
Parallel Genomic Sequence-Search
on a Massively Parallel System

Oystein Thorsen
IBM

Rochester, 3605 HWY 52N
Rochester, MN 55901
507-253-7915, USA

othorse@us.ibm.com

Brian Smith
IBM

Rochester, 3605 HWY 52N
Rochester, MN 55901
507-253-4717, USA

brsmith@us.ibm.com

Carlos P Sosa*
IBM and University

of Minnesota
Supercomputing Institute

117 Pleasant Street South
Minneapolis, MN 55455

612-624-2966, USA

cpsosa@us.ibm.com

Karl Jiang
IBM

Rochester, 3605 HWY 52N
Rochester, MN 55901
507-253-7915, USA

kjiang@us.ibm.com

Heshan Lin
North Carolina State University

Department of Computer Science
3226 EB II

Raleigh, NC 27695
919-513-7577, USA

hlin2@ncsu.edu

Amanda Peters
IBM

Rochester, 3605 HWY 52 N
Rochester, MN 55901
507-253-7008, USA

apeters@us.ibm.com

Wu-chun Feng
Virginia Tech

Department of Computer Science
2202 Kraft Drive, 209 KWII

Blacksburg, VA 24060
540-231-1192, USA

feng@cs.vt.edu

ABSTRACT
In the life sciences, genomic databases for sequence search have
been growing exponentially in size. As a result, faster sequence-
search algorithms to search these databases continue to evolve to
cope with algorithmic time complexity. The ubiquitous tool for
such search is the Basic Local Alignment Search Tool (BLAST)
[1] from the National Center for Biotechnology Information
(NCBI). Despite continued algorithmic improvements in BLAST,
it cannot keep up with the rate at which the database is
exponentially increasing in size. Therefore, parallel implement-
ations such as mpiBLAST have emerged to address this problem.
The performance of such implementations depends on a myriad of
factors including algorithmic, architectural, and mapping of the
algorithm to the architecture. This paper describes modifications
and extensions to a parallel and distributed-memory version of
BLAST called mpiBLAST-PIO and how it maps to a massively
parallel system, specifically IBM Blue Gene/L (BG/L). The
extensions include a virtual file manager, a "multiple master" run-
time model, efficient fragment distribution, and intelligent load
balancing. In this study, we have shown that our optimized
mpiBLAST-PIO on BG/L using a query with 28014 sequences
and the NR and NT databases scales to 8192 nodes (two cores per
node). The cases tested here are well suited for a massively
parallel system.

Categories and Subject Descriptors
K.2 [IBM]: Blue Gene/L; H.4 [Information Systems
Applications]: Bioinformatics; D.2.8 [Software Engineering]:
Metrics - performance measures.

General Terms
Algorithms, Measurement, Performance, Theory.

Keywords
mpiBLAST-PIO, massively parallel computer, Blue Gene/L,
multiple masters parallelization.

1. INTRODUCTION
The human genome project was completed in 2003. Two of the
goals of the project involved determining the sequences of the
three-billion chemical base pairs in DNA and storing this
information in databases. Nowadays, scientists continue
sequencing other organisms and storing all this information in
databases. Databases are currently growing exponentially. This
growth has prompted programmers to develop faster and more
sophisticated algorithms to keep pace with the increasing sizes of
the databases. Software improvements combined with state-of-
the-art hardware will prove to play a vital role in the future of
computational biology. This is particularly true when it comes to
being able to extract and analyze data accumulated in these
databases.

The list of molecular biology databases is constantly increasing
and more scientists rely on this information [2]. The Nucleic
Acids Research (NAR) Molecular Biology Database collection
reported an increase of 139 more databases for 2006 compared to
the previous year. GenBank doubles its size approximately every
18 months [3]. However, the increase in microprocessors clock

* Corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CF’07, May 7–9, 2007, Ischia, Italy.
Copyright 2007 ACM 978-1-59593-617-2/07/00053...$5.00.

speed is not changing at the same rate [4]. Therefore, scientists try
to leverage the use of multiple processors.

One of the most popular programs to search databases is BLAST
[1,5]. It is extensively used worldwide and its popularity is due to
its powerful, flexible and fast implementation. BLAST relies on a
heuristic algorithm to identify local alignments [1].

The demand for programs that can help analyze all this data will
continue to increase. Carrying out, for example, database searches
and sequence alignment tend to be not only computationally
intensive but I/O demanding [6,7]. This becomes apparent as the
size of the query and database increase [4,6,7]. Single BLAST
searches can be performed in a matter of seconds or minutes.
However, a recent study carried out a search of the NT database
with the same NT database as a query have illustrated how much
of a daunting task this may turn out to be [6,7]. Clearly, as data
continues to grow, so does the need for software optimized for
highly parallel systems that can leverage thousands of processors
either on a grid [7] or on a massively parallel system [8].

2. Other Related Work
2.1 Shared-Memory Parallelization
To perform database searches in a shared-memory environment,
BLAST carries out memory-mapped I/O via mmap [9]. The
advantage of memory-mapped I/O is that a file on disk gets
mapped into a buffer in memory that corresponds to bytes in the
file [9]. Symmetric multi-processor (SMP) machines with larger
memories can fully utilize all the available memory to store the
database.

In this scheme, each query sequence is compared against the
entire database shared in memory. This step can be parallelized
using multi-threading on an SMP. The parallel BLAST algorithm
divides the database in sections that are allocated to different
threads [4,10]. Given the amount of memory on a local node on a
massively parallel machine, a different approach is required.
Especially since mmap is not supported as part of the BG/L
operating system [11].

2.2 Distributed-Memory Parallelization
Two of the authors in this study have previously shown that one
of the key ideas in parallelizing BLAST on distributed-memory
machines relies on database fragmentation (or pre-distribution)
[6,7]. Depending on the parallelization scheme, different
fragments of the query will search the entire database on different
nodes or the entire query will search fragments of the database on
different nodes [12]. This process may be implemented within
three levels of parallelism. Fine grained, medium grained, coarse
grained [6,7,12]. Each level of parallelism might be better suited
for a particular architecture [12].

The need for running BLAST on distributed memory machines
led to the creation of mpiBLAST and subsequent versions
[13,14]. This distributed-memory version uses the message
passing interface (MPI) [15] and the parallelization is based on a
master/worker scheme as described in refs. [6,7,13,14]. This
approach has been divided into a “master-writing” implement-
ation where the master is the focal point and coordinates not only
all the information received from the workers but I/O as well [6].
Although this approach has certain advantages, it is not well
suited for massively parallel machines since the master becomes

the bottleneck as more nodes are added to finish the task sooner
[8].

The second approach is to let the workers carry out their own I/O.
There are two ways to perform this task: the “worker-writing”
approach via collective I/O or individual I/O [6]. The latter has
been shown to be more efficient [6].

A recent study has reported on an implementation called
ScalaBLAST. This new parallelization makes use of the Global
Arrays toolkit [16] to distribute the database to remote nodes on
the system, combined with a “worker-writing” scheme [17].

Other approaches include specialized hardware for sequence
alignment [18,19] as well as a high-throughput approach via a
central client that parses sequences to run in parallel [20,21]

2.3 Our Contribution
In this study, we describe our efforts in optimizing mpiBLAST-
PIO for a massively parallel system. Our approach relies on
eliminating I/O by shifting the location of the database from disk
to compute node memory. We also implement the multiple
masters scheme previously reported [8]. The rest of the paper is
organized as follows: the next section describes the hardware and
software that was utilized in this study. Next, we describe our
parallel implementation for massively parallel machines.
Performance results and discussion provide information about
scalability and relates the performance to some of the
parallelization techniques utilized in this work. Finally we present
a conclusions section.

3. System Overview

3.1 Hardware
We have previously described BG/L in detail [11]. However,
some of the architectural features are relevant for this study. We
briefly summarize some of the key components of BG/L in this
section, which are shown in Fig. 1. The smallest component is the
chip. This first component is illustrated in Figure 1. The BG/L
basic block is a PowerPC 440 dual-core processor (one node).
Each processor core runs at a frequency of 700 MHz and each
processor core can perform four floating-point operations per
cycle, giving a theoretical peak performance of 5.6 Gflops/chip.
The chip constitutes the compute node [11]. This is what we refer
to in this work as nodes.

Next is the compute card shown in Figure 1. Two compute nodes
attached to a processor card along with memory (RAM) create a
compute card (two nodes). The amount of RAM per card is 2 GB
(1 GB per compute node) [11]. The I/O card is next. This card is
physically very similar to the compute card, however, the I/O card
has integrated Ethernet enabled for communication with the
outside world [11]. The I/O cards and compute cards are all
plugged into a node card or node board. There are two rows of
eight compute cards on the node card and 0, 1, or 2 I/O cards
depending on the I/O configuration [11]. A midplane consists of
16 compute cards stacked in a rack. A rack holds two midplanes,
for a total of 32 node cards or 1024 compute nodes illustrated in
Figure 1. The largest system currently produced is made of 64
racks for a total of 65536 compute nodes [11].

Figure 1. Copyright IBM Corp. 2004. Blue Gene/L
components. Courtesy of International Business Machines
Corporation. Unauthorized use not permitted. Image obtained
from Ref. [11].

Finally, the compute nodes may be configured at boot time in one
of following ways: the first way is the virtual node mode (VN).
This configuration uses both processors separately, running a
different process of the user's application on each processor with
half the RAM assigned to each processor. The second way is Co-
processor node mode (CO). This configuration uses the secondary
processor as an offload coprocessor for processing the I/O of the
main processor [11]. In this study, we only used the CO mode to
take advantage of all the physical memory available per node.

3.2 Software
mpiBLAST is an open-source parallelization of BLAST that uses
MPI [13]. One of the key features of the initial parallelization of
mpiBLAST is its ability to fragment and distribute databases.

In this study, we use the mpiBLAST 1.4-PIO program [13,14].
This version incorporates most of the functionality introduced in
pioBLAST [14]. This version can perform parallel I/O via MPI
I/O. It also introduces the use of “workers-write” when parallel
files systems are available and the “master-write” scheme when
file systems are NFS-mounted.

4. Massively Parallel Implementation
4.1 Storing Files in Memory
As previously pointed out, the original BLAST version utilizes
mmap to store the database in memory. Since mmap is not
implemented as a part of the BG/L operating system, the appli-
cation falls back on reading files directly from disk. With all
nodes sharing the same file system, I/O contention severely limits
the scaling of this application. To address this, we implemented a
modified version of the “virtual file manager” (VFM) that was
successfully used in pioBLAST which is described in ref. [14].
VFM is not only used to store the database fragments in memory,
but also the query file and various temporary files. This
eliminates disk I/O and allows file distribution using MPI when
workers need the same file. Fragment distribution and query
distribution are described in detail in sections 4.3 and 4.4.

In BLAST and mpiBLAST-PIO, there are two structures that are
central when dealing with virtual files. The one most specific to
virtual files is Nlm_MemMap which contains the actual pointer to
the memory location where the file is stored in memory. The
second one is NlmMFILE which contains the Nlm_MemMap
object, but could also contain a file pointer if we wanted to read
directly from the file.

The Nlm_MemMap object is initialized by Nlm_MemMapInit
which normally would call mmap or return a file pointer. In the
case of VFM we had to make this function allocate enough space
to contain the entire file and copy the contents of the file into
memory before closing the file.

The NlmMFILE object is contained within VFM and is initialized
the first time the program wants to access a file. Otherwise VFM
will only return a pointer to the NlmMFILE object already in
memory.

4.2 Multiple Masters
The biggest problem with scalability in the original implement-
ation was that there was a lot of administration work put on the
master to make the workers as efficient as possible. Since this
work increased linearly with the number of workers, it would get
overwhelmed and cause the workers to wait longer and longer for
a response every time they wanted more work. This is pictorially
described in Figure 2.

1 2 3

Query

Database

Master

Worker

Figure 1. Original implementation. “Single master to many
worker nodes” communication.

By introducing a second level of management, we could limit the
number of workers for the master by creating groups of nodes
containing one master for each group working on separate query
sequences. So instead of doubling the number of workers, we
double the number of groups whenever we doubled the number of
total nodes. This ensured that the number of master nodes would
scale with the number of total nodes. Currently the second level
of management only contains one node (the SuperMaster) and
could potentially be a bottleneck, but this node does very little
work (described in section 4.5), and our benchmarks show that it
can handle scalability to 8192 nodes. Figure 3 provides an
overview of the steps involved in the new scheme.

The amount of work required by the master depends on multiple
factors and could change depending on what query and/or
database is used. When we initially tested the original version, it
only scaled to 64 nodes in co-processor mode. This is similar to
what has been previously reported in the literature [17]. So we
selected 64 as a good group size. Since a query sequence is not
split between groups, each group must contain at least one copy
of each database fragment. Each group must therefore have at
least enough aggregate memory to contain the entire database and
each node must have at least enough memory to contain one
database fragment. Figure 3a shows the creation of groups.

Query

Database

SuperMaster

Worker

Master

2 31

2 31

a)

b)

c)

Figure 3. Massively parallel implementation. a) Divide into
groups, b) query fragmentation and load balancing, c)
multiple outputs

During the setup phase, the master carries out calculations such as
the E-value [1] which is now divided among all masters to shorten
the setup phase. All masters split the work between them before
gathering the results and distributing it among all workers (Figs.
3b and 3c).

4.3 Fragment Distribution
When using very few nodes, it will be faster for all of them to
read their database fragments directly from disk, but due to the
limited scaling of disk I/O bandwidth it will be much faster to let
one node per fragment read from disk and distribute to everyone
else who needs the fragment. A regular broadcast is highly
optimized for speed and scalability in all MPI implementations
making this new method a superior choice even on very few
groups.

To maximize the use of available bandwidth for the initial read,
the nodes which read from disk are spread out over all the groups

(and I/O nodes). This is illustrated in Figure 3b. And if each node
has more than one fragment we make sure that a node does not
have to read more than one fragment from disk to allow all reads
from disk to be performed concurrently.

The whole scheme is made possible with the addition of fragment
communicators. For every fragment that is to be distributed, a
communicator is constructed containing every node that is to
receive that fragment. Calculations are made that ensure that if
there are nodes that will receive more than one fragment, each
node is assigned to read only a particular fragment. Also, instead
of keeping a record in a file of what local fragments the node has
on disk, the node instead keeps a virtual record of fragments the
node is currently storing in memory. This list is broadcasted to the
scheduler for scheduling purposes.

Finally, there is a parameter that represents the minimum number
of times the database is duplicated over a particular group. For
some query and database combinations, the number of sequences
in each fragment being unevenly distributed will cause some
nodes to be far ahead of the others in terms of the query sequence
they are working on. By having more than one fragment on a
node, this imbalance is less likely. However, in most cases this
parameter has negligible effect.

4.4 Query Distribution
In mpiBLAST-PIO, the master node reads the query file, counts
the number of sequences and distributes them to the workers and
then writes to a temporary file for each worker. In our
implementation, the query file is stored as a virtual file instead of
being written to file. Sequences are loaded from this virtual file
instead of directly from disk. This is done using sequence loading
functions within the NCBI toolkit that accepts a char pointer
instead of a file pointer.

4.5 Load Balancing
In general, different query sequences are normally not processed
in the same amount of time due to the heuristic nature of the
search algorithm and variations in sequence length. So even if the
groups are given the same amount of query sequences to work on,
their total run time is usually quite different. It was therefore
important to be able to hold back on some of the query sequences
for the groups that finish early. To do this we used a dedicated
node referred to as the SuperMaster.

The SuperMaster’s only job is to make sure that none of the
groups finish earlier than the rest. Our benchmarks show that the
best way of doing this is to distribute half of the query sequences
at the beginning, and then whenever a group finishes, the
SuperMaster would give it a number of new query sequences
equaling the number of remaining queries divided by the number
of groups. This way the SuperMaster will give out fewer and
fewer query sequences every time. If there are no more query
sequences left, the SuperMaster will tell the group to finish up
and quit the job.

In many cases, one of the groups will be smaller than the rest (if
the total number of nodes, minus one for the SuperMaster, is not a
multiple of the group size) so the assigned query sequences
assigned to this group must be reduced proportionally to its size.

The rationale behind this is that the worker should at least manage
to do its part of the remaining queries. Even if the new query
sequences would require more work than the other sequences, it
already had a head start since it was the first group to finish with
its previous batch.

This scheme results in more and more work for the SuperMaster.
In order to prevent the groups from spending too much time
waiting for the SuperMaster at the end, we set a minimum number
of queries to distribute. The ideal number for this is also
dependent on the query and database. The more work required for
each query sequence, the smaller this number should be, and the
more groups there are, the larger this number should be. Our
benchmarks show that five is a good number for all the tests we
have done in this paper.

5. Performance Results

5.1 Queries and Databases
The query used in this study corresponds to Arabidopsis thaliana.
This is a model organism for studying plant genetics. This query
was further subdivided into small, medium and large query sets
containing 200, 1168 and 28014 sequences, respectively. This set
was obtained from a previous study [22,23].

We used two databases to carry out all the performance experi-
ments. These databases are maintained by NCBI [24]. The first
database is the non-redundant (NR) protein database. The version
that we downloaded contains 2,451,907 sequences with a total of
830,525,235 letters. The second database is the NT database. The
version that we downloaded has 4,218,264 sequences with a total
of 17,671,372,779 letters.

5.2 Results
The evaluation of the massively parallel version of mpiBLAST-
PIO was carried out using two of the programs available as part of
the BLAST suite of programs. The first program that we tested is
blastx. This program uses an algorithm to compare the six-frame
translation of our query sets (nucleotides) against the protein NR
database. The second program that we tested corresponds to
blastn. This program uses an algorithm to compare a nucleotide
query sequence against a nucleotide database – in our case, the
NT database.
Fig. 4 illustrates the results of comparing three queries of three
different sizes on the NR database. We label the query sizes as
small, medium, and large. This figure shows that scalability is a
function of the query size. The small query scales to
approximately 1024 nodes in co-processor mode with a parallel
efficiency of 72% were the large query scales to 8192 nodes with
a parallel efficiency of 74%. We did not have the opportunity to
test beyond 8192 nodes for this database.

Table 1 summarizes the total execution time in seconds for 32 to
8192 nodes, which is the basis for Fig. 4. All the runs were
carried out in co-processor mode. All benchmarks were run with a
group size of 64. The NR database was fragmented into 31
fragments.

0

1024

2048

3072

4096

5120

6144

7168

8192

0 1024 2048 3072 4096 5120 6144 7168 8192

Nodes in co-processor mode

P
ar

al
le

l S
pe

ed
up

Figure 4. Scaling chart for queries run versus the NR
database. From the top, the thick solid line corresponds to
ideal scaling; the thin solid line corresponds to the large
query; the dashed line corresponds to the medium query; the
dotted line corresponds to the small query.

Table 1. Total execution times for queries run versus the NR
database.

Nodesa Smallb Mediumb Largeb

32 721.8 4073.9

64 334.1 1963.9

128 171.7 993.7

256 96.2 504.0

512 50.0 251.4 5620.6

1024 31.5 131.2 2863.0

2048 21.3 73.4 1484.6

4096 50.3 796.7

8192 479.2
a All runs in co-processor mode
b All timings in seconds

Fig. 5 shows the results of comparing the same three queries but
on the NT database, which is several orders of magnitude larger
than the NR database. This plot also illustrates similar results as
in the case of Fig. 4. Scalability for the small query is not very
high, almost linear scaling up to 128 nodes (87%) in co-processor
mode and continues to slightly scale up to about 1024 nodes
where the parallel efficiency drops to 22%. The medium query
shows a parallel efficiency of 61% at 1024 nodes. On the other
hand, the large query shows almost linear scaling up to 2048
nodes in co-processor mode (93%) and continues to scale to 8192
nodes (70%) and 16384 (55%).

0

2048

4096

6144

8192

10240

12288

14336

16384

0

20
48

40
96

61
44

81
92

10
24

0

12
28

8

14
33

6

16
38

4
Nodes in co-processor mode

P
ar

al
le

l S
pe

ed
up

Figure 5. Scaling chart for queries run versus the NT
database. From the top, the thick solid line corresponds to
ideal scaling; the thin line corresponds to the large query; the
dashed line corresponds to the medium query; the dotted line
corresponds to the small query.

Table 2 summarizes the total execution time in seconds for 64 to
16384 nodes which is the basis for Fig. 5. All the runs were
carried out in co-processor mode. All benchmarks were run with a
group size of 64. The NT database was divided into 127
fragments.

Table 2. Total execution time for queries run versus the NT
database.

Nodesa Smallb Mediumb Largeb

64 435.8 2395.2

128 250.6 1374.9

256 193.7 690.2

512 142.9 416.1 7108.0

1024 125.3 244.2 3589.6

2048 111.6 178.4 1895.7

4096 1037.1

8192 636.3

16384 402.9

6. DISCUSSION
The original version of mpiBLAST-PIO only scaled to
approximately 64 nodes in co-processor mode on BG/L. This is
consistent with previous studies of mpiBLAST on BG/L [22,23].
This was due to a combination of limitations of dividing the
database, the number of files that could be open at the same time,
and the number of compute nodes on BG/L [22,23]. In order to
overcome these limitations we needed to implement functionality

available as part of pioBLAST, but not yet implemented as part of
mpiBLAST-PIO. This has been shown to make a significant
difference in terms of performance on a system like BG/L [22].

The first step to achieve scalability required the elimination of
I/O. This was accomplished via the VFM. In previous studies,
different attempts have been tried to improve I/O performance
[22]. These included a server on a remote system (front-end) to
read databases and then distribute them to the BG/L nodes [22,23]
and the use of multiple identical file systems as an alternate
method to improve I/O [22]. In our work, the database distribution
is carried out by having only one worker reading a fragment of
the database and then distributing it via broadcast. This type of
communication is highly optimized on BG/L [11]. In addition, the
query is read by the master and distributed as well. This approach
showed to be efficient for the cases tested in this study.

The use of multiple masters is also proved to be important to be
able to scale almost linearly (when compared to ideal scaling) for
the queries and databases (medium and large) tested here. Also,
key to the multiple masters scheme was the selection of the size
of the groups. The worker-to-master ratio was set to 63 (64 nodes
in a group) as this was tested to be the size at which optimum
performance was achieved. Fig. 6 illustrates the effect of group
sizes using the medium query and the NR database. The peak or
optimal performance occurs with a group size of 64. The pattern
observed in Fig. 6 is dependent on multiple factors that play a role
when group size changes. First is the number of masters, when the
group size is 64, there are precisely 8 masters. At a group size of
63 the last master has a group of only 7. Though attempts were
made to make sure each group gets a fair amount of work, it is
desirable that all groups have the same size.

Another factor occurs during the setup phase. Adding more
masters means more nodes working on the E-value calculations.
However, while each additional master speeds up the setup phase,
it reduces the number of total workers. In many cases for small
queries on large databases, the setup phase will dominate the total
run time, and it would be beneficial to have more masters; but
otherwise, the optimal group size is dependent on how many
workers can handle in the main phase.

240

260

280

300

320

31 32 33 40 44 48 52 56 60 61 62 63 64 65 66 67 68 72 76

Group Size

R
un

 T
im

e
in

 S
ec

Figure 6. Run time as a function of group sizes using 512
nodes in co-processor mode with the medium query and NR
database.

Load balancing is important as well since due to the heuristic
nature of BLAST not all searches using different sequences take
an equal amount of time. This is where the SuperMaster helped
improve scalability. The SuperMaster oversees the work being
carried out by all the groups and makes sure that there are no idle
groups for long periods of time, hence improving load balance.

What percentage of the query is initially distributed (as long as
the percentage is not too large, 50% is certainly reasonable) or
how many queries are given at a time in the beginning is not very
important. We found that distributing either 1000 queries, 2000
queries, or 3000 queries at the beginning had no effect on the
overall run time. The minimum distribution number, however, did
have an effect (See Fig. 7).

245

250

255

260

265

270

275

280

0 10 20 30 40

Minimum query packet size

R
un

 ti
m

e
in

 S
ec

Figure 7. Performance as a function of minimum query
packet size distribution.

Towards the end of the run, generally the fewer queries
distributed the better (to a reasonable limit). If the query
distribution amount is unreasonably low, the SuperMaster will get
flooded with requests, but if it is too high, the queries will not be
effectively load balanced.

A combination of eliminating I/O, proper database distribution,
query distribution, multiple masters, and load balancing shows
that our improvements combined with the BG/L architecture
allows very high throughput on at least 4096 nodes. When the
number of query sequences drops, there will be fewer and fewer
jobs to distribute resulting in lower efficiency, as shown in Figs. 4
and 5.

7. CONCLUSIONS
This paper proposes a parallel scheme to increase scalability of
the popular mpiBLAST-PIO program. In this work we have
shown that our new implementation shows good scalability on a
massively parallel system. mpiBLAST-PIO now scales to
thousands of processors for the cases tested here. We report
several levels of optimization, starting with storing files in
memory, the introduction of a multiple masters configuration,

fragment distribution and load balancing. With this new
implementation, we have demonstrated that for the cases tested
here, mpiBLAST-PIO is well suited for a system with thousands
of distributed compute nodes. The scalability is nearly linear for
all the hardware configurations tested in this study.

8. ACKNOWLEDGMENTS
We would like to thank Carl Obert for his support and valuable
discussions on this work. We also would like to thank the
Extreme Blue and Speed Team programs at IBM Rochester
Minnesota, sponsors of this project. We especially would like to
thank the staff members at the OnDemandCenter, Cindy Mestad,
Steven M Westerbeck, and Geoffrey S Costigan and the Deep
Computing Institute at IBM Watson, Fred Mintzer for providing
valuable resources and assistance throughout the entirety of this
project. We also would like to thank Huzefa Rangwala for his
assistance and sharing with us his pioBLAST work on Blue
Gene/L.

9. REFERENCES
[1] Altschul, S., Gish, W., Miller, M., Myers, E., and Lipman,

D. J. “Basic Local alignment Search Tool,” Journal of
Molecular Biology, vol. 215, pp. 403-410, 1990.

[2] Galperin, M. Y. “The Molecular Biology Database
Collection: Update,” Nucleic Acids Research, vol. 34, pp.
D3-D5, 2006.

[3] Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J.,
and Wheeler, D. L. “GenBank,” Nucleic Acids Research,
vol. 34, pp. D16-D20, 2006.

[4] Huai-hsin Chi, E., Shoop, E., Carlis, J., Retzel, E., and Riedl,
J. “Efficiency of Shared-Memory Multiprocessors for a
Genetic Sequence Similarity Search Algorithm,” 1997.
http://www-users.cs.umn.edu/~echi/papers/perf/perf.html.

[5] Altschul,, S., Madden, T. L., Schaffer, A. A., Zheng, J.,
Zhang, Z., Miller, M., Lipman, D. J. “Gapped BLAST and
PSI-BLAST. A New Generation of Protein Database Search
Programs,” Nucleic Acid Research, vol. 25, pp. 3389-3402,
1997.

[6] Ching, A., Feng, W. –C., Lin, H., Ma, Y., Chodhary, A.
“Exploring I/O for Parallel Sequence-Search Tools with
S3aSim,” 15th IEEE International Symposium on High
Performance Distributed Computing, pp. 229-240, 2006.

[7] Gardner, M. K., Feng, W. –C., Archuleta, J., Lin, H, Ma, X.,
“Parallel Genomic Sequence-Searching on an Ad-Hoc Grid:
Experiences, Lessons Learned, and Implications,”
Supercomputing 2006, Florida.

[8] Jiang, K., Thorse, O, Peters, A., Smith, B., and Sosa, C. P.,
“An Efficient Parallel Implementation of the Hidden Markov
Methods on a Massively Parallel System,” IEEE
Transactions on Parallel and Distributed Systems 2007,
accepted..

[9] Sosa, C.P., Accapadi, M., and Atyam, B. V. “BLAST
Throughput Benchmarks: mmap versus read,” in
Performance Marketing Council 2003, Ed. Stahl, E., REDP-
3692-00, IBM Corporation, International Technical Support
Organization, Austin, TX, 2003. http://publib-

b.boulder.ibm.com/Redbooks.nsf/RedpaperAbstracts/redp36
92.html?Open

[10] Sosa, C. P., Tu, Z. J., and Fast, P. L. “Some Practical
Suggestions for Performing NCBI BLAST Benchmarks on a
pSeries 690 System,” REDP-0437-00, IBM Corporation,
International Technical Support Organization Austin, TX,
2002.
http://www.redbooks.ibm.com/abstracts/redp0437.html?Ope
n

[11] Lascu, O., Allsopp, N., Vezolle, P., Follows, J., Hennecke,
M., Ishibashi, F., Paolini, M., Prakash, S., Reddy, H., Sosa,
C. P., Tabary, A., Quintero, D. “Unfolding the IBM Server
Blue Gene Solution,” SG24-6686-00, IBM Corporation,
International Technical Support Organization, Poughkeepsie,
NY, 2005,
http://www.redbooks.ibm.com/abstracts/sg246686.html?Ope
n

[12] Braun, R. C., Pedretti, K. T., Casavart, T. L., Sheetz, T. E.,
Birkett, C. L., and Roberts, C. A. “Parallelization of Local
BLAST Service on Workstation Clusters,” Future
Generation Computer Systems, vol. 17, pp. 745-754, 2001.

[13] Darling, A., Carey, L., and Feng, W.-C., “The Design,
Implementation, and Evaluation of mpiBLAST,” Proc 4th
International Conference on Linux Clusters in conjunction
with ClusterWorld, 2003.

[14] Lin, H., Ma, X., Chandramohan, P., Geist, A., and Samatova,
N., “Efficient Data Access for Parallel BLAST,” Proc. 19th
International Parallel and Distributed Processing Symp.
(IPDPS), 2005.

[15] Message Passing Interface Forum. MPI: Message-Passing
Interface Standard, June 1995.

[16] Nieplocha, J., Harrison, R., and Littlefield, R. “Global
Arrays: A Nonuniform Memory Access Programming Model
for High-Performance Computing,” J. Supercomputing vol.
10, pp. 197-220, 1996.

[17] Oehmen, C. and J. Nieplocha, “ScalaBLAST: A Scalable
Implementation of BLAST for High-Performance Data-
Intensive Bioinformatics Analysis,” IEEE Transactions on
Parallel and Distributed Systems, vol. 17, pp. 740-749, 2006.

[18] Meng, X. and Chaudhary, V. “Bio-Sequence Analysis with
Cradle’s 3SoCTM Software Scalable System on Chip,”
Proc. ACM Symp. Applied Computing, 2004.

[19] Muriki, K., Underwood, K., and Sass, R. “RC-BLAST:
Towards a Portable, Cost-Effective Open Source Hardware
Implementation,” Proc. HICOMB 2005, 4th IEEE
International Workshop on High-Performance
Computational Biology, 2005.

[20] Bjornson, R., Sherman, A., Weston, S., Willard, N., and
Wing, J., “TurboBLAST: A Parallel Implementation of
BLAST Built on the TurboHub,” Proc. 16th International
Parallel and Distributed Processing Symp. (IPDPS), 2002.

[21] Camp, N., Cofer, H., and Gomperts, R., “High-Throughput
BLAST,” 1998.

[22] Bachega, L.; Lantz, E., Moore, N, Rangwala, H., “Life
Science Application Analysis Speed Team,” Final Report,
IBM, Rochester, MN, September 2005.

[23] Rangwala, H., Lantz, E., Musselman, R., Pinnow, K., Smith,
B., and Wallenfelt, B. “Massively Parallel BLAST for the
Blue Gene/L,” High Availability and Performance
Workshop, 2005.
http://xcr.cenit.latech.edu/hapcw2005/papers/final_bglBLAS
T.pdf.

[24] Standard set of BLAST databases for Nucleotide, Protein,
and Translated BLAST searches are made available at:
ftp://ftp.ncbi.nih.gov/blast/db/ in pre-formatted format. The
FASTA databases reside under the /blast/db/FASTA
directory.

10. BIOGRAPHY
Oystein Thorsen is a Ph.D. student in the Department of
Computer Science at Michigan Technological University. He
received a master’s degree in Computer Science from Michigan
Technological University in 2006 and a Bachelor’s degree in
Computer Engineering from Agder University College, Norway,
in 1999. During this time he has also worked as a Research
Assistant, working on various topics related to high-performance
computing and Unified Parallel C. He is currently part of the co-
op program at IBM Rochester working on Life Science
applications for the Blue Gene Software development team.

Brian Smith received a M.S. degree in Computer Engineering
from Iowa State University in January 2005. He received B.S.
degrees in both computer engineering and electrical engineering
from Iowa State University in 2000. He currently works at IBM in
Rochester, MN on the Blue Gene supercomputers. His job
responsibilities include the communications stack for Blue Gene
and applications porting and optimizing. He previously worked on
high-performance computing at the US DOE Ames Laboratory
Research lab. He is a member of the IEEE.

Carlos P Sosa is a Senior Technical Staff Member in the Systems
and Technology Group of IBM and the technical lead of the
Chemistry and Life Sciences team in the Blue Gene/L
development group. His work is on scientific applications with
emphasis in Life Sciences, parallel programming, benchmarking,
and performance tuning. He has authored and coauthored multiple
peer-reviewed papers. He also coauthored two IBM RedBooks:
Unfolding the IBM eServer Blue Gene Solution and Advanced
POWER Virtualization on IBM eServer p5 Servers: Architecture
and Performance Considerations. He received a Ph.D. degree in
Physical Chemistry from Wayne State University and completed
post-doctoral work at the Pacific Northwest National Laboratory.
His research areas of interest are in future POWER architectures,
massively parallel computing and cellular molecular biology. He
is a member of the IEEE Society, American Chemical Society,
and International Society for Computational Biology.

Karl Jiang is currently an undergraduate at the University of
Miami studying computer engineering, physics, and mathematics,
and is currently working as part of the a co-op program at IBM
Rochester. He works on parallelizing Life Sciences applications
on the Blue Gene massively parallel supercomputer.

Heshan Lin is currently a Ph.D. student of Department of
Computer Science at North Carolina State University (NCSU).
His research mainly focuses on high-performance computing,
parallel I/O and distributed computing. He received a Bachelors
of Arts in Applied Mathematics from South China University of
Technology in 1998, and Masters of Science in Computer Science

from Temple University in 2004. Heshan was a summer intern at
Oak Ridge National Laboratory in 2004 and Los Alamos National
Laboratory in 2005. Heshan has several publications in ACM and
IEEE-sponsored conference proceedings. The optimizations based
on one of his research projects have been incorporated into
mpiBLAST-PIO, a widely used open-source bioinformatics tool.
He is also the major developer of the mpiBLAST-PIO open-
source project.

Amanda Peters received B.S. degrees in both computer science
and physics from Duke University in 2005. She currently works at
IBM in Rochester, MN on the Blue Gene supercomputers. She is
involved with the porting, validating, and optimizing of Life
Science applications.

Wu-chun Feng recently joined Virginia Tech as an Associate
Professor of Computer Science and Electrical & Computer

Engineering. Previous professional stints include Los Alamos
Naitonal Laboratory, The Ohio State University, Purdue
University, University of Illinois at Urbana-Champaign, Orion
Multisystems, Vosaic, NASA Ames Research Center, and IBM
T.J. Watson Research Center.
His research interests encompass high-performance networking
and computing, low-power and power-aware computing, high-
speed monitoring and measurement, and bioinformatics. He is the
author or co-author of over a hundred peer-reviewed technical
publications in the above areas.
Dr. Feng received B.S. degrees in Computer Engineering and
Music and a M.S. degree in Computer Engineering from Penn
State University in 1988 and 1990, respectively. He received his
Ph.D. in Computer Science from the University of Illinois at
Urbana-Champaign in 1996. He is a Senior Member of IEEE

