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ABSTRACT 
In the life sciences, genomic databases for sequence search have 
been growing exponentially in size. As a result, faster sequence-
search algorithms to search these databases continue to evolve to 
cope with algorithmic time complexity. The ubiquitous tool for 
such search is the Basic Local Alignment Search Tool (BLAST) 
[1] from the National Center for Biotechnology Information 
(NCBI). Despite continued algorithmic improvements in BLAST, 
it cannot keep up with the rate at which the database is 
exponentially increasing in size. Therefore, parallel implement-
ations such as mpiBLAST have emerged to address this problem. 
The performance of such implementations depends on a myriad of 
factors including algorithmic, architectural, and mapping of the 
algorithm to the architecture. This paper describes modifications 
and extensions to a parallel and distributed-memory version of 
BLAST called mpiBLAST-PIO and how it maps to a massively 
parallel system, specifically IBM Blue Gene/L (BG/L). The 
extensions include a virtual file manager, a "multiple master" run-
time model, efficient fragment distribution, and intelligent load 
balancing. In this study, we have shown that our optimized 
mpiBLAST-PIO on BG/L using a query with 28014 sequences 
and the NR and NT databases scales to 8192 nodes (two cores per 
node). The cases tested here are well suited for a massively 
parallel system. 

Categories and Subject Descriptors 
K.2 [IBM]: Blue Gene/L; H.4 [Information Systems 
Applications]: Bioinformatics; D.2.8 [Software Engineering]: 
Metrics - performance measures. 

General Terms 
Algorithms, Measurement, Performance, Theory. 

Keywords 
mpiBLAST-PIO, massively parallel computer, Blue Gene/L, 
multiple masters parallelization. 

1. INTRODUCTION 
The human genome project was completed in 2003. Two of the 
goals of the project involved determining the sequences of the 
three-billion chemical base pairs in DNA and storing this 
information in databases. Nowadays, scientists continue 
sequencing other organisms and storing all this information in 
databases. Databases are currently growing exponentially. This 
growth has prompted programmers to develop faster and more 
sophisticated algorithms to keep pace with the increasing sizes of 
the databases. Software improvements combined with state-of-
the-art hardware will prove to play a vital role in the future of 
computational biology. This is particularly true when it comes to 
being able to extract and analyze data accumulated in these 
databases. 

The list of molecular biology databases is constantly increasing 
and more scientists rely on this information [2]. The Nucleic 
Acids Research (NAR) Molecular Biology Database collection 
reported an increase of 139 more databases for 2006 compared to 
the previous year. GenBank doubles its size approximately every 
18 months [3]. However, the increase in microprocessors clock 
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speed is not changing at the same rate [4]. Therefore, scientists try 
to leverage the use of multiple processors. 

One of the most popular programs to search databases is BLAST 
[1,5]. It is extensively used worldwide and its popularity is due to 
its powerful, flexible and fast implementation. BLAST relies on a 
heuristic algorithm to identify local alignments [1]. 

The demand for programs that can help analyze all this data will 
continue to increase. Carrying out, for example, database searches 
and sequence alignment tend to be not only computationally 
intensive but I/O demanding [6,7]. This becomes apparent as the 
size of the query and database increase [4,6,7]. Single BLAST 
searches can be performed in a matter of seconds or minutes. 
However, a recent study carried out a search of the NT database 
with the same NT database as a query have illustrated how much 
of a daunting task this may turn out to be [6,7]. Clearly, as data 
continues to grow, so does the need for software optimized for 
highly parallel systems that can leverage thousands of processors 
either on a grid [7] or on a massively parallel system [8]. 

2. Other Related Work 
2.1 Shared-Memory Parallelization 
To perform database searches in a shared-memory environment, 
BLAST carries out memory-mapped I/O via mmap [9]. The 
advantage of memory-mapped I/O is that a file on disk gets 
mapped into a buffer in memory that corresponds to bytes in the 
file [9]. Symmetric multi-processor (SMP) machines with larger 
memories can fully utilize all the available memory to store the 
database. 

In this scheme, each query sequence is compared against the 
entire database shared in memory. This step can be parallelized 
using multi-threading on an SMP. The parallel BLAST algorithm 
divides the database in sections that are allocated to different 
threads [4,10]. Given the amount of memory on a local node on a 
massively parallel machine, a different approach is required. 
Especially since mmap is not supported as part of the BG/L 
operating system [11]. 

2.2 Distributed-Memory Parallelization 
Two of the authors in this study have previously shown that one 
of the key ideas in parallelizing BLAST on distributed-memory 
machines relies on database fragmentation (or pre-distribution) 
[6,7]. Depending on the parallelization scheme, different 
fragments of the query will search the entire database on different 
nodes or the entire query will search fragments of the database on 
different nodes [12]. This process may be implemented within 
three levels of parallelism. Fine grained, medium grained, coarse 
grained [6,7,12]. Each level of parallelism might be better suited 
for a particular architecture [12]. 

The need for running BLAST on distributed memory machines 
led to the creation of mpiBLAST and subsequent versions 
[13,14]. This distributed-memory version uses the message 
passing interface (MPI) [15] and the parallelization is based on a 
master/worker scheme as described in refs. [6,7,13,14]. This 
approach has been divided into a “master-writing” implement-
ation where the master is the focal point and coordinates not only 
all the information received from the workers but I/O as well [6]. 
Although this approach has certain advantages, it is not well 
suited for massively parallel machines since the master becomes 

the bottleneck as more nodes are added to finish the task sooner 
[8]. 

The second approach is to let the workers carry out their own I/O. 
There are two ways to perform this task: the “worker-writing” 
approach via collective I/O or individual I/O [6]. The latter has 
been shown to be more efficient [6]. 

A recent study has reported on an implementation called 
ScalaBLAST. This new parallelization makes use of the Global 
Arrays toolkit [16] to distribute the database to remote nodes on 
the system, combined with a “worker-writing” scheme [17]. 

Other approaches include specialized hardware for sequence 
alignment [18,19] as well as a high-throughput approach via a 
central client that parses sequences to run in parallel [20,21] 

2.3 Our Contribution 
In this study, we describe our efforts in optimizing mpiBLAST-
PIO for a massively parallel system. Our approach relies on 
eliminating I/O by shifting the location of the database from disk 
to compute node memory. We also implement the multiple 
masters scheme previously reported [8]. The rest of the paper is 
organized as follows: the next section describes the hardware and 
software that was utilized in this study. Next, we describe our 
parallel implementation for massively parallel machines. 
Performance results and discussion provide information about 
scalability and relates the performance to some of the 
parallelization techniques utilized in this work. Finally we present 
a conclusions section. 

3. System Overview 

3.1 Hardware 
We have previously described BG/L in detail [11]. However, 
some of the architectural features are relevant for this study. We 
briefly summarize some of the key components of BG/L in this 
section, which are shown in Fig. 1. The smallest component is the 
chip. This first component is illustrated in Figure 1. The BG/L 
basic block is a PowerPC 440 dual-core processor (one node). 
Each processor core runs at a frequency of 700 MHz and each 
processor core can perform four floating-point operations per 
cycle, giving a theoretical peak performance of 5.6 Gflops/chip. 
The chip constitutes the compute node [11]. This is what we refer 
to in this work as nodes. 

Next is the compute card shown in Figure 1. Two compute nodes 
attached to a processor card along with memory (RAM) create a 
compute card (two nodes). The amount of RAM per card is 2 GB 
(1 GB per compute node) [11]. The I/O card is next. This card is 
physically very similar to the compute card, however, the I/O card 
has integrated Ethernet enabled for communication with the 
outside world [11]. The I/O cards and compute cards are all 
plugged into a node card or node board. There are two rows of 
eight compute cards on the node card and 0, 1, or 2 I/O cards 
depending on the I/O configuration [11]. A midplane consists of 
16 compute cards stacked in a rack. A rack holds two midplanes, 
for a total of 32 node cards or 1024 compute nodes illustrated in 
Figure 1. The largest system currently produced is made of 64 
racks for a total of 65536 compute nodes [11]. 



 
Figure 1. Copyright IBM Corp. 2004. Blue Gene/L 
components. Courtesy of International Business Machines 
Corporation. Unauthorized use not permitted. Image obtained 
from Ref. [11]. 

Finally, the compute nodes may be configured at boot time in one 
of following ways: the first way is the virtual node mode (VN). 
This configuration uses both processors separately, running a 
different process of the user's application on each processor with 
half the RAM assigned to each processor. The second way is Co-
processor node mode (CO). This configuration uses the secondary 
processor as an offload coprocessor for processing the I/O of the 
main processor [11]. In this study, we only used the CO mode to 
take advantage of all the physical memory available per node. 

3.2 Software 
mpiBLAST is an open-source parallelization of BLAST that uses 
MPI [13]. One of the key features of the initial parallelization of 
mpiBLAST is its ability to fragment and distribute databases.  

In this study, we use the mpiBLAST 1.4-PIO program [13,14]. 
This version incorporates most of the functionality introduced in 
pioBLAST [14]. This version can perform parallel I/O via MPI 
I/O. It also introduces the use of “workers-write” when parallel 
files systems are available and the “master-write” scheme when 
file systems are NFS-mounted. 

4. Massively Parallel Implementation 
4.1 Storing Files in Memory 
As previously pointed out, the original BLAST version utilizes 
mmap to store the database in memory. Since mmap is not 
implemented as a part of the BG/L operating system, the appli-
cation falls back on reading files directly from disk. With all 
nodes sharing the same file system, I/O contention severely limits 
the scaling of this application. To address this, we implemented a 
modified version of the “virtual file manager” (VFM) that was 
successfully used in pioBLAST which is described in ref. [14]. 
VFM is not only used to store the database fragments in memory, 
but also the query file and various temporary files. This 
eliminates disk I/O and allows file distribution using MPI when 
workers need the same file. Fragment distribution and query 
distribution are described in detail in sections 4.3 and 4.4. 

In BLAST and mpiBLAST-PIO, there are two structures that are 
central when dealing with virtual files. The one most specific to 
virtual files is Nlm_MemMap which contains the actual pointer to 
the memory location where the file is stored in memory. The 
second one is NlmMFILE which contains the Nlm_MemMap 
object, but could also contain a file pointer if we wanted to read 
directly from the file. 

The Nlm_MemMap object is initialized by Nlm_MemMapInit 
which normally would call mmap or return a file pointer. In the 
case of VFM we had to make this function allocate enough space 
to contain the entire file and copy the contents of the file into 
memory before closing the file. 

The NlmMFILE object is contained within VFM and is initialized 
the first time the program wants to access a file. Otherwise VFM 
will only return a pointer to the NlmMFILE object already in 
memory. 

4.2 Multiple Masters 
The biggest problem with scalability in the original implement-
ation was that there was a lot of administration work put on the 
master to make the workers as efficient as possible. Since this 
work increased linearly with the number of workers, it would get 
overwhelmed and cause the workers to wait longer and longer for 
a response every time they wanted more work. This is pictorially 
described in Figure 2. 
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Figure 1. Original implementation. “Single master to many 
worker nodes” communication. 

By introducing a second level of management, we could limit the 
number of workers for the master by creating groups of nodes 
containing one master for each group working on separate query 
sequences. So instead of doubling the number of workers, we 
double the number of groups whenever we doubled the number of 
total nodes. This ensured that the number of master nodes would 
scale with the number of total nodes. Currently the second level 
of management only contains one node (the SuperMaster) and 
could potentially be a bottleneck, but this node does very little 
work (described in section 4.5), and our benchmarks show that it 
can handle scalability to 8192 nodes. Figure 3 provides an 
overview of the steps involved in the new scheme. 



The amount of work required by the master depends on multiple 
factors and could change depending on what query and/or 
database is used. When we initially tested the original version, it 
only scaled to 64 nodes in co-processor mode. This is similar to 
what has been previously reported in the literature [17]. So we 
selected 64 as a good group size. Since a query sequence is not 
split between groups, each group must contain at least one copy 
of each database fragment. Each group must therefore have at 
least enough aggregate memory to contain the entire database and 
each node must have at least enough memory to contain one 
database fragment. Figure 3a shows the creation of groups. 
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Figure 3. Massively parallel implementation. a) Divide into 
groups, b) query fragmentation and load balancing, c) 
multiple outputs 

During the setup phase, the master carries out calculations such as 
the E-value [1] which is now divided among all masters to shorten 
the setup phase. All masters split the work between them before 
gathering the results and distributing it among all workers (Figs. 
3b and 3c). 

4.3 Fragment Distribution 
When using very few nodes, it will be faster for all of them to 
read their database fragments directly from disk, but due to the 
limited scaling of disk I/O bandwidth it will be much faster to let 
one node per fragment read from disk and distribute to everyone 
else who needs the fragment. A regular broadcast is highly 
optimized for speed and scalability in all MPI implementations 
making this new method a superior choice even on very few 
groups. 

To maximize the use of available bandwidth for the initial read, 
the nodes which read from disk are spread out over all the groups 

(and I/O nodes). This is illustrated in Figure 3b. And if each node 
has more than one fragment we make sure that a node does not 
have to read more than one fragment from disk to allow all reads 
from disk to be performed concurrently. 

The whole scheme is made possible with the addition of fragment 
communicators. For every fragment that is to be distributed, a 
communicator is constructed containing every node that is to 
receive that fragment. Calculations are made that ensure that if 
there are nodes that will receive more than one fragment, each 
node is assigned to read only a particular fragment. Also, instead 
of keeping a record in a file of what local fragments the node has 
on disk, the node instead keeps a virtual record of fragments the 
node is currently storing in memory. This list is broadcasted to the 
scheduler for scheduling purposes.  

Finally, there is a parameter that represents the minimum number 
of times the database is duplicated over a particular group. For 
some query and database combinations, the number of sequences 
in each fragment being unevenly distributed will cause some 
nodes to be far ahead of the others in terms of the query sequence 
they are working on. By having more than one fragment on a 
node, this imbalance is less likely. However, in most cases this 
parameter has negligible effect. 

4.4 Query Distribution 
In mpiBLAST-PIO, the master node reads the query file, counts 
the number of sequences and distributes them to the workers and 
then writes to a temporary file for each worker. In our 
implementation, the query file is stored as a virtual file instead of 
being written to file. Sequences are loaded from this virtual file 
instead of directly from disk. This is done using sequence loading 
functions within the NCBI toolkit that accepts a char pointer 
instead of a file pointer. 

 

4.5 Load Balancing 
In general, different query sequences are normally not processed 
in the same amount of time due to the heuristic nature of the 
search algorithm and variations in sequence length. So even if the 
groups are given the same amount of query sequences to work on, 
their total run time is usually quite different. It was therefore 
important to be able to hold back on some of the query sequences 
for the groups that finish early. To do this we used a dedicated 
node referred to as the SuperMaster. 

The SuperMaster’s only job is to make sure that none of the 
groups finish earlier than the rest. Our benchmarks show that the 
best way of doing this is to distribute half of the query sequences 
at the beginning, and then whenever a group finishes, the 
SuperMaster would give it a number of new query sequences 
equaling the number of remaining queries divided by the number 
of groups. This way the SuperMaster will give out fewer and 
fewer query sequences every time. If there are no more query 
sequences left, the SuperMaster will tell the group to finish up 
and quit the job.  

In many cases, one of the groups will be smaller than the rest (if 
the total number of nodes, minus one for the SuperMaster, is not a 
multiple of the group size) so the assigned query sequences 
assigned to this group must be reduced proportionally to its size. 



The rationale behind this is that the worker should at least manage 
to do its part of the remaining queries. Even if the new query 
sequences would require more work than the other sequences, it 
already had a head start since it was the first group to finish with 
its previous batch. 

This scheme results in more and more work for the SuperMaster. 
In order to prevent the groups from spending too much time 
waiting for the SuperMaster at the end, we set a minimum number 
of queries to distribute. The ideal number for this is also 
dependent on the query and database. The more work required for 
each query sequence, the smaller this number should be, and the 
more groups there are, the larger this number should be. Our 
benchmarks show that five is a good number for all the tests we 
have done in this paper. 

5. Performance Results 

5.1 Queries and Databases 
The query used in this study corresponds to Arabidopsis thaliana. 
This is a model organism for studying plant genetics. This query 
was further subdivided into small, medium and large query sets 
containing 200, 1168 and 28014 sequences, respectively. This set 
was obtained from a previous study [22,23]. 

We used two databases to carry out all the performance experi-
ments. These databases are maintained by NCBI [24]. The first 
database is the non-redundant (NR) protein database. The version 
that we downloaded contains 2,451,907 sequences with a total of 
830,525,235 letters. The second database is the NT database. The 
version that we downloaded has 4,218,264 sequences with a total 
of 17,671,372,779 letters. 

5.2 Results 
The evaluation of the massively parallel version of mpiBLAST-
PIO was carried out using two of the programs available as part of 
the BLAST suite of programs. The first program that we tested is 
blastx. This program uses an algorithm to compare the six-frame 
translation of our query sets (nucleotides) against the protein NR 
database. The second program that we tested corresponds to 
blastn. This program uses an algorithm to compare a nucleotide 
query sequence against a nucleotide database – in our case, the 
NT database. 
Fig. 4 illustrates the results of comparing three queries of three 
different sizes on the NR database. We label the query sizes as 
small, medium, and large. This figure shows that scalability is a 
function of the query size. The small query scales to 
approximately 1024 nodes in co-processor mode with a parallel 
efficiency of 72% were the large query scales to 8192 nodes with 
a parallel efficiency of 74%. We did not have the opportunity to 
test beyond 8192 nodes for this database.  
 
Table 1 summarizes the total execution time in seconds for 32 to 
8192 nodes, which is the basis for Fig. 4. All the runs were 
carried out in co-processor mode. All benchmarks were run with a 
group size of 64. The NR database was fragmented into 31 
fragments. 
 

0

1024

2048

3072

4096

5120

6144

7168

8192

0 1024 2048 3072 4096 5120 6144 7168 8192

Nodes in co-processor mode

P
ar

al
le

l S
pe

ed
up

 
Figure 4. Scaling chart for queries run versus the NR 
database. From the top, the thick solid line corresponds to 
ideal scaling; the thin solid line corresponds to the large 
query; the dashed line corresponds to the medium query; the 
dotted line corresponds to the small query. 
 

Table 1. Total execution times for queries run versus the NR 
database. 

Nodesa Smallb Mediumb Largeb 

32 721.8 4073.9  

64 334.1 1963.9  

128 171.7 993.7  

256 96.2 504.0  

512 50.0 251.4 5620.6 

1024 31.5 131.2 2863.0 

2048 21.3 73.4 1484.6 

4096  50.3 796.7 

8192   479.2 
a All runs in co-processor mode 
b All timings in seconds 
 
Fig. 5 shows the results of comparing the same three queries but 
on the NT database, which is several orders of magnitude larger 
than the NR database. This plot also illustrates similar results as 
in the case of Fig. 4. Scalability for the small query is not very 
high, almost linear scaling up to 128 nodes (87%) in co-processor 
mode and continues to slightly scale up to about 1024 nodes 
where the parallel efficiency drops to 22%. The medium query 
shows a parallel efficiency of 61% at 1024 nodes. On the other 
hand, the large query shows almost linear scaling up to 2048 
nodes in co-processor mode (93%) and continues to scale to 8192 
nodes (70%) and 16384 (55%). 



0

2048

4096

6144

8192

10240

12288

14336

16384

0

20
48

40
96

61
44

81
92

10
24

0

12
28

8

14
33

6

16
38

4
Nodes in co-processor mode

P
ar

al
le

l S
pe

ed
up

 
Figure 5. Scaling chart for queries run versus the NT 
database. From the top, the thick solid line corresponds to 
ideal scaling; the thin line corresponds to the large query; the 
dashed line corresponds to the medium query; the dotted line 
corresponds to the small query. 
 
Table 2 summarizes the total execution time in seconds for 64 to 
16384 nodes which is the basis for Fig. 5. All the runs were 
carried out in co-processor mode. All benchmarks were run with a 
group size of 64. The NT database was divided into 127 
fragments. 
 
Table 2. Total execution time for queries run versus the NT 
database. 

Nodesa Smallb Mediumb Largeb 

64 435.8 2395.2  

128 250.6 1374.9  

256 193.7 690.2  

512 142.9 416.1 7108.0 

1024 125.3 244.2 3589.6 

2048 111.6 178.4 1895.7 

4096   1037.1 

8192   636.3 

16384   402.9 
 

6. DISCUSSION 
The original version of mpiBLAST-PIO only scaled to 
approximately 64 nodes in co-processor mode on BG/L. This is 
consistent with previous studies of mpiBLAST on BG/L [22,23]. 
This was due to a combination of limitations of dividing the 
database, the number of files that could be open at the same time, 
and the number of compute nodes on BG/L [22,23]. In order to 
overcome these limitations we needed to implement functionality 

available as part of pioBLAST, but not yet implemented as part of 
mpiBLAST-PIO. This has been shown to make a significant 
difference in terms of performance on a system like BG/L [22]. 

The first step to achieve scalability required the elimination of 
I/O. This was accomplished via the VFM. In previous studies, 
different attempts have been tried to improve I/O performance 
[22]. These included a server on a remote system (front-end) to 
read databases and then distribute them to the BG/L nodes [22,23] 
and the use of multiple identical file systems as an alternate 
method to improve I/O [22]. In our work, the database distribution 
is carried out by having only one worker reading a fragment of 
the database and then distributing it via broadcast. This type of 
communication is highly optimized on BG/L [11]. In addition, the 
query is read by the master and distributed as well. This approach 
showed to be efficient for the cases tested in this study. 

The use of multiple masters is also proved to be important to be 
able to scale almost linearly (when compared to ideal scaling) for 
the queries and databases (medium and large) tested here. Also, 
key to the multiple masters scheme was the selection of the size 
of the groups. The worker-to-master ratio was set to 63 (64 nodes 
in a group) as this was tested to be the size at which optimum 
performance was achieved. Fig. 6 illustrates the effect of group 
sizes using the medium query and the NR database. The peak or 
optimal performance occurs with a group size of 64. The pattern 
observed in Fig. 6 is dependent on multiple factors that play a role 
when group size changes. First is the number of masters, when the 
group size is 64, there are precisely 8 masters. At a group size of 
63 the last master has a group of only 7. Though attempts were 
made to make sure each group gets a fair amount of work, it is 
desirable that all groups have the same size. 

Another factor occurs during the setup phase. Adding more 
masters means more nodes working on the E-value calculations. 
However, while each additional master speeds up the setup phase, 
it reduces the number of total workers. In many cases for small 
queries on large databases, the setup phase will dominate the total 
run time, and it would be beneficial to have more masters; but 
otherwise, the optimal group size is dependent on how many 
workers can handle in the main phase. 
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Figure 6. Run time as a function of group sizes using 512 
nodes in co-processor mode with the medium query and NR 
database. 
 



Load balancing is important as well since due to the heuristic 
nature of BLAST not all searches using different sequences take 
an equal amount of time. This is where the SuperMaster helped 
improve scalability. The SuperMaster oversees the work being 
carried out by all the groups and makes sure that there are no idle 
groups for long periods of time, hence improving load balance. 

What percentage of the query is initially distributed (as long as 
the percentage is not too large, 50% is certainly reasonable) or 
how many queries are given at a time in the beginning is not very 
important. We found that distributing either 1000 queries, 2000 
queries, or 3000 queries at the beginning had no effect on the 
overall run time. The minimum distribution number, however, did 
have an effect (See Fig. 7). 
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Figure 7. Performance as a function of minimum query 
packet size distribution. 
 
Towards the end of the run, generally the fewer queries 
distributed the better (to a reasonable limit). If the query 
distribution amount is unreasonably low, the SuperMaster will get 
flooded with requests, but if it is too high, the queries will not be 
effectively load balanced. 

A combination of eliminating I/O, proper database distribution, 
query distribution, multiple masters, and load balancing shows 
that our improvements combined with the BG/L architecture 
allows very high throughput on at least 4096 nodes. When the 
number of query sequences drops, there will be fewer and fewer 
jobs to distribute resulting in lower efficiency, as shown in Figs. 4 
and 5. 

7. CONCLUSIONS 
This paper proposes a parallel scheme to increase scalability of 
the popular mpiBLAST-PIO program. In this work we have 
shown that our new implementation shows good scalability on a 
massively parallel system. mpiBLAST-PIO now scales to 
thousands of processors for the cases tested here. We report 
several levels of optimization, starting with storing files in 
memory, the introduction of a multiple masters configuration, 

fragment distribution and load balancing. With this new 
implementation, we have demonstrated that for the cases tested 
here, mpiBLAST-PIO is well suited for a system with thousands 
of distributed compute nodes. The scalability is nearly linear for 
all the hardware configurations tested in this study. 
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