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Extracting Information from Side Channels

* Inferring words typed on the keyboard by analyzing the sound




What Is the Intuition?

 Different keystrokes make different
sounds

— Locations

— Underlying hardware

Takeaway: be sure there exists a pattern
before you start “machine learning”




Threat Model and Challenges

 Attacker has a microphone recording the victim’s typing
— Assumptions: typing English text, no labeled input
— Goals: recovering the English text, inferring random text (e.g., password)

* Challenges
— Hard to obtain labeled training data --- no cooperation from the victim
— Typing patterns can be keyboard specific
— Typing patterns can be user specific

Key Intuition: the typed text is often not random.

* English words limits the possible temporal combinations of keys
* English grammar limits the word combinations.




How The Attack Works

Key 1dea: generating training data automatically

— Labelling the audio of a key stroke with the actual key
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A Combination of Different Learning Methods

Unsupervised Learning
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Stepl: Unsupervised Learning

* Unsupervised clustering

* Spectrum feature

— Feature generation extraction
* C(lusterin
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— Clustering into K classes Group keystrokesinto classes
o K> N (actual number
of keys used)
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Step 2: Context-based Language Model

* Need to label the clusters: which key they represent?

* Assume the victim is typing English text

— Characters follow certain frequency
— Actual content follows English spelling and grammar

* Advantages:

— Use 2-character combination frequency to match classes to keys
— Use language model (spelling, grammar) to correct mistakes



Details: Context-based Language Model

 Character-level mapping:
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Details: Context-based Language Model
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A Combination of Different Learning Methods

Unsupervised Learning
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* Re-trainon

Feedback based Training | _originalaudio

« A keystroke classifier (for inferring random text)
— Given a keystroke, produce the label of the key

* Training
— Input: noisy training data
o Only a subset of labeled data from the language models
o Choose those with fewer corrections by the language model (quality indicator)

— Qutput: a not so accurate keystroke classifier

» Testing
— Use the trained classifier to classify the training data again
— Use the language model to correct the classification result
— Use the corrected label for re-training
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Feedback based Training (Con’t)
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Hvaluation

S/ Set 2 Set 3 Set 4
words ||chars | words | chars || words | chars | words | chars
unsupervised | keystrokes}|| 34.72 |}76.17 | 38.50 | 79.60 || 31.61 | 7299 | 23.22 | 67.67
learning language ||| 7457 |[87.19 | 71.30 | 87.05 || 5657 | 8037 | 5123 | 7507
Ist supervised | keystrokesf|| 58.19 []89.02 | 58.20 | 89.86 || 51.53 | 87.37 | 37.84 | 82.02
feedback language 89.73 (19594 | 88.10 | 95.64 || 78.75 | 92.55 | 73.22 | 88.60
2nd supervised | keystrokes||| 65.28 [|91.81 | 62.80 | 91.07 || 61.75 | 90.76 | 45.36 | 85.98
feedback language 9095 |196.46 | 88.70 | 9593 || 82.74 | 9448 | 7842 | 91.49
3rd supervised | keystrokes]|| 66.01 |§92.04 | 62.70 | 91.20 || 63.35 | 91.21 | 48.22 | 86.58
feedback language 90.46 |196.34 | 89.30 | 96.09 || 83.13 | 94.72 | 79.51 | 92.49

Table 2: Text recovery rate at each step. All numbers are percentages.
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Evaluation

Language model only
Keystroke: 37%
Language: 74%
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Other Key Results

* Works for random text
— Inferring passwords that contain English letters only
— 90% of 5-character random passwords: < 20 attempts
— 80% of 10-character random passwords: <75 attempts

* Works for multiple types of keyboards

» Even “low-quality” microphones can do the job
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Possible Defenses

 Introduce noise into the system

— Add (random) background noise to key strokes
o Remove the unique pattern for each key

— Use quieter keyboards

* Other defenses

— Two factor authentication (not just typing a password)

— No microphone in your room?
o well, your smartphone, your Amazon Alexa
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Other Thoughts

* Things that can be improved or “Limitations”
— 10+ min English content typing
— No support for numbers or special characters (Backspace, Capslock, Shift)
— Typing behavior pattern needs to be relatively stable

* QOther side-channels
— Visible light (camera)
— Hand movements (smart watch)
— Vibrations (smartphone on your desk)




