Thomas for their support and to Jeremy Archuleta whose

feedback helped improve the presentation of the paper.

This research has been partially supported by the Math-

ematical, Information, and Computational Sciences Division

subprogram of the Office of Advanced Scientific Computing

Research, Office of Science, U.S. Department of Energy,

under Contract DE-AC02-06CH11357; a DOE Early Career

PI Award DE-FG02-05ER25685 also from the Office of Ad-

vanced Scientific Computing Research; NSF Awards CCF-

0621470 and CPA-0702182; an IBM Faculty Award; and a

joint appointment between NCSU and ORNL.

REFERENCES

[1] P. Balaji, W. Feng, H. Lin, J. Archuleta, S. Matsuoka, A. Warren, J. Se-
tubal, E. Lusk, R. Thakur, I. Foster, D. S. Katz, S. Jha, K. Shinpaugh,
S. Coghlan, and D. Reed. Distributed Data I/O with ParaMEDIC:
Experiences with a Worldwide Supercomputer. In Proceedings of

the IEEE International Supercomputing Conference (ISC); Best paper
award, Dresden, Germany, June 2008.

[2] R. Bjornson, A. Sherman, S. Weston, N. Willard, and J. Wing. Tur-
boBLAST(r): A parallel implementation of BLAST built on the Tur-
boHub. In Proceedings of the International Parallel and Distributed

Processing Symposium, 2002.
[3] R. Braun, K. Pedretti, T. Casavant, T. Scheetz, C. Birkett, and C. Roberts.

Parallelization of local BLAST service on workstation clusters. Future

Generation Computer Systems, 17(6), 2001.
[4] N. Camp, H. Cofer, and R. Gomperts. High-throughput BLAST.

http://www.sgi.com/industries/sciences/chembio/
resources/papers/HTBlast/HT Whitepaper.html.

[5] E. Chi, E. Shoop, J. Carlis, E. Retzel, and J. Riedl. Efficiency
of shared-memory multiprocessors for a genetic sequence similarity
search algorithm. Technical Report TR97-005, University of Minnesota,
Computer Science Department, 1997.

[6] P. Crandall, R. Aydt, A. Chien, and D. Reed. Input/output characteristics
of scalable parallel applications. In Proceedings of Supercomputing ’95,
1995.

[7] A. Darling, L. Carey, and W. Feng. The design, implementation, and
evaluation of mpiBLAST. In Proceedings of the ClusterWorld Confer-

ence and Expo, in conjunction with the 4th International Conference on
Linux Clusters: The HPC Revolution, 2003.

[8] M. Gardner, W. Feng, J. Archuleta, H. Lin, and X. Ma. Parallel Genomic
Sequence-Searching on an Ad-Hoc Grid: Experiences, Lessons Learned,
and Implications. In Proceedings of SC—06, 2006.

[9] H. Lin, X. Ma, P. Chandramohan, A. Geist, and N. Samatova. Efficient
data access for parallel BLAST. In Proceedings of the 19th IEEE Inter-

national Parallel and Distributed Processing Symposium (IPDPS’05),
Washington, DC, USA, 2005. IEEE Computer Society.

[10] M. Marra, S. Jones, C. Astell, R. Holt, A. Brooks-Wilson, Y. Butterfield,
J. Khattra, J. Asano, S. Barber, S. Chan, A. Cloutier, S. Coughlin,
D. Freeman, N. Girn, O. Griffith, S. Leach, M. Mayo, H. McDonald,
S. Montgomery, P. Pandoh, A. Petrescu, G. Robertson, J. Schein,
A. Siddiqui, D. Smailus, J. Stott, G. Yang, F. Plummer, A. Andonov,
H. Artsob, N. Bastien, K. Bernard, T. Booth, D. Bowness, M. Drebot,
L. Fernando, R. Flick, M. Garbutt, M. Gray, A. Grolla, S. Jones,
H. Feldmann, A. Meyers, A. Kabani, Y. Li, S. Normand, U. Stroher,
G. Tipples, S. Tyler, R. Vogrig, D. Ward, B. Watson, R. Brunham,
M. Krajden, M. Petric, D. Skowronski, C. Upton, and R. Roper. The
genome sequence of the sars-associated coronavirus. Science, 2003.

[11] D. Mathog. Parallel BLAST on split databases. Bioinformatics, 19(14),
2003.

[12] J. May. Parallel I/O for High Performance Computing. Morgan
Kaufmann Publishers, 2001.

[13] Message Passing Interface Forum. MPI-2: Extensions to the Message-

Passing Standard, July 1997.
[14] J. Nieplocha, R. Harrison, and R. Littlefield. Global arrays: A

nonuniform memory access programming model for high-performance
computers. The Journal of Supercomputing, 10(2), 1996.

[15] N. Nieuwejaar, D. Kotz, A. Purakayastha, C. S. Ellis, and Michael L.
Best. File-access characteristics of parallel scientific workloads. IEEE
Trans. Parallel Distrib. Syst., 7(10), 1996.

[16] C. Oehmen and J. Nieplocha. Scalablast: A scalable implementation of
blast for high-performance data-intensive bioinformatics analysis. IEEE

Trans. Parallel Distrib. Syst., 17(8), 2006.
[17] D. Quintero and M. Hennecke. GPFS Multicluster

with the IBM System Blue Gene Solution and eHPS
Clusters. IBM Redpaper, REDP-4168-00, October 24, 2006,
http://www.redbooks.ibm.com/abstracts/redp4168.html?Open.

[18] H. Rangwala, E. Lantz, R. Musselman, K. Pinnow, B. Smith, , and
B. Wallenfelt. Massively Parallel BLAST for the Blue Gene/L. In High

Availability and Performance Workshop, 2005.
[19] F. Schmuck and R. Haskin. GPFS: a shared-disk file system for large

computing clusters. In Proceedings of the First Conference on File and

Storage Technologies, 2002.
[20] E. Smirni, R. Aydt, A. Chien, and D. Reed. I/O requirements of scientific

applications: An evolutionary view. In Proceedings of the 5th IEEE

International Symposium on High Performance Distributed Computing,
1996.

[21] E. Smirni and D. A. Reed. Lessons from characterizating the in-
put/output behavior of parallel scientific applications. Perform. Eval.,
33(1), 1998.

[22] C. Sosa and G. Lakner. IBM System Blue Gene Solu-
tion: Blue Gene/P Application Development . IBM Red-
Book, SG24-7287, ISBN 0738488674, Rochester, Minnesoat, 2008.
http://www.redbooks.ibm.com/abstracts/sg247287.html?Open.

[23] R. Thakur and A. Choudhary. An extended two-phase method for
accessing sections of out-of-core arrays. Scientific Programming, 5(4),
1996.

[24] R. Thakur, A. Choudhary, R. Bordawekar, S. More, and S. Kuditipudi.
Passion: Optimized I/O for parallel applications. IEEE Computer,
29(6):70–78, June 1996.

[25] R. Thakur, W. Gropp, and E. Lusk. Data sieving and collective I/O
in ROMIO. In Proceedings of the 7th Symposium on the Frontiers of

Massively Parallel Computation, February 1999.
[26] R. Thakur, W. Gropp, and E. Lusk. On implementing MPI-IO portably

and with high performance. In Proceedings of the Sixth Workshop on
I/O in Parallel and Distributed Systems, May 1999.

[27] R. Thakur, W. Gropp, and E. L. Lusk. An experimental evaluation of the
parallel i/o systems of the ibm sp and intel paragon using a production
application. In Proceedings of the Third International ACPC Conference

with Special Emphasis on Parallel Databases and Parallel I/O, London,
UK, 1996. Springer-Verlag.

[28] O. Thorsen, B. Smith, C. Sosa, K. Jiang, H. Lin, A. Peters, and W. Feng.
Parallel genomic sequence-search on a massively parallel system. In
CF ’07: Proceedings of the 4th international conference on Computing

frontiers, New York, NY, USA, 2007. ACM.

