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Abstract

This paper presents an application of statis-
tical machine learning to the field of water-
marking. We propose a new attack model
on additive spread-spectrum watermarking
systems. The proposed attack is based on
Bayesian statistics. We consider the scenario
in which a watermark signal is repeatedly em-
bedded in specific, possibly chosen based on a
secret message bitstream, segments (signals)
of the host data. The host signal can rep-
resent a patch of pixels from an image or
a video frame. We propose a probabilistic
model that infers the embedded message bit-
stream and watermark signal, directly from
the watermarked data, without access to the
decoder. We develop an efficient Markov
chain Monte Carlo sampler for updating the
model parameters from their conjugate full
conditional posteriors. We also provide a
variational Bayesian solution, which further
increases the convergence speed of the algo-
rithm. Experiments with synthetic and real
image signals demonstrate that the attack
model is able to correctly infer a large part
of the message bitstream and obtain a very
accurate estimate of the watermark signal.

1. Introduction

Watermarking is the process of imperceptibly em-
bedding a watermark signal into a host signal (au-
dio segment, pixel patch from image or video frame).
The watermark signal should only introduce tolera-
ble distortion to the host signal and it should be
recoverable by the intended receiver. Watermark-
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ing techniques differ by the way they modulate the
host signal to embed information. There are two ma-
jor classes of watermark embedding schemes, namely
spread spectrum and quantization index modulation
(QIM) (Chen & Wornell, 2001).

Spread spectrum watermarking (Cox et al., 2007;
Hartung et al., 1999) constitutes a popular class of
watermarking algorithms. In their simplest form, the
watermarked signal is constructed by adding the host
and watermark signals together, i.e. additive water-
mark embedding. Although, in terms of additive noise
attacks they have been outperformed by the more ro-
bust QIM watermarking techniques (Chen & Wornell,
2001), spread-spectrum techniques have advantageous
features that make them preferable in some water-
marking scenarios. Examples of such inherent features
include their simplicity and robustness to removal at-
tacks. Another advantage is that spread-spectrum wa-
termarking can be applied in different forms (multi-
plicative watermarking (Huang & Zhang, 2007)) that
can further improve performance in some cases. They
can also effectively exploit the human visual system
(HVS) (Podilchuk & Zheng, 1998) to reduce percep-
tual degradation of the host signal.

Many attacks have been designed to hamper the
performance of watermarking in general and spread-
spectrum watermarking in particular. The attacks
are usually classified with respect to the attacker’s as-
sumed knowledge about the watermark scheme. Ro-
bustness attacks pertain to the class of attacks under
which the attacker has no knowledge of the watermark
scheme. Examples of such attacks include adding ran-
dom noise (Chen & Wornell, 2001) to the watermarked
signal, replacing signal blocks with perceptually simi-
lar blocks computed in a certain way (Kirovski et al.,
2007), applying a geometric transformation (cropping,
scaling, translation, etc.) to the watermarked signal,
or applying a malicious filtering operation (Su et al.,
2001), to name a few. Other attacks belong to the
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so called worst case class of attacks, where the at-
tacker has knowledge about the watermark technique
and designs the attack such that the watermark detec-
tor (decoder) performance is minimized, under suit-
ably defined distortion constraints. Usually, this type
of attack is based on game theory (Cohen & Lapidoth,
2002) and is mostly of theoretical importance.

A third class of attacks aims at compromising
the watermark system security (security attacks)
(Cayre et al., 2005; Freire & Gonzalez, 2009). Under
this scenario, the attacker has access only to the wa-
termarked data and tries to estimate the secret key
used for embedding the watermark. Having estimated
the secret key, he can then reconstruct the water-
mark and remove it from the watermarked data (the
so called removal attacks), thus creating a forgery of
the host signal, which can then be freely copied and
distributed by pirates. Although (Cayre et al., 2005;
Freire & Gonzalez, 2009) develop theoretical security
attack frameworks, the proposed algorithms do not
perform well with real correlated host signals.

Another type of attack is the so called sensitiv-
ity analysis attack, which constitutes a powerful
subclass of removal attacks (Kalker et al., 1998;
Linnartz & van Dijk, 1998; Choubassi & Moulin,
2007). In their attempt to estimate the watermark
signal, they rely on unlimited access to the decoder.

In this paper, we consider the scenario in which a
watermark signal is repeatedly embedded in specific
(possibly secretly chosen) host signals. The host sig-
nal can represent a patch of pixels from image or
video frame. The host signals may be perceptu-
ally similar or quite disparate, as the watermark al-
gorithm may choose, for security reasons, to embed
the watermark in specific signals of the host data
based on a secret message bitstream. Repetitive wa-
termark embedding is of particular interest in image
and video watermarking (Voloshynovskiy et al., 2001;
Lu & Hsu, 2007; Bas et al., 2002; Tang & Hang, 2003;
Doerr & Dugelay, 2004; Kalker et al., 1999), where
the watermark signal is repeatedly allocated into small
blocks to ensure robustness and resistance to geometric
(desynchronization) attacks. However, the proposed
attacks related to this scenario assume that the wa-
termark signal is not secretly hidden but is added to
every host signal and therefore do not try to estimate
an embedded message bitstream.

The attack model proposed in this paper jointly es-
timates the embedded message bitstream and water-
mark signal from the watermarked data, without ac-
cess to the decoder. We develop a probabilistic model
based on Bayesian statistics. The algorithm models

the host signal as having a multivariate Gaussian dis-
tribution with unknown mean and full covariance ma-
trix. The watermark signal itself is also modeled as
having a multivariate Gaussian distribution, but with
separate unknown mean and full covariance matrix.
The model parameters are updated sequentially from
their respective conjugate full conditional posterior
distributions, via Markov chain Monte Carlo (MCMC)
sampling. To further increase the convergence speed
of the proposed algorithm, we develop a variational
Bayesian (VB) (Beal & Ghahramani, 2003) solution to
it. In addition to its suitability for large scale data
analysis, the VB solution also allows for diagnosing
convergence, via the lower bound to the log-likelihood.
Both MCMC and VB solutions perform comparably
with respect to probability of bit error and relative
watermark reconstruction error, with both synthetic
and real host data.

Our model borrows similar ideas from sparse factor
regression formulations (sparse models) used in gene
expression data analysis (West, 2003; Carvalho et al.,
2008). The objective of such sparse models is to spec-
ify a prior for the elements of a highly sparse factor
loadings matrix, with most elements being exactly zero
and few of them having relatively large variances. To
contrast with our model, the role of the zero elements
here is taken by the data points (signals) that are not
watermarked, which do not necessarily constitute the
majority of all data points. The watermarked data
points have the interpretation of the non-zero elements
in the factor loadings matrix. However in our case,
they are a sum of the host and the watermark signals,
with the watermark signal being much weaker than
the host signal. The problem becomes that of a joint
identification-estimation of a subtle signal.

2. Spread-Spectrum Watermarking

Throughout this paper, random variables are denoted
by small letters. Random vectors and their realiza-
tions are denoted by bold small letters. The notation
x ∈ Rd indicates a d-dimensional random vector of
real elements. Square random matrices and their real-
izations are denoted by bold capital letters. The nota-
tionX ∈ Rd×d indicates a d×d matrix of real elements
and X′ is its transpose. The probability of an event
is denoted by Pr(·). The notation x ∼ p(x) indicates
that x has a probability density function (pdf) p(x).

In this paper we concentrate on one of the most pop-
ular additive spread-spectrum watermarking systems,
in which a watermark signal is repeatedly used to em-
bed a message bitstream into a host data. The wa-
termark encoder is shown in Fig. 1. Considering
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the ith data point and depending on the message bit
bi ∈ {0, 1}, the encoder adds (bi = 1) the watermark
signal w to the host signal xi, or leaves the host sig-
nal unchanged (bi = 0). The watermarked signal can
therefore be written as

yi =

{

xi +w if bi = 1,
xi if bi = 0,

(1)

where i ∈ {1, . . . , n} and n is the number of available
data points.

xi yi

w

Figure 1. Additive spread-spectrum watermark encoder.

The watermark decoder is shown in Fig. 2. The de-
coder has access to the watermark signal w. Based
on the received (watermarked) signal yi and the wa-
termark signal, the decoder computes a detection test
statistic f(yi,w) and compares it to a suitably chosen

threshold τ . The decoder then outputs an estimate b̂i
of the embedded message bit bi in the following way

b̂i =

{

1 if f(yi,w) > τ,
0 if otherwise.

(2)

yi

f(yi,w)

w

b̂i

Figure 2. Watermark decoder.

Throughout the paper, the document-to-watermark
(DWR) ratio is defined as DWR = 10 log10 σ

2
x/σ

2
w,

where σ2
x is the variance of a single element in xi, for

i ∈ {1, . . . , n}, and σ2
w is the variance of a single ele-

ment in w.

3. Attack Model

It is assumed that the attacker has access to the wa-
termarked signal, but has no access to the watermark
decoder. The complete form of the attack model can

be summarized as follows:

yi = xi + biw (3)

xi ∼ N (xi|µ,Σ) (4)

w ∼ N (w|m,V) (5)

bi ∼ Bernoulli(bi|π) (6)

{µ,Σ} ∼ N (µ|µ0,Σ)IW(Σ|ω0,Σ0) (7)

{m,V} ∼ N (m|m0,V)IW(V|ω0,V0) (8)

π ∼ Beta(π|aπ, bπ), (9)

where N (x|µ,Σ) is the d-variate Gaussian distribu-
tion of x with mean µ and covariance matrix Σ,
IW(Σ|ω0,Σ0) is the inverse Wishart distribution of
Σ with degrees of freedom ω0 and base covariance ma-
trix Σ0, Bernoulli(bi|π) is the Bernoulli distribution of
bi with mean π, and Beta(π|aπ , bπ) is the Beta distri-
bution of π with parameters aπ and bπ.

A graphical representation of the attack model is
shown in Fig. 3. The blue circle represents the
observed variable, the white circles represent hidden
(latent) variables and the squares represent hyper-
parameters. Conditional dependence between vari-
ables is shown via the directed edges.

π

bi

ω0 Σ0 aπ bπ ω0

V m

V0 m0

yi

w

Σ

xi

µ

µ0

Figure 3. A graphical representation of attack model.

4. Posterior Updates

In this section we derive the update equations for the
attack model parameters, with respect to the MCMC
and VB solutions. The update equations are based on
the full likelihood of the model, which can be written
as

L(y) = p(y,x,w,µ,Σ,m,V,b, π)

=
∏

i

p(yi|xi,w, bi)p(xi|µ,Σ)p(bi|π)

× p(w|m,V)p(µ,Σ)p(m,V)p(π) (10)
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As it can be seen the likelihood (10) is in an intractable
form, since it is not possible to jointly estimate all
model parameters directly from (10). That is why the
MCMC and VB solutions developed below update ev-
ery model parameter sequentially from its respective
conditional posterior distribution. While the MCMC
solution is based on exact conditional posterior distri-
butions, the VB solution utilizes an approximation to
the true conditional posterior distribution.

4.1. MCMC Update Equations

We derive the MCMC update equations, based on the
exact full conditional posteriors of the attack model
parameters and construct a Gibbs sampler that itera-
tively samples from these update equations.

The full conditional posterior distributions of the
model parameters are as follows:

• updating {µ,Σ}.

p(µ,Σ|x) ∝ p(µ,Σ)
∏

i

p(xi|µ,Σ)

∝ IW
(

Σ|ω0 + n,ΣΣ

)

N
(

µ|µµ,
Σ

n+ 1

)

, (11)

where

ΣΣ = Σ0 +
n

n+ 1
(x̄− µ0)(x̄− µ0)

′

+
∑

i

(xi − x̄)(xi − x̄)′ (12)

µµ =
µ0 + nx̄

n+ 1
(13)

x̄ =
1

n

∑

i

xi. (14)

• updating w.

p(w|y) ∝ p(w|m,V)
∏

i

1(bi = 1)p(yi|µ,Σ,w)

∝ N
(

w|mw,Vw

)

, (15)

where

Vw = (V−1 + n1Σ
−1)−1 (16)

mw = Vw

(

V−1m

+ Σ−1
∑

i

1(bi = 1)(yi − µ)
)

(17)

n1 =
∑

i

1(bi = 1), (18)

and 1(·) is an indicator function.

• updating bi.

p(bi|π̂i) ∝ Bernoulli(bi|π̂i), (19)

where

π̂i =
1

1 + 1−π
π

N (yi|µ,Σ)
N (yi|µ+m,Σ+V)

. (20)

• updating π.

p(π|b) = Beta(π|âπ , b̂π), (21)

where

âπ = aπ +
∑

i

1(bi = 1), (22)

b̂π = bπ +
∑

i

1(bi = 0). (23)

• updating {m,V}.

p(m,V|w) ∝ p(m,V)p(w|m,V)

∝ IW
(

V|ω0 + 1,Vv

)

N (m|mm,
V

2
), (24)

where

Vv = V0 +
1

2
(w −m0)(w −m0)

′ (25)

mm =
m0 +w

2
. (26)

• updating xi.

xi =

{

yi −w if bi = 1,
yi if bi = 0

(27)

4.2. VB Update Equations

The VB approach tries to find a tractable lower bound
L(q) to the logarithm of the marginal likelihood (10),
which can be iteratively updated (tightened). If we de-
note by θ the model parameters {w,µ,Σ,m,V,b, π}
that we want to update, the optimal posterior update
that gives the tightest bound (Beal & Ghahramani,
2003) is given as

qj(θj) ∝ exp
(

〈

ln p(y, θ)
〉

−j

)

, (28)

where 〈·〉−j denotes expectation with respect to all pa-
rameters except for the jth parameter that is being
updated.

Using (28), the posterior VB updates of the model
parameters are as follows:
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• updating {µ,Σ}.

q(µ,Σ) ∝ exp
〈

ln
(

p(µ,Σ)
∏

i

p(xi|µ,Σ)
)

〉

∝ IW
(

Σ|ω0 + n,Σvb
Σ

)

N
(

µ|µvb
µ
,
〈Σ−1〉−1

n+ 1

)

, (29)

where

Σvb
Σ = Σ0 +

n

n+ 1
(z̄+ µ0)(z̄ + µ0)

′

+
∑

i

(

〈b2i 〉〈ww′〉 − 〈bi〉
2〈w〉〈w〉′

)

+
∑

i

(

〈bi〉〈w〉 − yi − z̄)(〈bi〉〈w〉 − yi − z̄)′
)

(30)

µvb
µ

=
µ0 − nz̄

n+ 1
(31)

z̄ =
1

n

∑

i

(

〈bi〉〈w〉 − yi

)

, (32)

and b2i = bi, following the properties of the
Bernoulli random variable.

• updating w.

q(w) ∝ exp
〈

ln
(

p(w)
∏

i

p(yi|w)
)

〉

∝ N (w|mvb
w ,Vvb

w ), (33)

where

Vvb
w =

(

〈V−1〉+ 〈Σ−1〉

×
∑

i

(

〈bi〉
2 +

〈

bi − 〈bi〉
〉2)

)−1

(34)

mvb
w = Vvb

w

(

〈V−1〉〈m〉

+ 〈Σ−1〉
∑

i

〈bi〉
(

yi − 〈µ〉
)

)

. (35)

• updating bi.

q(bi|π̂i) ∝ Bernoulli(bi|π̂i), (36)

where

π̂i =
1

1 +
exp

〈

ln(1−π)
〉

N
(

yi|〈µ〉,〈Σ−1〉−1

)

exp 〈lnπ〉N
(

yi|〈µ〉+〈m〉,〈Σ−1〉−1+〈V−1〉−1

)

.

• updating π.

q(π|b) ∝ Beta(π|avbπ , bvbπ ), (37)

where

avbπ = aπ +
∑

i

〈bi〉 (38)

bvbπ = bπ + n−
∑

i

〈bi〉. (39)

• updating {m,V}.

q(m,V|w) ∝ exp
〈

ln
(

p(m,V)p(w|m,V)
)

〉

∝ IW
(

V|ω0 + 1,Vvb
v

)

N
(

m|mvb
m ,

〈V−1〉−1

2

)

, (40)

where

Vvb
v = V0 +

1

2

(

m0 − 〈w〉
)(

m0 − 〈w〉
)′

(41)

mvb
m =

m0 + 〈w〉

2
. (42)

5. Experiments

We perform experiments with both synthetic and real
host signals. To quantify the performance of our al-
gorithm, we compute the probability of error Pe =
1
n

∑

i 1(bi 6= b̂i) and the relative watermark reconstruc-

tion error Rw = ‖w−ŵ‖2

‖w‖2

, where ‖ · ‖2 is the L2 norm,

and ŵ is the estimated watermark signal.

In all experiments, the model hyper-parameters are
initialized as aπ = bπ = 0.5n, µ0 = m0 = 1

n

∑

i yi,
ω0 = d + 1, Σ0 = 1

n

∑

i(yi − µ0)(yi − µ0)
′ and

V0 = 1
10DWR/10Σ0. For each iteration, we computed

95% credible intervals of the individual samples in the
watermark signal estimate ŵ. With respect to the
MCMC solution, we performed 2000 iterations of the
Gibbs sampler, discarding the first 1000 as burn in
iterations and averaging the results of the remaining
1000 iterations. For the VB solution, we performed
100 iterations and using the last iteration updates of
〈w〉, and 〈bi〉, as the estimated watermark signal ŵ

and message bit b̂i for i ∈ {1, . . . , n}, respectively.

We implemented the proposed attack model solu-
tions in R, with some of the routines implemented
in C/C++. It takes approximately 6 minutes for the
MCMC solution to perform 2000 iterations, using 4096
64-dimensional data points. In contrast, the VB so-
lution performs 100 iterations in less than a minute,
using the same data points.

5.1. Synthetic Host Signals

In this subsection we perform experiments with syn-
thetic host signals. We generated n = 4096, d = 64-
dimensional host data points. Each data point was in-

dependent and identically drawn from N
(

0, IW
(

d +

1, IW(d + 1, I)
)

)

, where I is the identity matrix. In

this way, the host signal covariance matrix, although
randomly drawn, imposes some structure on the host
signal. The watermark signal was drawn from a mul-
tivariate Gaussian with mean N

(

0, IW(d+1, I)
)

and
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covariance IW(d + 1, I). The watermark signal was
zero mean transformed and scaled so that DWR =
30db. The watermark message bits were drawn from
Bernoulli(0.5), and the watermarked signal was formed
by additive spread-spectrum modulation. The host
image and the difference between the watermarked and
host images are shown in Fig. 4. Each block of pix-
els was formed by row-wise transformation of the data
point into an 8 × 8 matrix. The blocks were then or-
dered row-wise to form the whole image.

Figure 4. Synthetic host image (left) and watermark signal
modulated by the message bits (right). DWR = 30db.

Experimental results of the difference bi − b̂i for i ∈
{1, . . . , n}, the watermark signal w and its estimate ŵ
for the MCMC and VB solutions are shown in Fig. 5.
The results show that the algorithm was able to obtain
a good estimate of the watermark signal and message
bitstream, with only a small fraction of misidentified
bits. Based on the experimental results, we can see
that the MCMC and VB solutions perform compara-
bly in terms of Pe and Rw.
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Figure 5. Experimental results for the MCMC (left col-
umn) and VB (right column) solutions applied to the syn-
thetic host signal. The plots present bi − b̂i, the water-
mark signal w (solid line) and its estimate ŵ (dashed line).
The gray regions represent 95% credible intervals. For the
MCMC solution Pe = 0.004 and Rw = 0.48. For the VB
solution Pe = 0 and Rw = 0.256. Chosen DWR = 30db.

5.2. Real Host Signals

In this subsection we perform experiments with real
image signals. We applied our algorithm on gray scale
images. In the experiments we used image sizes of
512 × 512 and 1024 × 1024 pixels. The images were
split in 8 × 8 patches of pixels, making a total of
n = 4096 and n = 16384 patches respectively. The
pixels within each patch were concatenated row-wise
to form the d-dimensional (d = 64) data points. The
host signal was then normalized to have zero mean.

As in the case of synthetic host signals, the water-
mark signal was drawn from a multivariate Gaus-
sian with mean N

(

0, IW(d + 1, I)
)

and covariance
IW(d + 1, I). The watermark signal was then scaled
such that DWR = 30db and embedded by additive
spread-spectrum modulation with Pr(bi = 1) = 0.5,
for i ∈ {1 . . . n}. The real host images used in the
experiments are shown in Fig. 6.

Figure 6. Real host images. From top left to bottom right:
Lake, Boat, Children, Fruits, Lena, Pirate.

Experimental results for the MCMC and VB solutions
applied to the real host images from Fig. 6 are shown
in Fig. 7. It can be seen that both solutions perform
comparably with respect to real host signals.
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,ŵ

0 10 20 30 40 50 60

−
3

0
2

w
,ŵ
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Figure 7. Experimental results for the MCMC (left col-
umn) and VB (right column) solutions. The solid line rep-
resents the watermark signal w and the dashed line is its
estimate ŵ. The gray regions represent 95% credible in-
tervals. From top to bottom: Lake, Boat, Children, Fruits,
Lena, Pirate. Chosen DWR = 30db.

Computations of the lower bound L(q) for the VB so-
lution applied on the real host images in Fig. 6 are
shown in Fig. 8. The results show that the VB so-
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lution converges in less than 20 iterations for all real
host images considered in the experiments.

0 20 40 60 80 100−
69

15
00

−
68

95
00

iteration

L(
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0 20 40 60 80 100
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0

iteration

L(
q)

Figure 8. Experimental results for the lower bound to the
log-likelihood. Please see supplementary for a detailed ex-
pression of L(q). From top left to bottom right: Lake, Boat,
Children, Fruits, Lena, Pirate. Chosen DWR = 30db.

To quantify the performance of the attack model with
respect to different DWR levels, we perform experi-
ments with the real host images in Fig. 6 and vary-
ing the DWR ∈ {20, . . . , 40}. The interval of values
for the DWR was chosen so that the middle is at
DWR = 30db, at which level no perceptual degrada-
tion to the host image was observed. The watermark
signal was drawn from a multivariate Gaussian with
mean N

(

0, IW(d+1, I)
)

and covariance IW(d+1, I).
For each host image, the watermark signal was drawn
only once and then zero mean transformed, and scaled
down differently to achieve the different DWR levels.
Experimental results of Pe and Rw as functions of
DWR are shown in Fig. 9 and Fig. 10 respectively,
with both solutions performing comparably.

6. Discussion

We presented a new attack model on repetitive spread-
spectrum watermarking systems, based on Bayesian
statistics. The proposed algorithm jointly estimates
the watermark signal and message bitstream, directly
from the watermarked signal and without access to the
watermark decoder. We developed MCMC and VB
solutions that perform comparably in terms of prob-
ability of error and relative watermark reconstruction
error, on both synthetic and real host signals. Fast
convergence is observed in both solutions, particularly
in the VB solution where the algorithm converges in
less than 20 iterations, with both synthetic and real
host signals. While the MCMC solution is expected to
result in more accurate estimates for infinite number
of iterations, the VB solution is computationally more
efficient and therefore more appropriate for large data
sets. We demonstrated that the attack model is able
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Figure 9. Experimental results of Pe, based on the MCMC
(left column) and VB (right column) solutions. From top
to bottom: Lake, Boat, Children, Fruits, Lena, Pirate.

to correctly infer a large part of the message bitstream
while at the same time obtaining a good estimate of
the watermark signal.
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