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ABSTRACT
Digital location traces can help build insights about how citizens
experience their cities, but also o�er personalized products and
experiences to them. Even as data abound, though, building an
accurate picture about citizen whereabouts is not always straight-
forward, due to noisy or incomplete data.

In this paper, we address the following problem: given the GPS
trace of a person’s trajectory in a city, we aim to infer what venue(s)
the person visited along that trajectory, and in doing so, we use
honest Foursquare check-ins as groundtruth. To tackle this problem,
we address two sub-problems. The �rst is groundtruthing, where
we fuse GPS trajectories with Foursquare check-ins, to derive a
collection of detected stops and truthful check-ins. The second sub-
problem is designing an inference model that predicts the check-in
venue given a stop. We evaluate variants of the model on real data
and arrive at a simple and interpretable model with performance
comparable to that of Foursquare recommendations.
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1 INTRODUCTION
As a larger part of modern life is digitized, individuals generate
an increasing volume and variety of digital traces, which reveal
information about their everyday activity and location. Users of
online social networks often inform their online connections of
their whereabouts, e.g., via check-ins on Foursquare or Facebook.
If analyzed properly, such data can help us better understand how
citizens experience the cities they live in.

Even as data abound, though, extracting accurate information
from them is not always straightforward. A direction to obtain
accurate estimates of people’s activities is to combine data from
di�erent sources. We attempt to achieve this by combining GPS
data, which provide a sample of a user’s whereabouts but are noisy
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and lack semantics, with Foursquare check-ins that provide visits
to venues of exact location but can be untruthful.

Speci�cally, the problem we consider is the following: given the
GPS trace of a person’s trajectories in a city, infer the venues they
visit. Our approach to this problem entails two tasks. The �rst is
groundtruthing, where we de-noise the GPS data and detect stops
from it, then match these stops to Foursquare check-ins. The output
of this task is a set of reliable Foursquare check-ins, each associated
with a stop. Subsequently, based upon this groundtruth data, the
second task is to predict the venue of a check-in, given the location
of a trajectory. We refer to this task as venue inference and address
it by de�ning appropriate probabilistic models. The techniques and
models developed in these two tasks can then be applied on ad-hoc
GPS trajectories of individuals and predict venues at which they did
or would check-in — thus allowing us to infer a distribution of venue
visits from GPS trajectories, or generate venue recommendations,
depending on the application context.

To perform the second task, we employ the geographic choice
model of Kumar et al. [3]. Given a geographic location as input, the
model assigns probabilities to nearby venues proportionally to a
score associated with each venue. Di�erent speci�cations of the
venue score lead to di�erent instances of the model.

The primary contributions of this paper are (1) the fusion of GPS
trajectory and check-ins, (2) an elaborate choice model that infers
check-in venues from GPS trajectories, and (3) experimental results
demonstrating the comparable performance in prediction accuracy
(compared to Foursquare).

2 RELATEDWORK
Urban computing is an active �eld of research, aiming to model
and improve various aspects of urban life via the analysis of digital
urban traces. We next discuss two major themes.

Human Mobility Analysis. One major line of work is that of
modeling the movement of people in cities [1, 2, 6]. The central
task here is to understand how individuals move from one place to
the next in a city — and speci�cally, discover a universal pattern
in terms of the geographic distance between the two successively-
visited venues and rank (i.e., the number of venues within a same
distance radius around the �rst venue). Findings suggest that rank
exhibits a universal, power-law distribution across a large number
of cities worldwide. One closely related task is studied by Kumar
et al. [3] in the context of direction queries on Google Maps. The
paper analyzed query logs from Google Maps to study how users



choose (request directions for) restaurants based on their distance
and their rank compared to other restaurants.
Venue Recommendation based on Check-ins. Another body
of related work focuses on venue recommendation by mining users’
check-in data [4, 9, 10]. Most of existing work focuses on mining
check-in histories of either users (and their friends) or venues to
infer check-in preferences. Our work di�ers from existing work by
exploring a cleaner and more interpretable model that does not use
individual-user data. A model to predict the venue visited by a user
given the user’s location not only has direct applications to venue
recommendations on LBSNs, but can also be used to estimate the
discrepancy between the venues where users check-in and where
they don’t. One attempt to do that is [8], where our data comes
from. The paper describes a basic version of the tasks we take on
in this paper.

3 DATA
In this section, we �rst describe the dataset we use (Section 3.1),
and subsequently the three steps for groundtruthing: denoising (Sec-
tion 3.2), stop detection (Section 3.3), and data fusion (Section 3.4),
leading to the groundtruth data used for the visit inference task.

3.1 Dataset
We use a dataset from previous work by Wang et al. [8, 11]. The
dataset was collected during a user study, the goal of which was to
compare the check-in activity of users on Foursquare to their actual
whereabouts. For the purposes of the study, 372 users installed a
GPS tracker on their smartphone and had their location tracked
for a time of about two to three weeks. Moreover, the users had
Foursquare installed on their smartphone and produced check-ins
to inform their friends of the venues they visited. In total, the dataset
contains 4, 313, 408 GPS points (about 11, 595 per user), and 31, 507
Foursquare check-ins.

3.2 Trajectory Denoising
Manual inspection of the user trajectories revealed that the GPS
traces were noisy. The bigger part (about 80%) of successive GPS
traces for the same user have a distance up to 20 meters, but there
are occasional gaps in the trajectories of several hundred meters.
To identify truly noisy points, we also consider the estimated ve-
locity between successive GPS points. Even as the larger part of
successive GPS points re�ect a velocity of less than 4m/sec , there
are occasional gaps of unnaturally large distance (e.g., larger than
50m/sec).

To de-noise the trajectories, we follow an approach similar to
the Heuristics-Based Outlier Detection method of [12]. Speci�cally,
we de�ne a distance threshold of 500 meters, and a speed threshold
of 50 m/s. A trajectory point is �ltered out if both the distance and
speed w.r.t. its predecessor is above the thresholds, an event that
happens about 6% of the time. The denoising algorithm examines
each point in sequence. It removes all successors of the current
point that do not satisfy the �lter. At the end, the surviving points
constitute the denoised trajectory.

3.3 Stop Detection
Given the GPS trajectory of each user, we extract stops, parts of the
trajectory that correspond to the user’s visit to a particular location.

The intuition behind our approach is that a set of points represent a
stop if they fall within a small geographic region for a long enough
interval of time. To operationalize this, we need to determine what
constitutes a “small region” and what a “long interval”. We do this
via two parameters ϵ and τ .

Speci�cally, for each GPS point p, we identify its neighborhood
of immediately preceding or succeeding points that fall within a
distance ϵ from p. More formally, the neighborhood Np of point
p is a maximal set of successive points q such that: (i) p ∈ Np ,
(ii) ‖p − q‖2 ≤ ϵ , where ‖·‖2 denotes the L2 distance between two
points. We de�ne a pointp as core if the time for which the trajectory
stays within its neighborhood exceeds time threshold τ , i.e., dt(p) =
maxq∈Np |t(p) − t(q)| ≥ τ . Let C be the set of core points.

Based on the above de�nitions, we identify as stops S ⊆ C a
subset of the core points C that are the output of the following
iterative procedure.
Repeat while C , ∅:

(1) Add to S the core point p ∈ C with maximum dt(p).
(2) Remove p from C , along with all other core points r

whose neighborhood Nr overlaps with Np .
Intuitively, the stops S we acquire at the end are a set of points near
which the trajectory stayed for a long interval of time.

3.4 Data Fusion: Matching Stops to Check-Ins
The �nal task in processing data is to match the stops detected in
the previous step (Section 3.3) to actual check-ins and thus form our
groundtruth dataset. We implement a matching algorithm similar
to that in [11].

For each check-in, we determine all stops that are within distance
α meters, and occur within β minutes after the check-in or anytime
before. Among the candidate stops for a check-in, we select the
one whose time interval is closest to the time of the check-in; then
this check-in is called matched. The resulting pairs of a stop and
check-in are then considered as truthfull and are included in the
groundtruth data. Here, we settle to a de�nition of truthfullness that
appears reasonable: a check-in can occur at most β = 30 minutes
before the stop and anytime after, while the geographical distance
between the check-in and stop should not exceed α = 500 meters.
Optimizing Stop Detection. Having �xed the aforementioned
de�nition of truthfullness, we come back to stop detection (Sec-
tion 3.3) and how to set its parameters, ϵ and τ . On one hand,
increasing the number of detected stops o�ers more opportuni-
ties for matched check-ins , as demonstrated in Figures 1a and 1b.
On the other hand, an increased number of stops comes with an
increased number of stops that remain un-matched – something
we want to avoid. The appropriate stop detection parameters are
thus determined after performing grid search in their domain space
and aiming for values that lead to quantifying the number of stops
produced and check-ins matched. Therefore, we set ϵ = 500m and
τ = 8 min, as ϵ = 500m leads to larger number of check-ins com-
pared to other ϵ values, but also τ = 8 min allows us to combine a
large number of check-ins with somewhat limited number of stops.

4 MODELING
The venue inference task can be simply stated as follows: given the
location of a trajectory stop, predict the venue where the user checks
in. To approach the task, we build a model to assign probabilities to



(a) Matched stops.

(b) Matched check-ins.

Figure 1: The number of matched stops and check-ins as a
function of ϵ and τ .

the di�erent venues that might be visited by the user, conditional
on the location at which the user has made a stop.

Motivated by the work of Kumar et al. [3], we adapt a general
choice model describing the relative merit of a venue with respect
to alternative options:

P (v |m) = s(v,m)∑
v ′ ∈Vm

s(v ′,m)
, (1)

where P (v |m) is the probability of a check-in at venue v given stop
m, Vm is the set of all venues within distance of 500 meters to the
stopm, and s(v,m) assigns a score to venue v given stopm.

All examined models obey this general formulation and di�er
in the way they compute the venue scores. In particular, the vari-
ants de�ne s(v,m) as the product of functions de�ned over features
associated with venue v and stopm.

4.1 Features
We consider the following two features.
Distance. For a venue v at location v .l , its distance D(v,m) from
the stop locationm.l is: D(v,m) = ‖v .l −m.l ‖2 .
Rank. For a venue v at location v .l , its rank R(v,m) is the number
of candidate venues that are closer to the stop locationm.l , i.e.,

R(v,m) = |{v ′|v ′ ∈ Vm : ‖v .l ′ −m.l ‖2 < ‖v .l −m.l ‖2 }|.
In the interest of simplicity, we’ll omit the designation v of the

venue and m of the stop for these features. Since all our models
require discrete values, we discretize Distance and Rank into 40
evenly spaced values from 0 up to the maximum distance (500
meters) or rank.

4.2 Scoring Functions
The score s(v,m) of a venue v for stop location m is the product
of a probability mass function (pmf) for each feature. We consider
two types of pmf for each feature, empirical and learned.
Empirical Probability Mass Function. For a feature X , the empir-
ical probability mass function P (X ) is estimated as the relative
frequency with which observed check-ins have a particular value
X = x for feature X in the training data.
Learned Probability Mass Function. For a feature X , a learned func-
tion Φ (X ) assigns to each (discrete) value of feature X a probability
value estimated from the training dataset. For both features, the
learned probability corresponds to a step function for values of
feature X , where sets (or buckets) of successive feature values are
assigned the same probability by the training procedure discussed
in Section 4.4.

4.3 Models
To describe the models, we use mnemonic rules for the ingredi-
ents, listed below. At all times, function f () is either the empirical
probability mass P (), or a learned function Φ ().

• D corresponds to a function of Distance f (D(v,m));
• R corresponds to a function of Rank f (R(v,m));

The models we consider de�ne the score s(v,m) of a venue v
for stop m as a product of ingredients, where each ingredient is a
function of a feature, that is: s(v,m) =∏n

i=1 f (Xi ) , where f (Xi ) is
the function of the feature Xi .

4.4 Training
For a stopm, letv(m) denote the matching check-in venue, extracted
as described in Section 3.4. The data is a set of stop - check-in-venue
pairs: C = {. . . , 〈m,v(m)〉, . . . }. Then, given a fully speci�ed model
instance, the likelihood of observing the data is de�ned as follows:

L =
∏
C

P (v(m)|m) =
∏
C

s(v(m),m)∑
v ′ ∈Vm

s(v ′,m)
.

The log likelihood, LL(Q) is then:

LL =
∑
C

log s(v(m),m) −
∑
C

log ��
�

∑
v ′ ∈Vm

s(v ′,m)��
�
.

Training (i.e., the �tting of parameters) is performed through
gradient ascent similar to [3]. Let X be a parameter, then at the i-th
step of gradient ascent we update it as X (i) = X (i−1) + ηX · ∂LL

∂X ,
where ηX is the learning rate for parameter X . In the following, we
derive the partial derivatives with respect to distance as an example.

The distance ingredient ΦD contains a parameter ΦD[di ] for
each discrete distance value di . The corresponding partial derivate
of log-likelihood is then:

∂LL
∂ΦD[di ] =

∑
m∈C:

D(v(m).l,m .l )=di

1
ΦD[di ] −

∑
m∈C

∑
v′∈Vm :D(v′ .l,m .l )=di s(v

′,m)∑
v′∈Vm s(v ′,m) · 1

ΦD[di ] ,

Finally, following standard practice, we use a random but �xed
80% of check-ins as the training dataset, and evaluate model per-
formance on the remaining 20% of check-ins.



Table 1: Distance or Rank
P(D) Φ(D) P(R) Φ(R)

-7972.69 -7925.77 -8098.92 -8025.41

Table 2: Distance and Rank
P(D) Φ(D)

P(R) -8538.68 -8193.85
Φ(R) -7932.03 -7937.45

5 EVALUATION
5.1 General Choice Model
In this part of the section, we evaluate the performance of di�erent
instances of the general choice model.
Single-FeatureModels.We begin evaluation with model instances
that use a single feature, i.e., either Distance, or Rank. Evaluation is
performed in terms of log-likelihood on the test dataset, and the
results are shown in Tables 1; higher values are better. For reference,
a model that assigns equal scores to all venues has log-likelihood
of -8349.21. As shown in the table, the best model instance used
learned functions for either distance or rank.
Two-Feature Models. We proceed similarly by considering model
instances that combine distance and rank, and show the results
in Tables2. For each feature, we evaluate model instances for each
ingredient that was evaluated in single feature models. As shown,
the model Φ(D)+Φ(R) achieves the best performance which proves
the bene�t of feature combination.

The aforementioned results, seem to indicate that we obtain
better performance for the venue inference task when: (i) both fea-
tures are used; (ii) we use stepwise scoring functions with learned
coe�cients instead of pointwise marginal distributions.

5.2 Comparison with Foursquare
We take it as given that Foursquare uses more complex models
than ours (see [7]), that better exploit the large amount of available
data they have at their disposal. Nevertheless, for completeness, we
wish to compare the performance of our approach with theirs.

As we do not have direct access to their algorithms, we proceed
as follows. Given the location m of a trajectory stop, Foursquare
provides us with a ranked list of venues1, and evaluate them based
on whether they include the matched check-in in our dataset. We
evaluate similarly our models.

To evaluate, we borrow two measures from the �eld of Informa-
tion Retrieval [5]. Normalized Discounted Cumulative Gain (NDCG)
considers the top k venues returned by a method and sums up
their relevance. In our setting, only the matched check-in can have
relevance score 1, while the rest is 0. Speci�cally, if i is the position2

at which the check-in venue is returned, then

NDCG@k =
1

log(i + 1)
, if i ≤ k ; 0, otherwise. (2)

The reported NDCG values for each method are averages over
all stops in the test dataset and are reported in Table 3.

1We use the venues/explore API call (https://developer.foursquare.com/docs/venues/
explore) to obtain a list of recommended venues.
2We use the term position here instead of the traditional term ‘rank’, to avoid confusion
with the Rank feature.

Table 3: Ranking E�ectiveness
Models NDCG@1 NDCG@2 NDCG@5 NDCG@10 NDCG@20 MAP

Foursquare 0.149 0.192 0.245 0.278 0.301 0.238
Φ(D) 0.087 0.126 0.18 0.219 0.252 0.184
Φ(R) 0.091 0.134 0.187 0.226 0.261 0.192
Φ(D)+Φ(R) 0.087 0.127 0.182 0.222 0.257 0.186

Mean Average Precision (MAP) considers the average precision
of each stop and returns their mean value. Average precision in the
special case of our setting is simply de�ned as AP = 1

i , where i is
the position at which the check-in venue is returned by a method.

As we see in Table 3, the ranking of Foursquare outperforms that
of our models according to NDCG and MAP. This was expected,
given the clear advantage that Foursquare has due to available
data and the simplicity constraints we imposed on our models. We
make the following observations. (i) Due to the discretization of
features, the advantage of Foursquare over our model instances is
more pronounced when we consider only the �rst few results. (ii)
Our models have consistent relative performance across all metrics.
(iii) NDCG@k and MAP do not capture exactly the performance in
terms of likelihood, our models were trained for.

6 CONCLUSION AND FUTUREWORK
Our goal in this paper was to infer the venues visited by individuals
from their trajectory. Given a new, ad-hoc trajectory of an individ-
ual, one can now use our procedure to pre-process the trajectory
and use the developed model instance to assign probabilities to
venues, and so capture the likelihood that the individual visit(ed)
each of them. One immediate application for future work would
be to explore how such a model helps improve recommendations
for location-based social networks or other services. Another ap-
plication is to apply the same process on a large set of trajectories
that represent movements of citizens in a city, and thus obtain a
distribution for visits at di�erent venues and times.
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