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ABSTRACT
We present SAMPLES: Self Adaptive Mining of Persistent LExical
Snippets; a systematic framework for classifying network traffic
generated by mobile applications. SAMPLES constructs conjunc-
tive rules, in an automated fashion, through a supervised method-
ology over a set of labeled flows (the training set). Each con-
junctive rule corresponds to the lexical context, associated with
an application identifier found in a snippet of the HTTP header,
and is defined by: (a) the identifier type, (b) the HTTP header-
field it occurs in, and (c) the prefix/suffix surrounding its occur-
rence. Subsequently, these conjunctive rules undergo an aggregate-
and-validate step for improving accuracy and determining a prior-
ity order. The refined rule-set is then loaded into an application-
identification engine where it operates at a per flow granularity, in
an extract-and-lookup paradigm, to identify the application respon-
sible for a given flow. Thus, SAMPLES can facilitate important
network measurement and management tasks — e.g. behavioral
profiling [29], application-level firewalls [21, 22] etc. — which re-
quire a more detailed view of the underlying traffic than that af-
forded by traditional protocol/port based methods.

We evaluate SAMPLES on a test set comprising 15 million flows
(approx.) generated by over 700 K applications from the Android,
iOS and Nokia market-places. SAMPLES successfully identifies
over 90% of these applications with 99% accuracy on an average.
This, in spite of the fact that fewer than 2% of the applications
are required during the training phase, for each of the three market
places. This is a testament to the universality and the scalability
of our approach. We, therefore, expect SAMPLES to work with
reasonable coverage and accuracy for other mobile platforms —
e.g. BlackBerry and Windows Mobile — as well.

Categories and Subject Descriptors
C.2.3 [Communication Networks]: Network Operations - Net-
work monitoring.
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Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
MobiCom’15, September 07 - 11, 2015, Paris, France
Copyright 2015 ACM 978-1-4503-3619-2/15/09 ...$15.00
DOI: http://dx.doi.org/10.1145/2789168.2790097.

1. INTRODUCTION
Network operators need clear visibility into the applications run-

ning within — and responsible for the traffic in — their networks
to perform key network management tasks. These may include
network planning and bandwidth provisioning, billing, traffic engi-
neering, deployment of application level firewalls and access con-
trol systems. For instance, a network operator might want to prior-
itize traffic from online meeting applications, block traffic from a
given gaming app, or catalog application behavior profiles [29] and
usage statistics for users within a given enterprise [21,22]. Such nu-
anced policy formulation and enforcement requires a granular view
of the network traffic that is clearly beyond the scope of traditional
protocol/port/volumetric based classification systems [8, 10, 18];
and their primitive DPI (deep-packet-inspection) counterparts [14].

The problem has been further compounded in recent years with
the adoption of hand-held devices, such as mobile phones and tablets,
as preferred end-hosts for accessing the Internet. Users of such
devices often download and install applications, commonly called
mobile apps, that provide a wide range of functions. A signifi-
cant number of these applications use the HTTP/HTTPS protocols
for communicating with not only their respective content hosting
servers, but also a plethora of third party services (e.g. advertise-
ment and analytics). This, coupled with the so called Bring-Your-
Own-Device (BYOD) to work phenomenon, poses unprecedented
challenges for network managers; particularly in an enterprise set-
ting. With the advent of wearable devices (e.g. Apple watch,
Google-glass etc.), this trend is expected to continue for the fore-
seeable future. Needless to say, all this necessitates the design and
development of new approaches to tackle a rapidly changing net-
work landscape. Consequently, several recent studies have tried
to address the problem of identifying mobile applications in net-
work traffic [11, 19, 23, 27, 29], at a per flow granularity. While
interesting in their own right, these solutions are either platform
specific [19, 23, 27, 29], and thus limited, or too computationally
expensive to attain desired levels of scalability [11]. We discuss
each of these in detail later.

In this work, we present SAMPLES: Self Adaptive Mining of
Persistent LExical Snippets; a systematic framework for classify-
ing network traffic generated by mobile applications at a per-flow
granularity. In order to do so, SAMPLES relies on the content of
the HTTP headers generated by mobile applications. An HTTP
header is, in effect, an ensemble of structured fields (cf. Table 1);
one or more of which may potentially contain an identifier string
— such as the market-place application id or the name of the appli-
cation — that identifies the app responsible for the flow. Indeed, it
is known that mobile applications use such identifiers while com-
municating with their content host servers as well as third party
services (e.g. advertisement and analytics); for a variety of practi-



Field Name Tag used in this study Description
Domain host-name HST The host-name in a URL [csi.gstatic.com/csi?v=3&s=gmob]

Method MET HTTP method [GET, PUT, POST, REST].
User-Agent AGN See [4].

Path URI Part of URL b/w first / and ? [csi.gstatic.com/csi?v=3&s=gmob).
Query Parameters PAR Part of URL after ? [csi.gstatic.com/csi?v=3&s=gmob).

Referrer REF A referrer URL, see [4].
Cookies COO, SCO Cookie and Set-Cookie, see [4].
Others ALP, APL_WO, APL_CX, XRW Non-standard fields.

Table 1: Commonly seen fields in the HTTP flow header of mobile app network traces. For details see [4].

cal reasons [23, 24]. SAMPLES exploits the occurrence of such
identifiers, and the lexical context in which they occur, to con-
struct generalized conjunctive rules through a supervised method-
ology as follows: SAMPLES samples a subset of randomly se-
lected applications for each mobile platform (Android, iOS and
Nokia). Using a lightweight crawl-download-execute infrastruc-
ture, it builds a repository of all possible identifier strings — such
as application name, application id etc — by parsing market web-
pages as well as lexically meaningful contents of the application’s
executable archive. Next, in an automated execution environment,
SAMPLES executes the applications, one at a time, to produce
HTTP flows. The flows that contain in their header one or more
identifiers of the parent app, are then grouped them into a flowset
labeled with the unique application identifier. These flowsets con-
stitute both the training as well as the test sets for the supervised
methodology. Next, for each flow in the training set, SAMPLES
characterizes the lexical context associated with an identifier string,
found in a snippet of the header, in terms of three lexical conjuncts:
(a) the identifier type, (b) the HTTP header-field (or payload) it oc-
curs in, and (c) the prefix/suffix that surrounds such occurrences.
Clearly, the same lexical context may persist across flows produced
by multiple applications. This is due, in part, to functional spec-
ifications of host services as well as structural idiosyncrasies of
third party libraries [23, 30]. It is precisely such persistent lex-
ical contexts that constitute a conjunctive rule in the SAMPLES
framework. Once constructed, the rule-sets are loaded into an app
identification engine where they operate at a per-flow granularity.

We evaluate SAMPLES using 15 million flows generated by 700
K applications from the Android, iOS and Nokia market-places.
SAMPLES successfully identifies over 90% of these applications
with 99% accuracy on an average. This, in spite of the fact that
the training phase requires fewer than 2% of the applications in the
market-place, per platform; a testament to the scalability and gener-
ality of our design. Moreover, SAMPLES can achieve processing
goodputs of 217 Mbps, 40 Mbps and 150 Mbps respectively on
the three platforms. Although measured in a controlled laboratory
environment, the results bode well from a real-world deployment
standpoint. Given that SAMPLES relies on seemingly universal
network behavior of mobile apps, we believe that it should extend
to other platforms such as Windows Mobile and BlackBerry; as is.

The rest of this paper is organized into the following sections:
in §2, we introduce preliminary notations and assumptions, along
with the datasets used in the course of this study. Next, in §3, we
describe the various types of application identifiers and the lexical
context in which they are found in the snippets of HTTP headers,
followed by a formal definition of what constitutes a conjunctive
rule. We then outline the design goals for SAMPLES in §4 and the
system architecture in §5. Experimental evaluation of SAMPLES
from coverage, accuracy and performance standpoints is presented
in §6. Finally, in §7, we review relevant studies in literature and
conclude the paper with a discussion of potential future work in §8.

200 OK
…
Client: 192.168.1.10 Scheme: https
GET 
216.115.100.103:443/pe/4d8c5d92/92bcb62d/3
661ec2a/15957/config/prod/config.xml
User-Agent: YahooMobileMessenger/1.0 
(Android Messenger; 1.8.4) (grouper; asus; Nexus 
7; 4.2.2/JDQ39B)
Host: s.yimg.com
Connection: Keep-Alive

Figure 1: Decrypted HTTPS flow header from Yahoo Messen-
ger app on Android platform.

2. PRELIMINARIES AND DATASETS
We now introduce the notations and assumptions of our frame-

work (§2.1), followed by a brief discussion of the datasets used in
the course of this study (§2.2).

2.1 Notations and Assumptions
Network flow: A flow F is defined as a single application layer
request-response pair. In particular, all flows considered in this
work are HTTP flows. When referring to an HTTP flow, we will use
the notational schema for its constituent fields as defined in Table 1.

Identifiable flow/app: We define an HTTP flow as identifiable if
it contains at least one identifier for its parent app in the header
(cf. §3.1). Similarly, a mobile application is deemed identifiable
if it generates at least one identifiable flow during its execution. In
our dataset, there are roughly 76.8%, 67.4% and 63.2% identifi-
able apps for the Android, iOS and Nokia platforms respectively.
The rest of the apps either do not exhibit any meaningful network
behavior; or simply do not execute in our automated execution en-
vironment. However, as shown in §6, this does not hamper the
coverage or accuracy of our system in any significant way.

HTTPS and encrypted traffic: HTTPS, in the very general case,
is a limitation of our work. We do not deal with the issue of en-
crypted traffic in the wild which, although an interesting and com-
plimentary area of work, is orthogonal to our system [15]. How-
ever, in an enterprise deployment scenario, the SAMPLES frame-
work can utilize a man-in-the-middle proxy, as described in [21,
22], to gain visibility in the underlying HTTPS traffic. Figure 1
shows a snippet from the header of an HTTPS session between
the Yahoo Messenger app installed on an Android device (Nexus
7 phone). The lexical construct of this header is no different from
those seen in the case of HTTP (cf. Figure 2). Therefore, in an
enterprise set up, the SAMPLES framework extends seamlessly —
as is — to the HTTPS traffic generated by mobile apps.



AGN:AIM/5.1.3.11 CFNetwork/548.1.4 Darwin/11.0.0

HST: o.aolcdn.com

URI: /os/mservice�«�com_aol_aim/v3/manifest.json

MET: GET 

AGN: AIM/5.1.3.11 CFNetwork/548.1.4 Darwin/11.0.0

HST: b.aol.com

URI: /ping

MET: GET 

PAR:«	ap_v=1&dL_ch=com.aol.aim&h=com.aol.aim.ios.ap

plication	«

AGN: Nokia502/14.0.1/java_runtime_version=Nokia_

Asha_1_2 Profile/MIDP-2.1 Configuration/CLDC-1.1

HST: a.vserve.mobi

URI: /delivery/adapi.php

MET: POST

TPL:«	DSS �	PQ 1001%20Essential%20Words&showat=

VWDUW	«

AGN: FOX 2 News 2.60.10776 rv:10776 (iPod touch; iPhone 

OS 5.1.1; en_US)

HST: m.nowcache.com

URI: wjbk/imgdir/logo/wjbk_52x38.jpg

MET: GET 

APL_CX: com.cbcnm.iapp.now.wjbk

AGN: Mozilla/5.0 (iPod touch; U; CPU OS 5.1.1 like Mac OS X; 

en) AppleWebKit/531.21.10 (KHTML, like Gecko)

HST: wjbk.m0bl.net

URI: /json/iapp/main

MET: GET

APL_CX: com.cbcnm.iapp.now.wjbk

AGN: Mozilla/5.0 (Linux; Android 4.3; en-US; sdk

Build/JB_MR2) AppleWebKit/534.30 (KHTML, like Gecko) 

Version/4.0 Mobile Safari/534.30

HST: images1.statsheet.com

URI: /javascripts/flotr2/flotr2.min.js

MET: GET

XRW: statsheet.statblogs.FAUReview

(a) AOL Messenger (iOS, app id = 281704574) (b) FOX 2 News (iOS, app id = 364726223)

(c) 1001 Essential Words (Nokia, app id = 389585) (d) FAU Football & Basketball

(Android, app id = statsheet.statblogs.FAUReview)

Figure 2: Flow headers: AOL messenger (iOS), Fox 2 News
(iOS), 1001 Essential Words (Nokia) and FAU Football and
Basketball (Android).

Mobile app executable: We assume that the executable archive
for an application (paid or free) can be obtained from the market-
place. This is essential for constructing the identifier sets as well as
generating labeled flowsets during the training phase (cf. §5).

2.2 Datasets
App executables, identifiers and labeled flowsets: A set of app
executables downloaded from the Google Play (Android), Apple
iTunes (iOS) and OVI store (Nokia Symbian) markets. In all, the
dataset comprises of over 700 K apps. For each mobile app, we
collect the various classes of identifiers (static analysis) as well as
network traffic produced by the app (dynamic analysis). The traffic
is organized into flowsets at a per app granularity (cf. §5 for de-
tails). Each such flowset is labelled and thus constitutes the ground
truth for our experiments (cf. §6).

Manually generated rulesets: As a baseline for the comprehen-
siveness of SAMPLES, we leverage three sets of conjunctive rules
— respectively for Android, iOS and Nokia platforms — constructed
by a team of human experts. These rules were created by manual
inspection of HTTP traces. The conjunctive ruleset produced by
SAMPLES should be, at the very least, an encompassing superset
of these manually generated rule sets.

3. IDENTIFIERS, LEXICAL CONTEXT &
CONJUNCTIVE RULES

We introduce the various identifier types associated with mobile
applications (§3.1) and the lexical context in which they are found
in the network traffic (§3.2). We then define an application identifi-
cation rule as a conjunction of lexical contexts (§3.3); which forms
the intuitive basis for this work.

3.1 Application Identifiers
Simply put, an application identifier is a string label that is uniquely

associated with a mobile application. For example, consider the
popular game Angry Birds. The mobile version of this game has
identifiers com.rovio.angrybirds, 409807569 and 23158 respectively
in the Google Play, Apple iTunes and Nokia OVI store market-
places1. When downloaded from Google Play and Apple iTunes
markets, the apk and ipa files are named com.rovio.angrybirds.apk

1Market-place application identifiers for Android apps usually
have a Java package-name format. For iOS, these identifiers are
in the form of a 9-digit string, and Nokia OVI store uses a numeri-
cal string id.

and 409807569.ipa respectively. In the Nokia OVI Store, the ex-
ecutable archive, a jad file, bears the application name instead i.e.
Angry Birds.jad. Note that the application name — Angry Birds —
is itself an identifier string, albeit not necessarily unique. Hence-
forth, we use the terms app id and app name to respectively mean
the market place application identifier and application name for a
given app. Both app id and app name may occur in the network
traffic generated by mobile applications (cf. Figure 2).

The app id and app name, however, are not the only identi-
fiers associated with a mobile app. The app executable archive
(apk, ipa and jad) contains, amongst other things, a metadata file
— AndroidManifest.xml, info.plist and Manifest.xml respectively
for the Android, iOS and Nokia platforms — that provides be-
havioral specifications and access permissions required by the app
for proper functioning. This metadata file may also contain other
potential identifiers. For example, the info.plist file for an iOS
app, contains a set of XML-fields (keys); such as cfbundleiden-
tifier, cfbundledisplayname, cfbundleexecutable and cfbundle-
name. For the Angry Birds app, they respectively take on the val-
ues: com.rovio.angrybirdsfree, Angry Birds, AngryBirdsClas-
sicLight and Angry Birds Free. The CFBundle identifiers are
specified by application developers for packaging during the app
development process. More importantly, some CFBundle identi-
fiers (values) occur in the User-Agent (AGN) of the HTTP header.
These have been exploited previously for classification tasks [29].

There are several functional reasons why identifiers exist in the
HTTP headers. First and foremost, this is a simple, yet effective,
mechanism for authentication and access control. Most mobile ap-
plications rely on content hosting servers that form the backend for
an app enabled service. The hosting servers need to differentiate
between different versions of the same app — paid vs. free —
while catering content. Similarly, the same application developer
may have a suite of applications accessing a common cloud-based
content service. Identifiers help keep track of resource usage, user-
base and demographics, for each application. This is essential for
business objectives. Last but not least, mobile applications often
use third party services such as analytics (e.g. Google-Analytics),
APIs (e.g. Adobe-Air) and ad-vendors (e.g. Double-Click, iAds,
Migital). Such third party services in turn assign additional ser-
vice specific identifiers to each app for their own record keeping
and accounting. Indeed, it is the presence of such service specific
identifiers, in the form of key-value pairs in the manifest files of An-
droid applications, that is used in [23] for application identification.
Our system assumes that most apps use their true identifiers while
communicating with their host servers or third party services. This
is a reasonable assumption given the aforementioned usefulness of
such behavior. If, however, for some reason an app is deliberately
adversarial, i.e. obfuscates its identity or puts misleading identi-
fiers in its headers, our system will surely not be able to identify it
correctly.

To summarize, a mobile application can have a variety of identi-
fiers, unique or otherwise; and some of these occur in the network
traffic generated by the application a subset of which has been al-
luded to in previous studies [23, 29].

3.2 Identifiers in a Lexical Context
We define the lexical context associated with an identifier string

occurring in a given network flow in terms of three contextual clauses
— which, where and what — as described below:

1. Which identifier type is it?

2. Where in the header/payload does it occur?

3. What prefix/suffix surrounds its occurrence?



App Id Identifier Type Field Name: Snippet
281704574 cfbundlename/displayname AGN: AIM/5.1.3.11 CFNetwork/548.1.4 Darwin/11.0.0
281935788 cfbundlename/executable AGN: Essentials/1309241730 CFNetwork/609.1.4 Darwin/13.0.0
282935706 cfbundlename/displayname/executable AGN: Bible/4.0.1 CFNetwork/548.0.4 Darwin/11.0.0

AGN: ˆ(.+)/[0-9].+ CFNetwork/[0-9].+ Darwin/[0-9].+

364726223 cfbundledisplayname AGN: FOX 2 News 2.60.10776 rv:10776 (iPod touch; iPhone OS 5.1.1...)
372198459 cfbundlename/displayname/executable AGN: Rugby FM 4.3 rv:403 (iPad; iPhone OS 6.0.1; en_US)
371932548 cfbundlename/displayname/executable AGN: Bakodo 3.4 rv:403 (iPad; iPhone OS 6.0.1; en_US)

AGN: ˆ(.+)/[0-9].+ rv:*.+ (iP.+; iPhone OS.+; en_US)

364726223 cfbundleidentifier APL_CX: com.cbcnm.iapp.now.wjbk
377749075 cfbundleidentifier APL_CX: com.cbcnm.iapp.now.wfld
386978415 cfbundleidentifier APL_CX: com.cbcnm.iapp.now.kjct

APL_CX: ˆ(.*?)$

281704574 cfbundleidentifier PAR: ... &dL_ch=com.aol.aim& ...
307840047 cfbundleidentifier PAR: ... &dL_ch=com.aol.moviefone& ...
646100661 cfbundleidentifier PAR: ... &dL_ch=com.aol.mobile.aolclient& ...

PAR: \b dL_ch=(.*?) \b

380335515 app id APL_WO: ... &appAdamId=380335515& ...
382287127 app id APL_WO: ... &appAdamId=382287127& ...
382303945 app id APL_WO: ... &appAdamId=382303945& ...

APL_WO: \b appAdamId=(\d{9}) \b

286851614 app id PAR: ... &msid=286851614& ...
288553125 app id PAR: ... &msid=288553125& ...
291826753 app id PAR: ... &msid=291826753& ...

PAR: \b msid=(\d{9}) \b

Table 2: Lexical context for different identifier types found in network traffic generated by iOS applications.

For example, consider a pair of flow headers, generated by the AOL
messenger app (app id = 281704574) on the iOS platform (cf. Fig-
ure 2(a)). The identifier AIM, occurs in both flow headers in the
following lexical context: {Which: cfbundlename/ cfbundledis-
playname/ cfbundleexecutable, Where: AGN, What: prefix = ˆ
(i.e. beginning of the field), suffix = /5.1.3.11 CFNetwork/548.1.4
Darwin/11.0.0}. On the other hand, the identifier com.aol.aim oc-
curs in two different lexical contexts within the same flow header.
First, {Which: cfbundleidentifier, Where: PAR, What: prefix =
\b dL_ch=, suffix = \b}. And then, {Which: cfbundleidentifier,
Where: PAR, What: prefix = \b h=, suffix = .ios.application\b} 2.
Other variations can be seen in the remaining flow headers in Figure
2, where identifiers of different types are present in the AGN, HST
and URI fields as both leading and non-leading sub-strings (2(b)),
in the TPL field as a value to a key (2(c)) and in the APL_CX and
XRW fields as spanning field values (2(b), (d)) respectively. In
spite of such variations, each one of these occurrences can be rep-
resented in the form of the three contextual clauses: which, where
and what. Evidently, multiple applications may share one or more
generalized lexical contexts for the same identifier type (cf. Table
2). Next, we show how such lexical contexts can be generalized to
formulate conjunctive rules that help identify mobile applications
in network traffic.

2The regular expression ‘\b’ denotes a word boundary.

3.3 From Context to Rules
In its simplest form, an app identification rule is a conjunction of

a generalized lexical context associated with an identifier type. For
instance,

APP-IDENT-RULE 1. Extract FROM AGN,
Pattern:^(.+)/[0-9].+ CFNetwork/[0-9].+ Darwin/[0-9].+,
AND Lookup IN {cfbundleexecutable / cfbundlename / cfbun-
dledisplayname}.

can be interpreted as the following: if the User-Agent(AGN) of a
flow matches the pattern in Rule 1, extract the leading sub-string
until the first ‘/’; and then lookup if the sub-string corresponds to
a valid {cfbundleexecutable / cfbundlename / cfbundledisplay-
name} for any app (or apps). If found, report the corresponding
app (or apps) as the output. In practice, the lookup step involves
a dictionary (hash) reference. Each identifier type has its own dic-
tionary — built a priori through market-place crawling and static
analysis of app executable archives (cf. §5 for details) — with iden-
tifier strings as keys and the app id’s as values. For example, Rule
1 will extract the string AIM from flow headers 1 and 2; which
then maps to {cfbundledisplayname: AIM→ 281704574} as the
output. Observe from Table 2, that similar extract-and-lookup con-
junctions can be derived for various identifier types occurring in
multiple lexical contexts. Moreover, the same lexical context is
found across the headers corresponding to multiple applications.



However, before we describe how SAMPLES constructs such con-
junctions using a semi-supervised learning approach, we need to
add a final contextual dimension to our conjunctive rules, that of a
condition.

APP-IDENT-RULE 2. Extract FROM PAR\REF,
Pattern:\b msid=(\d{9})\b, AND Lookup IN {app id},
IF HST: googleads.g.doubleclick.net.

The IF clause in Rule 2 specifies a condition under which the ex-
traction should be performed. Intuitively, flows directed to and
from third-party-services — ad networks, API’s, analytics — are
likely to have their own specific lexical structure. Therefore, the
domain host name provides a good preliminary filter for rules spe-
cific to such services. In general, the IF clause can be combination
of multiple conditions involving more than one field/pattern in the
HTTP flow header. Such conditions not only help reduce poten-
tial false positives, but also contribute to improved system perfor-
mance. SAMPLES framework generates such conditions by de-
fault, without any additional methodological overheads (cf. §5).

4. IDENTIFICATION & DESIGN GOALS
The set of app identification rules are consumed by an app iden-

tification engine. For each incoming flow, the app identification
engine applies a subset of rules to the flow based on a number of
pre-filtering conditions (e.g. host-name / field based pre-filtering) .
If a flow matches one of the rules in the rule set, we classify it as
identified, and report the app id; else it is reported as unidentifed.

Identification results: The identification result for each flow in the
test set can be one of the six possible cases illustrated in Figure 3.
We explain each of these below:

1. True positive (unique or fuzzy match): If the extracted app
identifier can map either uniquely to its originating app or
fuzzily to a few apps including the correct app, we say it is a
unique match (Figure 3(a) & (b)).

2. False-positive: if the extracted identifier maps to an app id
different from the flow’s originating app, we say it is an false
positive (Figure 3(c)).

3. True-negative: if the flow does not contain any known iden-
tifier, it is definitely not possible for SAMPLES to identify
this flow (Figure 3(d)).

4. False negative (lacking identifier info): if the flows actually
contains its originating app’s identifier, but we either do not
have the correct rule to extract it or cannot find it in the id
hash table, it becomes a false-negative (Figure 3(e)).

The reason why we treat both unique and fuzzy match as true-
positive is that fuzzy match also helps to reveal the “possible” mo-
bile apps. In fact, these potential apps usually have some common
properties. As shown in Figure 3(b), in iOS the cfbundlename AIM
is used by app 444081514, 494258199 and 281704574. All these
three apps are AIM Messenger apps developed by different com-
panies. To avoid having fuzzy matching via some generic strings
shared by many apps, we can set a threshold to the number of re-
lated apps on each identifier and prune the identifier out when the
threshold is exceeded. In this case, we can ensure that fuzzy match
can also give us useful information about apps in the network.

Design goals: Our goal is to build an efficient rule-based identi-
fication system. Specially, we would like to have

1. High coverage: we should be able to find most apps in the
network whose flows actually contain app identifier. In other
words, the false-negative rate should be small.

2. High accuracy: the identification results should be reliable,
i.e. containing as few false-positives as possible.

3. High processing throughput: the system should be able to
process flows at high speed.

It is challenging to create a rule set that can achieve all three
aforementioned goals. Like any engineering activity, there are trade-
offs involved. For example, if we add more “app-specific-rules”
(which identify flows from a small set of very specific apps) into
the rule set, the coverage can be increased. However, a larger
rule set results in longer processing times leading to lower system
throughput. In particular, there are bound to be unidentifiable flows
that must go through the entire rule set before being regarded as
“not identified’. Besides that, if we generate rules with less match-
ing conditions and more general regular expressions, the identifi-
cation throughput and app coverage may increase. However, the
identification results will contain more false-positive; thus being
less reliable. Therefore, we should have an effective rule genera-
tor that automatically builds rules from training over labeled net-
work flows, via a supervised learning methodology; thereby ensur-
ing good quality and performance.

5. SAMPLES: SYSTEM ARCHITECTURE &
OPERATIONAL LIFE CYCLE

In this section, we present the system architecture and the opera-
tional life cycle of SAMPLES (cf. Figure 4). SAMPLES comprises
of two parts, an offline training system for rule generation and an
online app identification engine for traffic classification. Both com-
ponents can be implemented on commodity hardware. Each sub-
section describes an individual component along with the underly-
ing intuitions, operational algorithms and the various challenges as-
sociated with the sub-tasks that they are designed to handle. Where
applicable, we also compare and contrast the three mobile applica-
tion platforms against each other to bring out the subtle differences
between them; particularly those pertinent to the SAMPLES frame-
work.

5.1 The Crawl-Download Infrastructure
SAMPLES comes equipped with a crawl-download infrastruc-

ture that periodically samples the three market places for newly
released mobile apps: Google Play (Android), Apple iTunes (iOS)
and Nokia OVI Store (Symbian)3. For the Android and iOS mar-
ket places, our implementation is essentially the same as that pre-
sented in [26]. We deploy a globally distributed infrastructure and
crowd-source authentication credentials, to avoid being blocked by
the host markets. The task for Nokia platform is more easily man-
aged. Unlike the other two platforms, the Nokia OVI store assigns
a numerical app id string to the apps; e.g. app id = 23158 for the
app name = Angry Birds. The URL is simply http://store.
ovi.com/content/23158. Given a relatively smaller number
of applications in the Nokia market place (roughly 130 K), com-
pared to the Android and iOS market places, it can be spanned
quite easily. More importantly, the application executable is acces-
sible by simply appending the tag /download to the content URL.
The download, of course, requires a valid login session.
3Needless to say, even though we collect app description web pages
for all crawled apps, we only download the executable archives of
the free ones.



Android app id: com.menueph.apps.utility.smswalk

----------------------------------------------------------------

HST: ads.adlayout.net

TPL: «��osVersion":"4.3","packageName":"com.m

enueph.apps.utility.smswalk"�«

From: TPL

Extract: \"packageName\³\:\³([\w.-]+)\´

Lookup: Android app id

Match

com.menueph.apps.utility.smswalk

Rule

Network 

Flow

Search app id hash

(a) Unique Match

iOS app id: 281704574

------------------------------------------------------

HST: b.aol.com

AGN: AIM/5.1.3.11 CFNetwork/548.1.4 

Darwin/11.0.0

From: AGN

Extract: (.+)\/.*?

Lookup: iOS cfbundlename

Match

Rule

Search cfbundlename hash

444081514, 494258199, 281704574

Network 

Flow

(b) Fuzzy Match

iOS app id: 466922855

---------------------------------------------------

HST: www.googleadservices.com

URL: /pagead/conversion/956378685/

From: URI

Extract: \/pagead\/conversion\/(\d{9})\/

Host: www.googleadservices.com

Lookup: iOS app id

Match

956378685

Rule

Network 

Flow

Search app id hash

(c) False Positive

Android app id: 

com.appsbar.GBencher95824

---------------------------------------------------------

HST: ws.appsbar.com

MET: GET

AGN: Apache-HttpClient/UNAVAILA

BLE (java 1.4)

PAR: AppID=95824&SecurityKey=f5412

3c4f5f0ec185067a65fe8fbeeb0&DeviceID=3be

d1bcd862646ae&DeviceInfo=Android%2CV2

%2C4.0.4%2Cunknown%2Csdk

EPL: []

URI: //Notifications/AppsBar-

GetNotifications.php

True 

Negative

No 

identifier 

exists!

(d) True Negative

Android app id: 

com.foundero.countryfacts.Australia

--------------------------------------------------------------

HST: ads.adlayout.net

PAR: «	u_w=384&msid=com.foundero.countr

yfacts.Australia&cap=a	«

From: TPL

Extract: msid\=([\w.-]+)

Lookup: Android app id

Match

Rule

Network 

Flow

Search app id hash

Not Found!

(e) False Negative

Android app id:

com.brother.BrotherAR

----------------------------------------------------------------

HST: api.junaio.com

MET: GET

AGN: com.brother.BrotherAR/1.4.1 unknown 

google_sdk/Android/4.3

URI: /channels/manage/131085

Identifiers in the flow

But rule is missing!

(f) False Negative

Figure 3: Six kinds of identification results.

The Crawl-Download infrastructure creates two repositories per
application platform: (a) an app web page repository (all apps); and
(b) an app executable archive repository (free apps). For Android
and iOS, these archives are respectively called apk’s and ipa’s, after
their respective extension types. The case for Nokia is a little differ-
ent where several distinct application executable types (and in fact
media files) are found in the market place. Predominant amongst
these are Java based executables, called the jad’s. Henceforth, all
Nokia apps referred to in this work are jad apps.

5.2 Identifier Extractor

5.2.1 From application web pages
From the app web pages, we extract the app id and the app name

identifiers. This can be accomplished easily by parsing for static
tags in the HTML page. SAMPLES creates two hashes for these
two identifier types, on a per platform basis. The hash for identifier
type app id contains within it the app id as key, and a constant 1
as the corresponding value. On the other hand, the hash for app
name contains the app name as the key, and the corresponding
app id as its value. In the case of key-collision, i.e. more than one
app with the same app name string, the value field is an array of
the corresponding app ids. Clearly, in the matching and look up
phase, such a match will qualify as fuzzy.

5.2.2 From application executable archive
The app executable archive for a given mobile application con-

tains, amongst other things, the application binary and a metadata
file. The metadata file — AndroidManifest.xml, info.plist and Man-
ifest.xml respectively for the Android, iOS and Nokia platforms —
is an XML file that provides behavioral specifications and access
permissions required by the app for proper functioning. It may also
contain a variety of other identifiers in the form of XML fields and
their corresponding values (such as the CFBundle identifiers for
iOS and those assigned by third party services [23]).

SAMPLES treats the metadata file for each app individually to
extract potential application identifiers through a statistical heuris-
tic, thereby obviating the need for manual inspection (as employed
by [23]). Using a DOM parser, SAMPLES extracts all XML fields
and their corresponding values from the metadata file. Each field
name (XML-tag) is considered to be a potential identifier type, and
the corresponding value is considered to be a potential identifier
string for the app in question. As with the identifier type app name,
SAMPLES builds a hash for each potential identifier type, with the
potential identifier string as key, and the app id as its value. SAM-
PLES then selects out of these potential identifier types by two cri-
teria.

1. Universality: The fraction of apps in the app repository in whose
metadata file this potential identifier type (XML field) is found.
In other words, the length of the hash divided by the cardinality
of the app executable archive repository. Higher the value, more
likely the XML field is an identifier type. For instance, the iden-
tifier type app name is likely to have this fraction is exactly 1
(as all apps have an app name).

2. Uniqueness of values: The average number of values (i.e. app
ids) per key in the hash. The lower this number, the greater
the likelihood that the XML field is an identifier type. Once
again, for the identifier type app name, this value is close to 1
(very few apps, if any, share the exact same name for the same
platform).

A good example of an identifier type discovered through this sta-
tistical sampling is the pid XML field found in the manifest files
for Nokia apps. As we shall see, even if the identifier extractor
errs by selecting an XML field that is not really an identifier type,
the impact is mitigated in the dynamic analysis phase where each
prospective rule goes through a validation step. This built in check-
ing mechanism helps us prune out extraneous patterns at an early
stage.
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Figure 4: SAMPLES: system architecture and operational life
cycle.

5.3 Application Executor
SAMPLES also comes equipped with an app executor which can

automatically execute downloaded apps in the emulator or real de-
vices and capture generated HTTP flows. App executor will run
each app and generate multiple UI events in order to generate net-
work traffic with more diversity. Then the captured traffic is pro-
cessed by a deep-packet-inspector (DPI) to extract HTTP flows.
For each HTTP flow, We only store the HTTP header and the first
1024 bytes of payload to save storage space.

We can directly control the execution of Android apps by An-
droid automation tools, like monkey-runner [5]. However, there
are no similar automation tools for iOS and Nokia platform. So
we have to rely on UI automation tools on PC, like AutoIt [2], to
control app execution. For Nokia, we could run apps in a emu-
lator and trigger UI events by AutoIt scripts, while for iOS, we
have to project the devices’ screen to a VNC viewer to export UI
and use automation tools due to a lack of emulator support for iOS
platform, which is essentially the same infrastructure as presented
in [30].

Due to scalability concerns, we do not run a complete and ex-
haustive app execution to invoke every possible app execution path
like [11] requires, which is time-consuming and not scalable. In-
stead, we allow incomplete app execution to ensure our app ex-
ecutor can scale with large number of apps. In fact, this approach
is enough to capture enough useful network flows because we do
not rely on a single app to generate all kinds of flows, as rules are
common patterns in flows of multiple apps.

5.4 Lexical Context Extractor
First, we perform lexical context extraction on the training flow

set. Given a platform, lexical context extraction is performed for
each identifier type found in the identifier extractor phase for the
apps in the training set for that platform individually. For illustra-
tion purposes, we will use the app id for the Android platform ex-
clusively for the remainder of this section. The described method-
ology applies to all other identifier types as well as the other two
platforms.

As shown in Figure 2, for a given Android app in the training set,
with app id = statsheet.statblogs.FAUReview, the lexical extrac-
tor searches for the existence of the app id at a per flow basis from
the flow set of that app. Once found, it extracts the lexical context
with {Where: XRW, What: prefix=ˆ, suffix=$, Which: Android
app id}. Note that each what clause, which comprises of a prefix
and a suffix part, is terminated at either a predefined delimiter set of
the given field (e.g. PAR) or the beginning or the end of of that field
(e.g. APL_CX or XRW). For standard HTTP fields, the delimiter
set is defined in HTTP grammar. For example & is the delimiter in

Host: googleads.g.doubleclick.net

From: PAR, Extract:

app\_name\=2\.1\.0\.apple.([\w.-]+)

app\_name\=4\.apple\.([\w.-]+)

app\_name\=30\.apple\.([\w.-]+)

app\_name\=2\.4\.apple\.([\w.-]+)

app\_name\=2\.8\.apple\.([\w.-]+)

Host: googleads.g.doubleclick.net

From: PAR, Extract:

app\_name\=.*?\.apple\.([\w.-]+)

Android app id: 

cat.aat.crowncapssoccer

----------------------------------

HST: googleads.g.double

click.net

PAR: «	app_name=4.0.4

.android.cat.aat.crowncap

ssoccer	«

MET: GET

URI: /mads/gma

Aggregation

Match

Cannot

Match

Figure 5: Rule aggregation: EXTRACT clause.

From: XRW, Extract: ([\w.-]+),

Host: 

googleads.g.doubleclick.net

media.admob.com

connect.facebook.net

From: XRW, Extract: ([\w.-]+),

Host: *

Android app id: 

com.phonegap.angelordevil

----------------------------------

HST: maps.google.com

XRW: com.phonegap.

Angelordevil

MET: GET

PAR: sensor=true

URI: /maps/api/js

Aggregation

Match

Cannot

Match

Figure 6: Rule aggregation: IF clause.

URI-query (PAR field). For other non-standard fields, the delimiter
set can be automatically inferred from the field value [25].

5.5 Rule Generator

5.5.1 Create rules from lexical contexts
As an initial step, we directly convert lexical contexts extracted

from training flows into rules by generating regular expression in
Extract clause and attaching host names, identifier class and other
information to the rule. For example, the lexical context {Where:
PAR, What: prefix=\b msid=, suffix=\b, Which: Android app id}
will be converted into

APP-IDENT-RULE 3. Extract FROM PAR,
msid=([\w.]+) , AND Lookup IN {Android app id},
IF HST: googleads.g.doubleclick.net.

Note that instead of simply using “.*” to catch identifier, the charac-
teristic of the identifier class is encoded in the matching pattern. For
example, Android app id can contain any number of word, number,
underscore and the dot, so the pattern will be [\w.]+. And iOS app
id is a 9 digit number, so the pattern will be \d{9}. This will in-
crease the identification accuracy of the generated rules.

5.5.2 Aggregate existing rules
Although rules converted from lexical contexts can directly iden-

tify network flows, their matching conditions are usually too strict,
thus leading to the following two problems.
Low coverage: as shown in Figure 5, none of those rules in the
first rule set can match that network flow. In fact, it is because
those rules require to exactly match the version number between
“=” and “apple” in PAR field, which is not necessary. Similarly,
in Figure 6 we also cannot identify the given flow only because
this flow is under a different host. In fact, with a limited training
set, we cannot find all possible version numbers and host names.
Therefore, it is always possible to miss such flows in the network
traffic, which contributes to coverage loss.



From: PAR

Extract: appid\=([\w.-]+)

Host: ads.mdotm.com|spapi.i-mobile.co.jp

Lookup: Android app id

Android app id: 

com.enizio.babymusic

---------------------------------------

HST: ads.mdotm.com

PAR: «	appid=com.zynga.wo

rds	«

Android app id: 

com.mobage.ww.a543.CityLand

----------------------------------------

HST: ads.mdotm.com

PAR: appid=com.mobage.

ww.a543.CityLand	«

False positive: 21(18.75%)Correct Match: 91(81.25%)

Figure 7: Example of low accuracy rules that should be pruned.

Low throughput: again as shown in Figure 5, we have to go
through all 5 “app_name” rules to identify the HTTP flow with such
pattern. Therefore, we must spend a longer processing time to find
a match, which is not necessary and thus lower the identification
throughput.

Obviously, it is the redundant matching conditions that hinder
both the coverage and throughput of the rule set. In order to solve
this problem, SAMPLES will aggregate and merge similar rules
into more general rules to remove redundant matching conditions.
Specifically, we can aggregate rules on two clauses:
1. EXTRACT(cf Figure 5): To aggregate the EXTRACT clause,
we use sequence alignment, a technique which is widely used in
bioinformatics area [7], to calculate the similarity between regular
expressions. Then we group rules into different clusters based on
the alignment sequence. The alignment sequence of two rules con-
tains three parts, MATCH (two tokens are the same), MISMATCH
(two tokens are different) and INDEL (one token aligns to a gap in
the other rule). In our implementation, we generate new rules by
strictly keeping The MATCH and replacing MISMATCH and IN-
DEL with a wildcard .*? , as shown in the second rule set in Figure
5.
2. IF(cf Figure 6): Here we only take host condition as an ex-
ample. We first cluster rules with the same FIELD, LOOKUP and
EXTRACT conditions together. Then we build a prefix-tree on host
names based on their DNS name and generate new rules by keeping
the longest common substring between hosts from root to leaf and
replacing all the different prefix by a wildcard.

5.5.3 Validate rules
To ensure the quality of generated rule set, SAMPLES will val-

idate each rule by identifying a special flow set, called validation
set, whose flows contains source app id as the ground-truth. Then
we record the coverage and accuracy of each rule in its identifi-
cation results. To better explain this process, we generate rule set
using 5000 training apps from those three platforms, and plot the
validation result of each rule as a point on Figure 8. There are three
kinds of rules.
High coverage and high accuracy rules (top right part of Fig-
ure 8): these are the rules, out of the constructed rule set, that we
want in our rule-based identification engine. Besides that, to im-
prove identification throughput, we assign higher priority to higher
coverage rules as they are more likely to be matched first. And if
an aggregated rule passes the validation, all the simple rules which
generate this rule are also pruned out because their matching range
are smaller than the aggregated rule.
Low accuracy rules (bottom part of Figure 8): some rules will
generate large ratio of false-positives during identification process,
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Figure 8: Coverage and accuracy of each individual rule from
three platforms (5000 training apps).

which will severely undermine the reliability of identification re-
sults. Figure 7 shows such an example, which misclassified 21
apps out of 112 identified apps. Such low accuracy rules could
result from aggressive aggregation. For example, if we merge all
initial rules into Extract: .*, then it will definitely cause lots of
false positives. However, it is also likely that those rules are af-
fected by app developers, who might fill corresponding HTTP flow
with inaccurate app information. For example, the false positive
shown in Figure 7 could be caused by a careless developer forget-
ting to update the corresponding code in his app or an intentional
developer who forks several apps with the same ad service identi-
fier. Whatever the reason is, such low accuracy rules will interfere
with our identification results and should be pruned out using an
accuracy threshold.
App-specific/low coverage rules (top-left part of Figure 8): after
rule aggregation, there are still some rules which can only match
to a small fraction of apps. Some of them can even match to only
1 app, which is therefore named as app-specific rules. Such app-
specific rules exist mainly because SAMPLES tries to find every
occurrence of app identifier in HTTP flows but sometimes those
identifiers coincide within an random context that never indicates
app identifier for other apps. For example, here is an app-specific
Android rule.

APP-IDENT-RULE 4. Extract FROM HST,
Pattern:www\.(\w.), AND Lookup IN {app id},
IF HST: www.i9suaradio.com.br.

It is obvious that this rule does not work for most apps because
few apps put its identifier directly in the host name. But it is still
generated when SAMPLES finds app i9suaradio.com.br generates
an HTTP flow with host name www.i9suaradio.com.br.

Although most of those rules will eventually either be pruned out
after rule validation or does not affect identification results, we still
remove them from rule set prior to rule validation for two perfor-
mance reasons. First, the average app identification rate decreases
with the size of rule set, and there is no need to include those rules
because they do not contribute any significant app coverage gain.
Second, validating all app-specific rules will greatly increase the
time overhead on rule validation since the majority of rules are app-
specific, as shown in §6.5 Therefore, we purpose two heuristics to
prune out those rules. First, any app-specific rules will be prune
out. Second, if their coverage is lower than a coverage threshold,
it will be recognized as low coverage rules and be pruned out.



5.6 Application Identification Engine
SAMPLES comes equipped with an app identification engine

that performs rule-based identification on network flows. There-
fore, SAMPLES can be seamlessly integrated into any middle-
boxes, like DPI components, firewalls or gateways, that perform
traffic classification, without impeding the overall throughput. SAM-
PLES takes unidentified network flows as input and for each net-
work flow, the app identification engine tries to find a matching
rule. Once a match is found, the flow is labeled as identified, else
it is deemed not identified.

Note that the app identification is mainly determined by the rule
set. In order to achieve higher coverage, we may add many different
rules into the rule set to catch various lexical patterns. However, in
the basic implementation we have to run a linear search in the rule
set in order to find a match. According to §2.1, since about 35% of
flows in network traffic are not identifiable, the average identifica-
tion time per flow is proportional to the length of rule set. So as the
number of rules increases, the processing throughput will gradually
drop down and lower the identification engine’s performance.

However, as our rules contain many additional matching con-
ditions besides the main EXTRACT clause, we could choose a
smaller rule set for each incoming flow, thus improving the pro-
cessing throughput. For example, we can split the whole rule set in
different subsets, each of which contains rules matching a particu-
lar host name. During identification, we can first calculate the hash
value of incoming flow’s host name and only use the corresponding
subset for rule-based identification. With this optimization, we can
make the processing throughput scalable with the number of rule
set.

6. EXPERIMENTS
We evaluate SAMPLES on two aspects: rule set quality (app

coverage, app accuracy and app identification goodput) and system
performance (overhead of rule generation). To generate dataset for
training and testing, we run SAMPLES’s crawling and download-
ing infrastructure on Google Play store, iTunes store, and Nokia
OVI store and collected 651K Android apps, 68K iOS apps, and
10K Nokia apps, respectively. By executing each downloaded
app in software emulators, we captured 13, 003K Android flows,
478K iOS flows and 39K Nokia flows. We use flows from 22K
Android apps, 32K iOS apps, and 5K Nokia apps as the training
set and the rest as the testing set.

6.1 Comprehensiveness of generated rules
We first evaluate the rule set generated from the complete train-

ing set for each platform. Table 3 summarizes the number of rules
yielded by the engine, and shows a few representative rules for each
platform. As one can see, SAMPLES generates many important
rules because it finds the general traffic pattern around app identi-
fiers. For example, the #1 Android rule is found by SAMPLES be-
cause after Android 2.2 (Froyo), Android webview includes app’s
package name into X-Requested-With field instead of a gen-
eral “XMLHttpRequest”. The #1 iOS rule is discovered since iOS
has a guideline that the User-Agent field should contain the app
identifier [6]. There are also many rules related to various adver-
tisement/analytic services. Those rules are discovered simply be-
cause the corresponding services are widely used by mobile apps.
If a new service becomes popular in the future, our rule generation
engine can also find it by the same analysis.

We also compare the generated rule set with a rule set manu-
ally crafted by human analysts to evaluate the comprehensiveness
of rules generated by SAMPLES. The manually crafted rule set
includes 16 Android rules, 68 iOS rules, and 2 Nokia rules. The

rule set generated by SAMPLES has covered 12 of those manually
crafted Android rules, 43 of those iOS rules, and all 2 Nokia rules.

6.2 Effectiveness of the generated rules
Here, we evaluate the quality of the conjunctive rule set gen-

erated by SAMPLES by verifying whether the rules can correctly
identify the apps from in testing set at a per flow granularity. The
results are presented in Figure 9 (first column in each plot). One
can see that the rules generated by SAMPLES produce highly re-
liable identification. Over 99% of the flows’ originating apps can
be correctly identified. Furthermore, the rule set also covers most
of identifiable apps in the network. We can identify 74%, 62%
and 63% apps on Android, iOS and Nokia test set, respectively.
As a comparison, there are only 76.8%, 67.4% and 63.2% apps
among those three datasets that is identifiable, respectively. In an-
other word, SAMPLES can identify over 90% of identifiable apps
among three platforms

Note that there are still around 2.8% Android apps and 5.4% iOS
apps that have app identifier but cannot be identified by our rule set.
The reasons are threefold. First, the training data is not compre-
hensive enough. When executed in emulators in limited amount of
time, some apps in the training data do not generate enough flows
to exhibit persistent lexical patterns. We believe that this problem
can be mitigated if we periodically update the rule set with new
training data. Secondly, pruning out low accuracy rules may lead
to coverage loss, as shown in Figure 7. However, in most cases it is
worthwhile to ensure high accuracy at the cost of minor coverage
degradation. Similarly, the removal of app-specific/low coverage
rules can lead to coverage loss as well. We will provide more dis-
cussion on this issue later in §6.5.

6.3 Identification goodput
Next, we evaluate the system goodput in exploiting the generated

rule set to identify the originating apps of network traffic. Note that
the measured goodput should be much lower than the throughput
on real network traffic since our dataset has only the HTTP headers
and the first 1024 bytes of HTTP payload.

As shown in the first column of Figure 9, SAMPLES’s app iden-
tification engine can process pure HTTP flows at 87 Mbps. To
achieve even higher processing throughput, we can shrink the rule
set by adjusting the coverage threshold in validation phase. As
shown in Figure 9, when the coverage threshold increases from
0.1% to 1%, the identification goodput of Android rule set in-
creases from 87 Mbps to 217 Mbps, while the coverage drops from
75% to 70%. Similarly, we can achieve at most 40 Mbps and 150
Mbps goodput for iOS and Nokia platform with coverage dropping
from 62% to 61% and from 63% to 62.4%, respectively. Obvi-
ously, there is a tradeoff between coverage and identification good-
put. Having a smaller rule set increases the system identification
goodput, at the expense of coverage.

We also notice that the goodput of running iOS rule set is smaller
than the goodput of running Android and Nokia rule sets. For
example, with 1% coverage threshold, running the iOS rules is
5 times and 3 times slower than running the Android and Nokia
rules, respectively. This is mainly due to the characteristic of iOS
rules. There are more iOS rules without host matching condi-
tions, and more iOS rules are referring to popular HTTP fields like
User-Agent that can be found in almost any flow in the test set.
Therefore, iOS flows will be checked by more rules. Our exper-
iments show that each iOS flow needs to be checked by at most
3− 4 rules on an average before it can be identified. Similarly, for
Android and Nokia platforms the number of rule checks required
per flow is 1− 2, on an average.



Pri. Lookup Host From Extract Not-Matching
Platform: Android, Number of rules: 51

1 app id * XRW ([\w.]+) XRWHttpRequest
2 app id * PAR,REF msid\=([\w.]+) the.nebula
3 app id googleads.g.doubleclick.net PAR,REF app\_name\=.*?\.android\.([\w.]+)

Platform: iOS, Number of rules: 64
1 cfn,cfe,cfd4 * AGN (.+)\/.*? Safari, ..., Mail
5 app id mob.adwhirl.com EPL \"key\"\:\"(\d{9})\" 441502580

Platform: Nokia. Number of rules: 12
1 app name *.vserv.mobi EPL,PAR,TPL mn\=(.+)
8 app name www.google-analytics.com AGN (.+)\/1\.0\..*?

Table 3: Rules generated by SAMPLES for Android, iOS, and Nokia with 10% accuracy threshold, removing app specific rules and
0.1% coverage threshold. Here cfn, cfe, cfd stand for cfbundlename, cfbundleexecutable, and cfbundledisplayname, respectively.

 0

 0.2

 0.4

 0.6

 0.8

 1

0.1% 0.3% 0.6% 1%
 0

 50

 100

 150

 200

 250

 300

C
ov

er
ag

e 
&

 A
cc

ur
ac

y

G
oo

dp
ut

(M
bp

s)

Validation coverage threshold

Cvg Gdput Max

(a) Android

 0

 0.2

 0.4

 0.6

 0.8

 1

0.1% 0.3% 0.6% 1%
 0

 10

 20

 30

 40

 50

C
ov

er
ag

e 
&

 A
cc

ur
ac

y

G
oo

dp
ut

(M
bp

s)

Validation coverage threshold

Cvg Gdput Max

(b) iOS

 0

 0.2

 0.4

 0.6

 0.8

 1

0.1% 0.3% 0.6% 1%
 0

 50

 100

 150

 200

C
ov

er
ag

e 
&

 A
cc

ur
ac

y

G
oo

dp
ut

(M
bp

s)

Validation coverage threshold

Cvg Gdput Max

(c) Nokia

Figure 9: Quality and performance of rule set built with entire dataset, 10% accuracy threshold and 0.1% coverage threshold. Cov
and max stand for the ratio of apps identified by SAMPLES rule set and all identifiable apps in the test set. Gdput stands for
identification goodput. Bars and lines are related with coverage and goodput, respectively. Note that the false positive ratios are all
less than 1%.
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Figure 11: How diversity helps building more essential rules.

6.4 Impact of sampling training sets
We now study the impact of training set size on the coverage

and accuracy of SAMPLES. Randomly sampling 200, 1K, 5K and
10K apps from each platform’s training set 4, we repeat the afore-
mentioned experiments three times. We calculate the app coverage,
accuracy, and identification goodput for each experiment. The re-
sults are plotted in Figure 10 and it provides us a few interesting
insights. We can first confirm that a small sample of apps from
market place are enough to build a comprehensive rule set for all
three platforms. In fact, even the 10k apps represent a mere 1% of
the apps in Google Play or iTunes store, both of which have more
than 1.3 million apps each [1, 3].

More significantly, for the Android and Nokia platforms, 200
identifiable training apps are enough for building a rule set with
similar coverage and accuracy as the one in § 6.1. However, the

4For Nokia, we sample at most 5K apps because there are only
5, 123 Nokia apps in the training set.

# covered apps
1 2-10 11-100 101-1000 > 1000

Android 7748(79,3%) 1564 379 67 7
iOS 86187(88.7%) 10490 1173 67 0

Nokia 107(72.3%) 31 7 1 2

Table 4: Number of lexical contexts that can cover given num-
ber of apps.

app coverage of iOS rule set gradually increases with the num-
ber of training apps until there are 5000 training apps. That is
mainly because the highest priority rules for identifying Android
and Nokia apps are all simple rules, like XRW rule and msid rule
for Android and mn rule for Nokia. Network flows matching those
rules are prevalent in the traffic generated by Android and Nokia
apps. Hence, even small number of training apps provide sufficient
chance to generate the network flows for SAMPLES to learn those
rule. However, the highest priority rules for iOS are usually com-
plex rules with pattern “.*?” in their regular expressions. Hence
those rules can only be generated by rule aggregation. As shown in
Figure 11, we are more likely to build rules with essential pattern
as more diverse rules are extracted by more training apps.

6.5 Time overhead of rule set generation
We next evaluate the overhead of generating the rule sets. To that

end, we run SAMPLES with 200, 1K, and 5K training apps from
all three platform and measure the time consumption of the rule
generation phase. We also evaluate how the two optimizations, i.e.,
app-specific rule removal and coverage threshold, affect the rule
generation time. As shown in Figure 12, without any optimization,
the rule generation time increases rapidly with the number of train-
ing apps. Besides, the processing time differs largely for apps from
different platforms. For example, it takes more than an hour to
process 5000 Android apps; processing 5000 iOS apps takes about
six hours. The major part of the processing time is due to rule val-
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Figure 10: Impact of sampling training set with 10% accuracy threshold and removing app-specific rules. Cvg and max stand for
the ratio of apps identified by SAMPLES rule set and all identifiable apps in the test set. Gdput stands for identification goodput.
Bars and lines are related with coverage and goodput, respectively. Note that the false positive ratios are all less than 1%.
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Figure 12: Time overhead for each rule generation step. Origin means not removing any rules. Rmv means only remove app-specific
rules. 0.1% Thr and 1% Thr means removing both app-specific and low coverage rules.

idation, which requires each rule to be validated on the entire val-
idation set. Hence, the computational complexity is O(M × N),
where M is the length of rule set and N is the size of validation
set. In general, more rules can be learned from a larger training set.
So the validation time increases quadratically with the number of
training apps.

Our experiments also demonstrate that each of the two heuristic
optimizations can shorten the validation time by one order of mag-
nitude, as plotted in Figure 12. The reduction in rule generation
time is mainly due to the removing of those app-specific/low cov-
erage rules in rule generation. As shown in Table 4, more than 70%
lexical contexts are app-specific. About 75% of the rest of the lex-
ical contexts can cover only 2-10 apps. These can be considered as
low-coverage rules and removed in order to speed up the rule gen-
eration. We also evaluate how discarding low coverage rules affects
the coverage on the test set. As shown in Figure 13, the coverage
of identifying iOS apps is more sensitive to removing of the low
coverage rules, especially when there are 1000 training apps. This
is because the top coverage rules in Android and Nokia platform
are simple rules that can be easily learned, while iOS’s top cover-
age rules are complex rules requiring more training samples to be
learned. When there are not enough training samples to generate
complex rules, e.g. with only 1000 training apps, the low coverage
rules actually contribute to the most of app coverage. With more
training apps, e.g. 10000 apps as shown in Figure 10, the impact
of those two heuristics to the coverage of identifying iOS apps be-
comes marginal, and the benefit in saving the rule generation time
becomes more significant.

6.6 Comparison with previous works
We now compare SAMPLES with two previous approaches: one

based on identifiers associated with advertisement services as pro-
posed in [23] and another on identifiers found in the user-agent

field (cf. [29]). The advertisement services based approach ob-
tains specific keys in HTTP headers generated by ad-libraries (e.g.
double-click, Migital etc.) as app identifiers. Similarly, the user-
agent based approach directly extracts app identifiers from the user-
agent field to identify iOS apps. Both approaches are state-of-the-
art solutions for mobile app traffic classification. We implement
both approaches and use the same test set to evaluate their identi-
fication performance. To match the implementation details in [23],
we focus on two popular ad services (Google Ads and Smaato) in
the ad service approach. For user-agent approach, we manually
prune out a list of generic strings as app identifiers, like Safari,
iPhone, iOS, etc.

As shown in Figure 14, SAMPLES outperforms both existing
approaches on either app coverage (Android) or identification ac-
curacy (iOS). There are mainly two reasons for this. First, both
approaches essentially yield a subset of rules that are generated
by SAMPLES. Besides the simple key-value pair or user-agent
field, SAMPLES generates more sophisticated rules based on other
HTTP headers and payload. So the rule set generated by SAM-
PLES can identify apps whose identifiers appear in several lexical
contexts, which explains the coverage gain. Second, the rules gen-
erated by SAMPLES are refined by rule validation so they are less
prone to generating false positives. Take the User-Agent field as
an example. Some strings extracted from this field, like iPhone,
Game and Books, are not app identifiers and should be marked as
exceptions. In previous work, one has to look for such exceptions
by some heuristics, so it is hard to be comprehensive. While in
SAMPLES, we can easily get a more complete exceptions set for
this rule by providing more training apps. This explains why SAM-
PLES can achieve lower false-positive ratio on iOS.

To summarize, SAMPLES provides a general, light weight, cross-
platform framework, for identifying mobile apps in network traffic
with markedly better performance than other competing solutions.



 0

 0.2

 0.4

 0.6

 0.8

 1

200
1k 5k 200

1k 5k 200
1k 5k 200

1k 5k

C
ov

er
ag

e

Number of Training Apps

Cvg Max

1% Thr0.1% ThrRmvOrigin

(a) Android

 0

 0.2

 0.4

 0.6

 0.8

 1

200
1k 5k 200

1k 5k 200
1k 5k 200

1k 5k

C
ov

er
ag

e

Number of Training Apps

Cvg Max

1% Thr0.1% ThrRmvOrigin

(b) iOS

 0

 0.2

 0.4

 0.6

 0.8

 1

200
1k 5k 200

1k 5k 200
1k 5k 200

1k 5k

C
ov

er
ag

e

Number of Training Apps

Cvg Max

1% Thr0.1% ThrRmvOrigin

(c) Nokia
Figure 13: Two optimization’s influence on app coverage. Note that the false positive ratios are always smaller than 1%.
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Figure 14: SAMPLES’s evaluation results compared with ads services approach for Android [23] and user-agent approach for
iOS [29] (Note: the false positive ratios are less than 1% for both methods in (a)).

7. RELATED WORK
Several network management tasks require fine grained traffic

classification. Consequently, a number of techniques have been
proposed over the years to address this problem; a survey of these
may be found in [9, 18]. With the advent of the mobility-era, how-
ever, the variety of devices and applications has exploded at an
unprecedented rate [26], most of which use HTTP (and more re-
cently HTTPS) as a communication protocol. Thus, protocol/port
based methods are of little use. The need to identify mobile ap-
plications in network traffic, preferably at a per-flow granularity,
has therefore been tackled, at least in part, in several recent studies
[12,13,16,17,19,20,24,27]. Alas, most of these techniques are ei-
ther based on ad-hoc heuristics, are too platform specific or compu-
tationally too expensive to be of practical use. For instance, in [29],
classification and identification of mobile applications at a per flow
granularity is limited only to those flows which contain an identifier
in the User-Agent field of the HTTP header. This happens to be
the case for a very small fraction of mobile applications (cf. com-
parative analysis in §6.6) and mostly for those from the Apple iOS
market-place. Similarly, in [23] manual inspection of the Android-
Manifest.xml is suggested to extract third-party assigned identifiers
(such as ad-networks). These are then used to build a knowledge
base of key-value pairs that can potentially be found in network
traffic. Clearly, both solutions lack comprehensiveness and are de-
pendent on manual expertise. To tackle this, some studies sug-
gest active network trace generation [11, 27, 28, 30]. However, the
classification methodologies suggested in [27, 28, 30] still require
human involvement. A notable exception is NetworkProfiler [11]:
a system that generates state machine based signatures, per app,
through exhaustive execution (i.e. emulating all potential network
activity for the app a priori). Although automated and compre-
hensive, this approach is computationally expensive; and hence not
scalable. Also, creating one state machine per app implies that each
flow needs to be matched exhaustively across the set; rendering live
deployment infeasible.

8. CONCLUSION & FUTURE WORK
In this work, we developed SAMPLES, a supervised framework

for generating conjunctive rules for identifying mobile applications
in network traffic at a per-flow granularity. SAMPLES uses a rel-
atively small sample of mobile applications from three prominent
platforms (Anrdoid, iOS and Nokia), to extract both the identifiers
as well as the lexical context in which they are found in the traffic;
which together yield the rule-set. Through experiments over a vast
corpus of mobile applications (over 700 K), we have demonstrated
the comprehensiveness and applicability of our approach across all
three platforms. In particular, the coverage is significantly higher
than the other state-of-the-art methodologies from literature. From
a system performance standpoint, SAMPLES achieves desirable
goodputs of 217 Mbps, 40 Mbps, and 150 Mbps respectively for
the Android, iOS, and Nokia datasets. Although conducted in a
controlled laboratory environment, these results are healthy indica-
tors for a live deployment scenario.

In the immediate future, we intend to expand SAMPLES to in-
clude other mobile platforms (such as BlackBerry and Windows
Mobile). We expect reasonably similar results — in terms of cov-
erage, accuracy and performance — to those obtained in this work.
Also, there is scope for extending the general methodology pro-
posed in this work, that of exploiting lexical contexts around iden-
tities, to identify network events (e.g. download, upload, chat etc.)
responsible for a given flow. All these we propose for future work.
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