
This paper is included in the Proceedings of the
25th USENIX Security Symposium

August 10–12, 2016 • Austin, TX

ISBN 978-1-931971-32-4

Open access to the Proceedings of the
25th USENIX Security Symposium

is sponsored by USENIX

Towards Measuring and Mitigating Social
Engineering Software Download Attacks

Terry Nelms, Georgia Institute of Technology and Damballa; Roberto Perdisci,
University of Georgia and Georgia Institute of Technology; Manos Antonakakis,

Georgia Institute of Technology; Mustaque Ahamad, Georgia Institute of Technology
and New York University Abu Dhabi

 https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/nelms

USENIX Association 25th USENIX Security Symposium 773

Towards Measuring and Mitigating
Social Engineering Software Download Attacks

Terry Nelms1,2, Roberto Perdisci3,1, Manos Antonakakis1, and Mustaque Ahamad1,4

1Georgia Institute of Technology
2Damballa, Inc.

3University of Georgia
4New York University Abu Dhabi

tnelms@gatech.edu, perdisci@cs.uga.edu, manos@gatech.edu, mustaq@cc.gatech.edu

Abstract
Most modern malware infections happen through the
browser, typically as the result of a drive-by or social en-
gineering attack. While there have been numerous stud-
ies on measuring and defending against drive-by down-
loads, little attention has been dedicated to studying so-
cial engineering attacks.

In this paper, we present the first systematic study
of web-based social engineering (SE) attacks that suc-
cessfully lure users into downloading malicious and un-
wanted software. To conduct this study, we collect and
reconstruct more than two thousand examples of in-the-
wild SE download attacks from live network traffic. Via a
detailed analysis of these attacks, we attain the following
results: (i) we develop a categorization system to identify
and organize the tactics typically employed by attackers
to gain the user’s attention and deceive or persuade them
into downloading malicious and unwanted applications;
(ii) we reconstruct the web path followed by the victims
and observe that a large fraction of SE download attacks
are delivered via online advertisement, typically served
from “low tier” ad networks; (iii) we measure the char-
acteristics of the network infrastructure used to deliver
such attacks and uncover a number of features that can
be leveraged to distinguish between SE and benign (or
non-SE) software downloads.

1 Introduction
Most modern malware infections happen via the

browser, typically triggered by social engineering [9] or
drive-by download attacks [33]. While numerous studies
have focused on measuring and defending against drive-
by downloads [14,17,28,38], malware infections enabled
by social engineering attacks remain notably understud-
ied [31].

Moreover, as recent defenses against drive-by down-
loads and other browser-based attacks are becoming
harder to circumvent [18, 24, 32, 36, 40], cyber-criminals
increasingly aim their attacks against the weakest link,

namely the user, by leveraging sophisticated social en-
gineering tactics [27]. Because social engineering (SE)
attacks target users, rather than systems, current defense
solutions are often unable to accurately detect them.
Thus, there is a pressing need for a comprehensive study
of social engineering downloads that can shed light on
the tactics used in modern attacks. This is important not
only to inform better technical defenses, but may also al-
low us to gather precious information that may be used
to better train users against future SE attacks.

In this paper, we present a study of real-world SE
download attacks. Specifically, we focus on studying
web-based SE attacks that unfold exclusively via the web
and that do not require “external” triggers such as email
spam/phishing, etc. An example of such attacks is de-
scribed in [9]: a user is simply browsing the web, vis-
iting an apparently innocuous blog, when his attention
is drawn to an online ad that is subtly crafted to mimic
a warning about a missing browser plugin. Clicking on
the ad takes him to a page that reports a missing codec,
which is required to watch a video. The user clicks on
the related codec link, which results in the download of
malicious software.

To conduct our study, we collect and analyze hundreds
of successful in-the-wild SE download attacks, namely
SE attacks that actually result in a victim downloading
malicious or unwanted software. We harvest these at-
tacks by monitoring live web traffic on a large academic
network. Via a detailed analysis of our SE attack dataset,
we attain the following main results: (i) we develop a
categorization system to identify and organize the tactics
typically employed by attackers to gain a user’s atten-
tion and deceive or persuade them into downloading ma-
licious and unwanted applications; (ii) we reconstruct the
web path (i.e., sequence of pages/URLs) followed by SE
victims and observe that a large fraction of SE attacks are
delivered via online advertisement (e.g., served via “low
tier” ad networks); (iii) we measure the characteristics of
the network infrastructure (e.g., domain names) used to

774 25th USENIX Security Symposium USENIX Association

deliver such attacks, and uncover a number of features
that can be leveraged to distinguish between SE and be-
nign (i.e., “non-SE”) software downloads.

Our findings show that a large fraction of SE attacks
(almost 50%) are accomplished by repackaging existing
benign applications. For instance, users often download
free software that comes as a bundle including the soft-
ware actually desired by the user plus some Adware or
other Potentially Unwanted Programs (PUPs). This con-
firms that websites serving free software are often in-
volved (willingly or not) in distributing malicious or un-
wanted software [4, 7].

The second most popular category of attacks is related
to alerting or urging the user to install an application that
is supposedly needed to complete a task. For instance,
the user may be warned that they are running an outdated
or insecure version of Adobe Flash or Java, and are of-
fered to download a software update. Unfortunately, by
downloading these supposed updates, users are infected.
Similarly, users may stumble upon a page that suppos-
edly hosts a video of interest. This page may then inform
the user that a specific video codec is needed to play the
desired video. The user complies by downloading the
suggested software, thus causing an infection (see Sec-
tion 3 for details).

Another example of an SE download attack is rep-
resented by fake anti-viruses (FakeAVs) [35]. In this
case, a web page alerts the user that their machine is in-
fected and that AV software is needed to clean up the
machine. In a way similar to the SE attack examples
reported above, the user may be persuaded to down-
load (in some cases after a payment) the promoted soft-
ware, which will infect the user’s machine. However,
while FakeAVs have been highly popular among attack-
ers in the recent past, our study of in-the-wild SE mal-
ware downloads finds that they represent less than 1%
of modern SE attacks. This sharp decline in the num-
ber of FakeAV attacks within the last few years is con-
sistent with the recent development of technical counter-
measures against this class of attacks [5] and increased
user awareness [6].

As mentioned earlier, a large fraction of SE download
attacks (more than 80%) are initiated via advertisements,
and that the “entry point” to these attacks is represented
by only a few low-tier advertisement networks. For in-
stance, we found that a large fraction of the web-based
SE attacks described above are served primarily via two
ad networks: onclickads.net and adcash.com.

By studying the details of SE download attacks, we
also discover a number of features that aid in the detec-
tion of SE download attacks on live web traffic. We train
a classifier using these features and measure its effective-
ness at detecting SE downloads.

Summary of Contributions:

• We present the first systematic study of modern
web-based SE download attacks. For instance, our
analysis of hundreds of SE download attack in-
stances reveals that most such attacks are enabled
by online advertisements served through a handful
of “low tier” ad networks.

• To assist the process of understanding the origin
of SE download attacks, we develop a categoriza-
tion system that expresses how attackers typically
gain a user’s attention, and what are the most com-
mon types of deception and persuasion tactics used
to trick victims into downloading malicious or un-
wanted applications. This makes it easier to track
what type of attacks are most prevalent and may
help to focus user training programs on specific user
weaknesses and particularly successful deception
and persuasion tactics currently used in the wild.

• Via extensive measurements, we find that the most
common types of SE download attacks include fake
updates for Adobe Flash and Java, and that fake
anti-viruses (FakeAVs), which have been a popu-
lar and effective infection vector in the recent past,
represent less than 1% of all SE downloads we ob-
served in the wild. Furthermore, we find that ex-
isting defenses, such as traditional anti-virus (AV)
scanners, are largely ineffective against SE down-
loads.

• Based on our measurements, we then identify a set
of features that allow for building a statistical clas-
sifier that is able to accurately detect ad-driven SE
download attacks with 91% true positives and only
0.5% false positives.

2 Study Overview
Our study of SE download attacks is divided in mul-

tiple parts. To better follow the results discussed in the
following sections, we now present a brief summary of
their content.

In Section 3, we analyze the range of deception and
persuasion tactics employed by the attackers to victimize
users, and propose a categorization system to systematize
the in-the-wild SE tactics we observed.

In Section 4, we discuss how we collect software
downloads (including malicious ones) from live network
traffic and reconstruct their download path. Namely, we
trace back the sequence of pages/URLs visited by a user
before arriving to a URL that triggers the download of
an executable file (we focus on Windows portable exe-
cutable files). We then analyze the collected software
download events, and label those downloads that result

2

USENIX Association 25th USENIX Security Symposium 775

from SE attacks. This labeled dataset is used in the fol-
lowing sections to enable a detailed analysis of the char-
acteristics of the SE download attacks.

We analyze our dataset of in-the-wild SE download
attacks in Section 5. Specifically, we measure how the
SE attack tactics are distributed, according to the catego-
rization system proposed in Section 3, and highlight the
most popular successful SE malware attacks. According
to our dataset, the majority of SE attacks are promoted
via online advertisement. Therefore, in Section 5 we
also present an analysis of the network-level properties
of ad-based SE malware attacks, and contrast them with
properties of ad-driven benign software downloads.

In Section 6, we focus on detecting ad-based SE down-
load attacks. We first show that anti-virus products de-
tect only a small fraction of all SE attacks, leaving most
“fresh” SE download events undetected. We then devise
a number of statistical features that can be extracted from
the network properties of ad-driven software download
events, and show that they allow us to build an accurate
SE attack classifier, which could be used to detect and
stop SE download attacks before they infect their vic-
tims.

Finally, we discuss possible limitations of our SE at-
tacks study and detection approach in Sections 7, and
contrast our work to previously published research in
Section 8.

3 SE Download Attacks
In this section, we analyze the range of deception and

persuasion tactics employed by the attackers to victim-
ize users (Section 3.1). We also provide some concrete
examples of SE download attacks, to highlight how real
users may fall victim to such attacks (Section 3.2).

SE Attacks Dataset. Our analysis is based on a dataset
consisting of 2,004 real-world SE download attacks. We
collected these attacks by monitoring the network traf-
fic of a large academic network (authorized by our orga-
nization’s IRB), passively reconstructing the download
of executable binary files and tracing back the brows-
ing path followed by the users to reach the file down-
load event. We then analyzed the observed file down-
load events to identify possible malware, adware or PUP
downloads. Finally, we performed an extensive manual
analysis of the suspicious downloads to identify and la-
bel those downloads that were triggered by SE attacks,
and to precisely reconstruct the attack scenarios. A de-
tailed description of our dataset collection and labeling
approach is provided in Section 4. Furthermore, in Sec-
tion 5 we measure properties of the collected attacks,
such as what types of SE attacks are the most prevalent,
and provide information on the network-level character-
istics of SE download distribution operations.

In the following, we will focus on analyzing our SE
download attack dataset with the goal of categorizing the
different types of deception and persuasion tactics used
by attackers to lure victims into downloading malicious
and unwanted software.

3.1 Categorizing SE Download Tactics
The dataset of 2,004 SE download attacks that we re-

constructed and labeled via extensive manual analysis ef-
forts (detailed in Section 4) gives us an excellent oppor-
tunity to study the wide range of depiction and persua-
sion tactics employed by the attackers. To better under-
stand how SE attacks work, we develop a categorization
system that aims to provide a systematization of the tech-
niques used by successful SE download attacks. Specifi-
cally, we categorize different SE attacks according to; (1)
the ways the adversaries get the user’s attention and (2)
the type of deception and persuasion tactics employed.
Our categorization of SE attacks is summarized in Fig-
ure 1.
Gaining the user’s attention. The first step in a SE at-
tack is to get the user’s attention. This is accomplished
for example by leveraging online advertisement (ad),
search engine optimization (SEO) techniques or by post-
ing messages (and clickable links) on social networks,
forums, and other sites that publish user-generated con-
tent.

As we will show in Section 5, the most popular of
these methods is ads. On-line advertisement allows the
attacker to easily “publish” their deception/persuasion
ad on a site that is likely already popular among the
targeted victims. In addition, ads help hide the decep-
tion/persuasion campaign and attack infrastructure (i.e.,
hide it from users as well as security researchers), sim-
ply because SE ads are exposed only to targeted users via
search keywords, the user’s cookies, etc.

Another method employed to attract the user’s atten-
tion is search. For instance, search engines can be abused
via black hat SEO attacks to pollute the search results
with harmful links. In addition, in our categorization of
SE attacks we use a generic definition of “search” that
does not only include search engines; anytime a user
perform a query to locate specific content on a website,
we classify it as a search event. For instance, we have
observed users that become victims of SE attacks while
simply searching for content within a website that hosts
video streaming (e.g., movies, video clips, etc.).

Attackers also use web posts to attract the user’s atten-
tion. We define a web post as content that has been added
to a website by a visitor and is now available for display
to others. For instance, many of the web posts used in the
SE download attacks we observed were located within
groups of legitimate posts about a topic of interest. The
majority of such web posts were related to content (e.g.,

3

776 25th USENIX Security Symposium USENIX Association

Ad Web PostSearch

User Attention

Persuasion

ImpersonateRepackageDecoy Invent Entice Comply

Deception

Alarm

Figure 1: Categorization of SE downloads on the web.

clickable links) such as free software, books, music and
movies.

It is not uncommon for these three techniques (ads,
search, and web posts) to be combined. For instance, at-
tackers will use search and ads in combination to get the
user’s attention. Targeted search engine ads related to
the search terms entered by users are often displayed be-
fore the real search results, thus increasing the likelihood
of a click. This common search engine feature is often
abused by attackers. Also, users may search for certain
specific terms on web forums, social network sites, etc.,
and may fall victim to targeted web posts.

Deception and persuasion tactics. After an attacker
gains the user’s attention, they must convince them to
download and install their malicious or unwanted soft-
ware. This typically involves combining a subset of the
deception and persuasion techniques summarized in Fig-
ure 1. As one scrolls from left to right in the figure,
the techniques move from deception towards persuasion.
Notice that none of the techniques we list involve only
deception or only persuasion; instead, the different tech-
niques vary in their levels of each. We now provide a de-
scription of the deception and persuasion classes shown
in Figure 1. We will then present examples of real-world
SE download attacks that make use of a combination of
these techniques.
(1) Decoy: Attackers will purposely place decoy “click-

able” objects, such as a hyperlink, at a location on a
web page that will attract users to it and away from
the actual object desired (or searched) by the user.
An image of a “flashy” download button (e.g., deliv-
ered as an ad banner) on a free download site located
prior to the actual download link desired by the user
is an example of this technique.

(2) Repackage: To distribute malicious and unwanted
software, attackers may group benign and PUP (or
malware) executables together, and present them to
the user as a single application. An example tech-
nique from this class is adware bundled with a be-
nign application and served as a single software
download on a free software distribution website.

(3) Impersonate: Using specific images, words and col-
ors can make an executable appear as if it was a

known popular benign application. Also, claiming
that a software provides desirable features or ser-
vices (though it does not supply them) is a way to
convince the user to download and install the appli-
cation. Malicious executables pretending to be an
Adobe Flash Player update, e.g., by using logos or
icons similar to the original Adobe products and key-
words such as “adobe” and “flash,” is an example of
impersonation techniques from this class.

(4) Invent: Creating a false reality for the user may
compel them to download a malicious or unwanted
executable. For example, alerting the user stat-
ing that their machine is infected with malware and
instructing them to download (malicious) clean-up
software (e.g., a fake AV) is an example of the invent
tactic.

(5) Alarm: Using fear and trepidation aims to scare
the user into downloading (malicious) software that
promises to safeguard them. For instance, an online
ad claiming that the user’s browser is out-of-date and
vulnerable to exploitation is an example of alarm
techniques.

(6) Entice: Attackers often attempt to attract users to
download a malicious or unwanted executable by of-
fering features, content or advantages. As an exam-
ple, a user may be shown an ad for a system opti-
mization utility stating that it will “speedup” their
PC, but hides malicious software.

(7) Comply: A user may be (apparently) required to in-
stall an (malicious) application before she can con-
tinue. For instance, a user visiting a video stream-
ing website may be prompted to install a necessary
“codec” before she can watch a free movie. As the
user is motivated to watch the movie, she complies
with the codec installation request, thus getting in-
fected with malware.

It is important to note that none of the SE attacks in our
study fall into a single class. Instead the in-the-wild SE
attacks we collected often use techniques across two or
more of the above classes to trick the user into infecting
their machine. Labeling a download using these classes
involves understanding the motivations employed to con-
vince a user to install the malicious software. These are

4

USENIX Association 25th USENIX Security Symposium 777

typically easy to identify by examining the words and
images used in an attack. For instance, an attack that im-
personates will claim to be software that it is not, such
as Adobe Flash Player. On the other hand, an attack that
entices a user will often use words like “free” and de-
scribe all the benefits of installing the software. Entice
and impersonate are not mutually exclusive and are used
together in some SE attacks. Allowing an SE attack to
be assigned to more than one class simplifies the label-
ing process because all perception/deception tactics can
be included, not just the one believed to be the primary
tactic.

3.2 Examples of In-The-Wild SE Attacks
In this section, we present two examples from our

dataset of reconstructed SE download attacks, and clas-
sify their SE tactics using our categorization system (see
Figure 1). To aid in our discussion we define the nota-
tion “attention:deception/persuasion,” where the atten-
tion string refers to how attackers attempt to attract users’
attention, and the deception/persuasion string refers to
the combination of the deception/persuasion techniques
used to trigger the malware download. For example, if an
SE attack relies on an ad and uses alarm and imperson-
ate deception/persuasion tactics, then we label the attack
using our notation as “ad:alarm+impersonate.”

Attack 1. A user searches for “Gary Roberts free pics”
using a popular search engine. A page hosted on a com-
promised website is returned as a top result. The page
contains various content referring to “Gary Roberts”, but
this content is incoherent and likely only present for
blackhat search engine optimization (SEO). However,
the user never sees the content because the javascript
code located at the top of the served page immediately
closes the document, and then reopens it to inject a script
that redirects the user to a page that says “gary-roberts-
free-pics is ready for download. Your file download
should automatically start within seconds. If it doesn’t,
click to restart the download.” But the downloaded file
does not contain any pictures, and instead carries mali-
cious code that is later flagged as malware by some AV
vendors.

Using our categorization system we classify this at-
tack as “search:entice+decoy+impersonate.” Search is
the method of gaining the users attention. In this exam-
ple this is obvious because the SE page appeared in the
results page provided by a search engine. The entice part
of the attack is the offering of “free” pics of the subject of
interest. Decoy is due to the fact that blackhat SEO was
used to elevate the SE page in the search results above
other legitimate pages. Lastly, what the user downloads
is not pics of Gary Roberts; instead, it is a malicious ex-
ecutable impersonating what the user wants (e.g., Gary

Figure 2: SE ad for Ebola early warning system.

Roberts free pictures).

Attack 2. A user is watching an episode of “Agents of
Shield” on a free video website when they are presented
with an ad. The ad, similar to the one shown in Fig-
ure 2, presents the user with the option of downloading
an early warning system for Ebola. However, the down-
loaded file does not provide information about an Ebola
outbreak; instead, it infects the user’s system with mali-
cious software.

We classify this attack as “ad:alarm+impersonate” us-
ing our categorization system. The user’s attention is
gained through an ad, in which their fear of Ebola is used
to alarm the user into downloading a tracking system.
Unfortunately, what the user downloads only imperson-
ates a tracking systems, and instead contains malicious
code.

4 Collecting and Labeling SE Attacks
In this section we discuss in detail how we collected

and labeled our dataset of 2,004 SE download attacks.
We will then present an analysis of the prevalence and
characteristics of the collected attacks in Section 5.

4.1 Data Collection Approach
To collect and reconstruct SE download attacks, we

monitor all web traffic at the edge of a large network (this
study was authorized by our organization’s Institutional
Review Board). Using deep packet inspection, we pro-
cess the network traffic in real-time, reconstructing TCP
connections, analyzing the content of HTTP responses
and recording all traffic related to the download of exe-
cutable files (Windows executables).

While monitoring the traffic, we maintain a buffer
of all recent HTTP transactions (i.e., request-response
pairs) that occurred in the past few minutes. When an
HTTP transaction that carries the download of an exe-
cutable file is found, we passively reconstruct and store a
copy of the file itself. In addition, we trigger a dump of
the traffic buffer, recording all the web traffic generated

5

778 25th USENIX Security Symposium USENIX Association

by the same client that initiated the file download dur-
ing the past few minutes before the download started. In
other words, we store all HTTP traffic a client generated
up to (and including) the executable file download.

We then process these HTTP transaction captures us-
ing the trace-back algorithm presented in [30]. The trace-
back algorithm builds a graph where each node is an
HTTP transaction. Given two nodes T1 and T2, they are
connected by an edge if T2 was “likely referred to” by T1.
For instance, a directed edge is drawn from T1 to T2 if the
user clicked on a link in T1’s page and as a consequence
the browser loaded T2. Then, starting from the download
node, the algorithm walks backwards along this graph to
trace back the most likely path (i.e., sequence of HTTP
transactions) that brought the user to initiate the down-
load event. For more details, we refer the reader to [30].

These reconstructed download paths are later analyzed
to identify and categorize SE download attacks. It is im-
portant to note that we do not claim automatic download
path traceback as a contribution of this paper. Instead,
our focus is on the collection, analysis, and categoriza-
tion of SE download attacks, and on the detection and
mitigation of ad-based SE infections. Automatic down-
load traceback is just one of the tools we use to aid in our
analysis.

We deployed the data collection process described
above on a large academic network serving tens of thou-
sands users for a period of two months. To avoid un-
necessarily storing the download traces related to fre-
quent software updates for popular benign software, we
compiled a conservative whitelist consisting of 128 do-
main names owned by major software vendors (e.g., Mi-
crosoft, Adobe, Google, etc.). Therefore, executable files
downloaded from these domains were excluded from our
dataset.

Overall, during our two month deployment, we col-
lected a total of 35,638 executable downloads. The pro-
cess we used to identify the downloads due to SE attacks
is described in the following sections.

4.2 Automatic Data Filtering
Even though we filter out popular benign software up-

dates up front, we found that the majority of executable
downloads observed on a network are updates to (more
or less popular) software already installed on systems.
As we are interested in new infections caused by web-
based SE attacks, we aim to automatically identify and
filter out such software updates.

To this end, we developed a set of conservative heuris-
tics that allow us to identify and filter out most soft-
ware update events based on an analysis of their respec-
tive download path. First, we examine the length of the
download path. The intuition is that software updates

tend to come from very short download paths, which of-
ten consist of a single HTTP request to directly fetch
a new executable file from a software vendor’s web-
site (or one of its mirrors). Conversely, the download
path related to SE download attacks usually consists of a
number of navigation steps (e.g., the may user navigate
through different pages before stumbling upon a mali-
cious SE advertisement).

For the next step in the analysis, we review the user-
agent string observed in the HTTP requests on the down-
load path. The user-agent string appearing in software
update requests is typically not the one used by the
client’s browser (similar observations were made by the
authors of [30]), because the user-agent found in these
requests often contains the name of the software that
is being updated (e.g., Java or Acrobat reader). Since
web-based SE attacks happen to users browsing the web,
HTTP requests on the download path typically carry the
user-agent string of the victim’s browser.

Therefore, to automatically identify and filter out up-
date downloads we use the following heuristics. If the
download path contains a single HTTP transaction (the
update request itself), and the user-agent string does not
indicate that the request has been made by a browser, we
filter out the event from our dataset.

Overall, the conservative filtering approach outlined
above allowed us to reduce the number of download
paths to be further analyzed. Specifically, we were able
to reduce our download traces dataset by 61%, leaving us
with a total of 13,762 that required further analysis and
labeling.

4.3 Analysis of Software Download Events
After filtering, our dataset consists of 13,762 software

download events (i.e., the downloaded executable files
and related download paths) that required further detailed
analysis and labeling. As our primary goal is to create a
high quality dataset of labeled SE download attacks, we
aim to manually analyze and perform a detailed recon-
struction of the attacks captured by our archive of soft-
ware download events.

To aid in the manual analysis process and reduce the
cost of this time-consuming effort, we leveraged unsu-
pervised learning techniques. Specifically, we identify
a number of statistical features that allow us to discover
clusters of download events that are similar to each other.
For instance, we aim to group different downloads of the
same benign software by different clients. At the same
time, we also aim to group together similar download
events triggered by the same SE attack campaign.

To identify and automatically clusters similar down-
load events, we developed a set of statistical features. We
would like to emphasize that none of the features we de-
scribe below is able to independently yield high-quality

6

USENIX Association 25th USENIX Security Symposium 779

clustering results. Rather, it is the combination of these
features that allows us to obtain high quality clusters of
related software download events.

Notice also that the purpose of this clustering process
is simply to reduce the time needed to manually analyze
the software download events we collected. By using a
conservative clustering threshold (discussed below) and
by manually reviewing all obtained clusters, we mini-
mize the impact of possible noise in the results.

To perform the clustering, we leverage a number of
simple statistical features, some of which (e.g., URL
similarity, domain name similarity, etc.) are commonly
used to find the similarity between network-level events.
Notice, however, that our main goal in this clustering
process is not to design novel features; rather, we simply
aim to reduce the manual analysis and labeling efforts
needed to produce a high-quality dataset of in-the-wild
SE download attacks.

We now describe our clustering features:
(1) Filename Similarity: Benign executable files dis-

tributed by the same organization (e.g., an applica-
tion distributed by a given vendor or software distri-
bution site) tend to have similar filenames. Notice
that often this also holds for SE attack campaigns,
because the files distributed by the same campaign
often follow a consistent “theme” to aid in the de-
ception of the end users. For instance, the malware
files distributed by a fake Flash Player upgrade at-
tack campaign (see Section 3) may all include the
word “Adobe” in the filename to convince the user
that the downloaded file is legitimate.

(2) File Size Similarity: Benign files that are identical
or variants (i.e., different versions) of the same soft-
ware are usually very close in size. Similarly, SE
campaigns typically infect victims with a variant of
the same malware family. While the malware file’s
size may vary due to polymorphism, the size dif-
ference is typically small, compared to the total file
size.

(3) URL Structure Similarity: A benign website that
serves software downloads will often host all of its
executable files at the same or very similar struc-
tured URLs. In a similar way, SE campaigns of-
ten use malware distribution “kits” and go weeks or
even months before a noticeable change in the struc-
ture of their URL paths is observed. This is unlike
malicious URLs, which frequently change to avoid
blacklisting.

(4) Domain Name Similarity: While the domain names
used to distributed malware files belonging to the
same SE attack campaign may change, some cam-
paigns will reuse some keywords in their domains
that are meant to deceive the user. For instance,
the domains used in a Fake AV malware campaign

may contain the keyword “security” to convince the
user of its legitimacy. Also, download events related
to (different versions of) the same benign software
are often distributed via a handful of stable domain
names.

(5) Shared Domain Predecessor: SE attacks that share
a common node (or predecessor) in the download
path are often related. For instance, an SE mal-
ware campaign may exploit an ad network with weak
anti-abuse practices. Therefore, while the final do-
main in the download path from which the malware
is actually downloaded may change (e.g., to avoid
blacklisting), the malware download paths of differ-
ent users that fall victim to the same SE campaign
may share a node related to the abused ad network,
for example. On the other hand, in case of benign
downloads both the download and “attention grab-
bing” domain tend to be stable, as the main goal is
quality of service towards the end user.

(6) Shared Hosting: While domains involved in mal-
ware distribution tend to change frequently, SE mal-
ware campaigns often reuse (parts of) the same host-
ing infrastructure (e.g., some IPs). The intuition is
that hosting networks that tolerate abuse (knowingly
or otherwise) are a rare and costly resource. On the
other hand, domain names are significantly easier to
obtain and can be used as crash-and-burn resource
from the adversary. One the benign downloads side,
legitimate software distribution websites are usually
stable and do not change hosting very frequently, for
quality of service reasons.

(7) HTTP Response Header Similarity: The headers
in an HTTP response are the result of the installed
server-side software and configuration of the web
server. The set of response headers and their asso-
ciated values offer a lot of variation. However, most
of the web servers for a benign site tend to have
common configurations so they respond with simi-
lar headers. Also, some SE campaigns use the same
platform for their attacks and do not change their
server-side configurations even when they move to
new domains.

For each of the 13,762 downloads we compute a fea-
ture vector based on the features listed above, and cal-
culate the pairwise distance between these feature vec-
tors. We then apply an agglomerative hierarchical clus-
tering algorithm to the obtained distance matrix. Finally,
we cut the dendrogram output by the hierarchical clus-
tering algorithm to obtain the final clusters of download
events. To cut the dendrogram we chose a conserva-
tive cut height to error on the side of not grouping re-
lated downloads and significantly reduce the possibility
of grouping unrelated ones. This process produced 1,205
clusters, thus resulting in an order of magnitude reduc-

7

780 25th USENIX Security Symposium USENIX Association

tion in the number of items that require manual inspec-
tion. In the following section we explain how we ana-
lyzed and labeled these clusters.

4.4 Labeling SE Download Attacks
After clustering similar software download events, we

manually examine each cluster to distinguish between
those that are related SE download attack campaigns,
and clusters related to other types of software download
events, including benign downloads, malware downloads
triggered by drive-by downloads, and (benign or mali-
cious) software updates. This labeling process allows
us to focus our attention on studying SE download at-
tacks, and to exclude other types of benign and malicious
downloads (notice that because in this paper we are pri-
marily interested on SE attacks, we exclude non-SE mal-
ware attacks from our study).

To perform the cluster labeling, each cluster was man-
ually reviewed by randomly sampling 10% of the down-
load events grouped in the cluster, and then performing
a detailed manual analysis of the events in this sample
set. For small clusters (e.g. clusters with < 50 events)
we sampled a minimum of 5 download events. For clus-
ters containing less than 5 download traces, we reviewed
all of the events. As discussed earlier, our clustering pro-
cess uses a conservative cut height. The net effect is that
the clusters tend to be “pure,” thus greatly reducing the
possibility of errors during the cluster labeling process.
At the same time, some groups of download events that
are similar to each other may be split into smaller clus-
ters. However, this does not represent a significant prob-
lem for our labeling process. The only effect of having a
larger number of highly compact clusters is to create ad-
ditional manual work, since a random sample of events
from each cluster is manually analyzed.

In addition to manually reviewing the download paths
contained in the clusters, to assist our labeling we also
make use of antivirus (AV) labels for the downloaded ex-
ecutable files. To increase AV detections we “aged” the
downloads in our dataset for a period of two months, be-
fore scanning them with more than 40 AV engines using
virustotal.com. Notice that AV labels are mainly
used for confirmation purposes. The actual labeling of
SE attacks is performed via an extensive review of each
download path (i.e., sequence of pages/URLs visited to
arrive to the executable file download). If we suspect a
cluster is malicious (based on our manual analysis), hav-
ing one or more AV hits offers additional confirmation,
but is not required if we have strong evidence that the
download was triggered by an SE attack.
Updates: Even though the heuristics we described in
Section 4.2 filter out the vast majority of software up-
dates, our heuristics are quite conservative and therefore
some update events may still remain. To determine if

a download event is related to a (malware or benign) up-
date, we examine the length of the download path and the
time between requests. If the length of the total down-
load path is < 4 or the time between requests is < 1 sec-
ond, we consider the download event for detailed manual
review. In this case, we analyze the HTTP transactions
that precede the download by examining the content for
artifacts, such as text and clickable buttons, that are indi-
cators of human interaction. If none are found we label
the download as an update.
Drive-by: Next we look for drive-by download indica-
tors. To assist our labeling, we borrow some of the fea-
tures proposed in [30]. Notice that the labeling of drive-
by downloads is not a contribution of our paper. This
is only a means to an end. The novel contributions of
this paper are related to studying the characteristics of
SE download attacks.

To label drive-by attacks, we look for “exploitable
content,” such as pdf, flash, or java code on the path to
a malware download. Browser plugins and extensions
that process this type of content often expose vulnera-
bilities that are exploited by attackers. If we suspect the
download event under analysis is a drive-by, we reverse
engineer the content of the HTTP transactions that pre-
cede the suspected attack. This typically requires deob-
fuscating javascript and analyzing potentially malicious
javascript code. For instance, if we identify code that
checks for vulnerable versions of browser software and
plugins (an indication of “drive-by kits”), we label the
download as drive-by. We identify and label 26 drive-by
downloads.
Social Engineering: If the cluster is not labeled as
update or drive-by, we further examine the download
events to determine if the they are due to SE attacks. For
this analysis, we inspect the content of all HTTP trans-
actions on the download path. This content was saved at
the time of the download and does not require revisiting
of the URLs on the download path. Because SE down-
loads are attacks on the user, they are initiated by a user-
browser interaction (e.g., clicking a link). Therefore, our
goal is to identify the page on the download path con-
taining the link likely clicked by the user that ultimately
initiated the executable file download. By manually re-
viewing the web content included in the download path,
we attempt to determine if deception or questionable per-
suasion tactics were used to trick the user into download-
ing the executable file (see Section 3). In case of positive
identification of such tactics, we label the cluster as so-
cial engineering; otherwise, we label it as “likely” be-
nign.

Notice that the analysis and labeling of SE download
attacks is mainly based on the identification of decep-
tion tactics to trick a user to download an executable file.
However, we also use AV scanning for confirmation pur-

8

USENIX Association 25th USENIX Security Symposium 781

poses. By doing so, we found that the majority of the
clusters we label as social engineering contained one or
more of downloaded files that were labeled as malicious
by some AVs. This provides additional confirmation of
our labeling of SE download attacks.

Overall, among 1,205 clusters in our dataset, we la-
beled 136 clusters as social engineering. In aggregate,
these clusters included a total of of 2,004 SE download
attacks. In Section 3 we analyzed these SE download at-
tacks and developed a categorization system that allows
us to organize these attacks based on the deception and
persuasion tactics used to attack the user. In the next sec-
tion, we measure the popularity of these tactics based on
the data we collected.

5 Measuring SE Download Attacks
In this section we measure the popularity of the tac-

tics attackers employ to gain the user’s attention and
of the deception and persuasion techniques that con-
vince users to (unknowingly) download malicious and
unwanted software. In addition, we measure properties
of ad-based SE download attacks, which can be used to
inform the development of effective defenses against SE
attacks that leverage ad campaigns.

5.1 Popularity of SE Download Attacks
Table 1 shows the number and percentage of SE down-

load attacks for each tactic employed by the attackers to
gain the user’s attention. Over 80% of the SE attacks we
observed used ads displayed on websites visited by the
user. An additional 7% employed both search and ad,
whereby the user first queries a search engine and is then
presented with targeted ads based on the search terms.
The popularity of ads in SE download attacks is likely
due to the fact that they are a very efficient way for at-
tackers to reach a large audience, thus maximizing the
number of potential victims. Furthermore, well-crafted
targeted ads are naturally highly effective at attracting a
user’s attention.

Table 1: Popularity of SE techniques for gaining atten-
tion.

User’s Attention Total Percentage
Ad 1,616 80.64%
Search+Ad 146 7.29%
Search 127 6.34%
Web Post 115 5.74%

Gaining the user’s attention is not sufficient for an SE
download attack to succeed. A user must also be tricked
into actually “following the lead” and downloading the
malicious or unwanted software. Table 2 shows the pop-
ularity of the deception and persuasion techniques we ob-
served in our dataset of SE download attacks. The most

popular combination of deception and persuasion tech-
niques is repackage+entice, making up over 48% of the
observations. In most of these cases, the user is offered
some type of “free” software of interest (e.g., a game or
utility). Unfortunately, while the free software itself may
not be malicious, it is often bundled with malicious ap-
plications such as adware or PUPs.

Table 2: Popularity of SE techniques for tricking the user.

Trick Total Percentage
Repackage+Entice 972 48.50%
Invent+Impersonate+Alarm 434 21.66%
Invent+Impersonate+Comply 384 19.16%
Repackage+Decoy 155 7.74%
Impersonate+Decoy 46 2.30%
Impersonate+Entice+Decoy 12 0.60%
Invent+Comply 4 0.20%
Impersonate+Alarm 1 0.05%

The next two most popular combinations of deception
and persuasion tactics are invent+impersonate+alarm
and invent+impersonate+comply, comprising 22% and
19% of the SE downloads we observed. An example of
invent+impersonate+alarm is a Fake Java update attack,
whereby the user is shown an ad that states “WARN-
ING!!! Your Java Version is Outdated and has Security
Risks, Please Update Now!” and uses images (e.g., logos
or icons) related to Java (notice that this and all other ex-
amples we use throughout the paper represent real-world
cases of successful SE attacks from our dataset). Ads
like this are typically presented to users while they are
visiting legitimate websites. In this example, the attacker
is inventing the scenario that the user’s Java VM is out-
of-date, alarming them with “WARNING!!!” displayed
in a pop-up ad, and then impersonating a Java update
that must be installed to resolve the issue. Notice that
this is different from repackage+entice, in that the real
Java software update is never delivered (only the mal-
ware is). Furthermore, the attacker leverages alarming
messages about a well-known software to more aggres-
sively “push” the user to download and install malicious
software.

The difference between invent+impersonate+alarm
and invent+impersonate+comply is in the persuasion
component; i.e., alarm vs. comply. Alarm leverages
fear (e.g., the computer may be compromised) to compel
the user to download and install malicious software. On
the other hand, comply leverages a pretend requirement
necessary to complete a desired user task. For instance,
a user may be presented with an ad on a video stream-
ing website that says “Please Install Flash Player Pro To
Continue. Top Video Sites Require The Latest Adobe
Flash Player Update.” In this example, the attacker is in-
venting the need to install “Flash Player Pro” and tells
the user they must comply before they can continue with
watching the desired video. Unfortunately, this results

9

782 25th USENIX Security Symposium USENIX Association

0%# 10%# 20%# 30%# 40%# 50%# 60%# 70%# 80%# 90%# 100%#

Impersonate+Alarm#

Impersonate+En;ce+Decoy#

Impersonate+Decoy#

Repackage+Decoy#

Invent+Impersonate+Comply#

Invent+Impersonate+Alarm#

Repackage+En;ce#

Ad# SearchGAd# Search# Webpost#

Figure 3: How attackers gain the user’s attention per de-
ception/persuasion technique.

in the user downloading malicious software that simply
impersonates a popular benign application and offers no
actual utility to the user.

Table 3: Popularity of different “scam” tactics in the
Ad:Invent+Impersonate subclasses.

Alarm Comply
Fake Flash 68% 20%
Fake Java 30% 0%
Fake AV 1% 0%
Fake Browser 1% 0%
Fake Player 0% 80%

Table 3 shows the popularity of different “scam” tac-
tics in the invent+impersonate subclasses alarm and
comply. Fake Flash and Java updates are the two most
popular in the alarm class. In this same class we also ob-
serve Fake Browser updates and Fake AV alerts, but they
are much less common, each comprising only about 1%
of our observations. Fake Flash updates are also common
in the comply class; however, the most popular scam tac-
tic is telling the user they must update or install a new
video player before they can continue. In these Fake
Player attacks, images that resemble Adobe Flash Player
are often used, but the terms “Adobe” or “Flash” are not
directly mentioned. Therefore in Table 3 we distinguish
between explicit Fake Flash and Fake Player.

Figure 3 shows how attackers gain the user’s attention
for each of the observed deception and persuasion tech-
niques. For instance, ads are the most common way used
to attract users’ attention for repackage+entice, compris-
ing 75% of our observations. Search and web posts
contribute the remaining 25%. All observations for in-
vent+impersonate+alarm, invent+impersonate+comply,
impersonate+alarm and impersonate+decoy rely exclu-
sively on ads to gain the user’s attention. At the
other extreme, none of our observations for imperson-
ate+entice+decoy use ads. This is likely due to the
fact that this combination of deception and persuasion

techniques is more effective when the user’s attention is
gained through search and web posts. However, notice
that this comprises less than 1% of all SE downloads in
our dataset (see Table 2).

5.2 Ad-based SE Download Delivery Paths
As shown in Table 1, the majority of SE attacks we ob-

served use online ads to attract users’ attention. To better
understand these attacks, we examine the characteristics
of their ad delivery path. We begin by reconstructing the
web path (i.e., the sequence of URLs) followed by the
victims to arrive to the download URL (see Section 4).
Then, we identify the first ad-related node on the web
path using a set of regular expressions derived from the
Adblock Plus rules [1]. We define the set of nodes (i.e.,
HTTP transactions) on the web path beginning at the first
ad node and ending at the download node as the ad de-
livery path.

Table 4: Top five ad entry point domains.

Comply Alarm Entice
26% onclickads.net 16% adcash.com 20% doubleclick.net
10% adcash.com 7% onclickads.net 16% google.com
10% popads.net 7% msn.com 12% googleadservices.com

7% putlocker.is 6% yesadsrv.com 11% msn.com
3% allmyvideos.net 4% yu0123456.com 8% coupons.com

Table 4 shows the top 5 “entry point” domain names
on the ad delivery paths (i.e., the first domain on
the ad paths) for the comply, alarm and entice attack
classes. Almost 50% of the ad entry points for the
comply class begin with one of the following domains:
onclickads.net, adcash.com or popads.net.
By investigating these domains, we found that they have
also been abused by adware in the past. Specifically,
these domains are the source of pop-up ads injected into
the user’s browsing experience by several well known ad-
ware programs and ad-injecting extensions [43].

Table 4 also shows that the top two ad entry points for
the alarm class are the same as the comply class, though
in reverse ranking. The third domain is msn.com, which
has a good reputation. However, this domain is appearing
at the top of the ranking probably because it sometimes
redirects (via syndication) to less reputable ad networks,
which in turn direct the user to an SE download. Notice
also that the top entry domains in the entice class all have
very good reputations (doubleclick.net is owned
by Google). This is likely due to the fact that the majority
of downloads in this class are for legitimate software that
is simply bundled with “less aggressive” PUPs.

Besides performing an analysis of the “entry point” to
the ad delivery path, we also analyze the last node on
the path, namely the HTTP transaction that delivers the
download. Table 5 shows the most popular SE download
domains for the comply, alarm and entice classes. We

10

USENIX Association 25th USENIX Security Symposium 783

Table 5: Top five ad-driven SE download domains.

Comply Alarm Entice
17% softwaare.net 7% downloaddabs.com 41% imgfarm.com

5% newthplugin.com 4% downloaddado.com 17% coupons.com
5% greatsoftfree.com 4% whensoftisupdated.net 11% shopathome.com
4% soft-dld.com 3% safesystemupgrade.org 5% crusharcade.com
3% younplugin.com 3% onlinelivevideo.org 3% ilivid.com

found that the domains listed for the comply and entice
classes serve mostly adware and PUPs.

To better understand the network-level properties of
SE downloads, we also measure the “age” of these
domains by leveraging a large passive DNS database
(pDNS-DB) that stores historic domain name resolu-
tions. Specifically, we define the domain age as the
difference in days from the time the domain was first
queried (i.e., first recorded in the pDNS-DB) to the day
of the download. All the domains in Table 5 that are part
of the comply and alarm classes are less than 200 days
old, with the majority being less than 90 days. On the
other hand, the domains in Table 5 for the entice class are
all at least several years old. This is because most of the
downloads in this class are for legitimate software that
is simply bundled with adware or PUPs. For instance,
we find a large variety of “free” software ads that direct
users to the domain imgfarm.com for download. This
is the reason that over 40% of the downloads in the entice
class are from that domain.

The “middle of path” domains, namely the ones be-
tween the ad entry point and the download domain itself,
tend to be a mix of recent and old domains. In fact, the
most popular comply and alarm class “middle of path”
domains are a 50/50 split of recent and old. However,
this is not the case for the entice class, for which most
domains are several years old. At the same time, the ma-
jority of ad delivery paths for all three classes include at
least one middle domain name with an age that is less
than 200 days.

5.3 Ad-Driven Benign Downloads
As mentioned earlier, more than 80% of the SE down-

load attacks we observed use ads to gain the user’s atten-
tion (see Table 1). Based on common experience, it may
seems unlikely that many benign software downloads
would result from clicking on an ad. As a result, one
may think that if software is downloaded after clicking
on an ad, that software is unlikely to be benign. Some-
what surprisingly, we found that this may not necessarily
be the case, as we explain below.

First, to automatically identify ad-driven benign soft-
ware downloads, we first derive a set of ad detection reg-
ular expressions from the rules used by the popular Ad-
Block Plus browser extension [1]. We match these reg-
ular expressions against the nodes on the reconstructed
download path for each benign download (the down-

load labeling process is described in Section 4.4). If
an AdBlock rule matches the download path, we label
that benign software download as ad-driven. We find
that around 7% of all benign software downloads are ad-
driven. Even though the percentage is low compared to
SE downloads, in absolute terms this number is signif-
icant because the vast majority of software downloads
observed in a network are benign. In fact, by consid-
ering the overall number of confirmed malware and be-
nign software downloads and how many of these down-
loads are ad-driven, we find that if a software download
is reached by clicking on an ad there is a 40% chance
that that software is benign.

Table 6: Ad-based benign download popularity.

Category Percentage
Games 32%
Utilities 30%
Music 15%
Business 11%
Video 8%
Graphics 2%
Social 2%

To further understand what type of benign software
downloads are ad-driven, we investigate through manual
analysis 100 randomly selected samples of benign soft-
ware download events. Table 6 shows the type of soft-
ware that is represented in our sample and their relative
popularity. Games and utilities are the most popular cat-
egories, comprising 62% of all downloads. For example,
the game “Trion Worlds” is the most popular with 17
downloads, followed by “Spotify” with 10 downloads.

6 Detecting SE Download Attacks
In this section, we measure the antivirus (AV) detec-

tion rate for SE downloads and group them into broad
malware classes using AV labels. Also, we show that it
is possible to accurately detect SE download attacks by
constructing a statistical classifier that uses features de-
rived from the SE attack measurements we presented in
Section 5.

6.1 Antivirus Detection
To assess how AV products cope with SE downloads,

we scan each SE download sample in our dataset with
more than 40 AV engines (using VirusTotal.com). We
scanned each of the samples on the day we collected
them. Then, we also “aged” the samples for a period
of one month, and rescanned them with the same set of
AV engines. If at least one of the top five AV vendors
(w.r.t. market share) and a minimum of two others detect
it, we label the executable as malicious.

We first group malicious downloads into three broad
classes, namely malware, adware and PUP. These

11

784 25th USENIX Security Symposium USENIX Association

0%# 10%# 20%# 30%# 40%# 50%# 60%# 70%# 80%# 90%# 100%#

Repackage+En7ce#

Invent+Impersonate+Alarm#

Invent+Impersonate+Comply#

PUP# Adware# Malware# Undetected#

Figure 4: AV detections one month after download.

classes are meant to roughly indicate the potential “ag-
gressiveness” of the malicious software. We assign these
class labels based on a conservative set of heuristics that
consist of matching keywords on the labels provided by
the AVs. For instance, to identify adware we look for the
string “adware” as well as the names of several popular
adware applications (e.g., “amonetize,” etc.). Similarly,
for the PUP class we look for the strings such as “PUP”,
“PUA” and popular PUP application names. If both PUP
and adware match, we label the sample based on a ma-
jority voting rule (across the different AV vendor labels).
In the case of a tie, we conservatively label the sample
as PUP. The remaining samples are labeled as malware,
and manually reviewed for verification purposes.

Figure 4 shows the percentage of attacks that
result in the download of malware, adware, and
PUP, respectively. We show a breakdown for
the top three deception/persuasion categories, which
in aggregate represent more than 95% of all ad-
driven SE attacks. The majority of malicious
downloads in the invent+impersonate+comply and in-
vent+impersonate+alarm deception/persuasion tactics
belong to the adware class. A smaller percentage of
downloads in these categories, 3.2% and 2.4% respec-
tivley, are labeled as malware. For repackage+entice the
majority of downloads are labeled as PUP; no malware
is found in this deception/persuasion category.

Notice that the relatively small percentage of malware
is likely due to the fact that our heuristics for grouping
malicious downloads into broad classes is very conserva-
tive, because it requires only a single AV label to contain
an “adware” or “PUP” string to label the sample as be-
longing to the adware or PUP classes (see Section 4.4).
In addition, adware is simply much more prevalent than
malware, making the malware set size look relatively
small compared to the rest of the dataset. Lastly, notice
that only 70%− 75% of all malicious executables were
labeled by the AVs, even after “aging” and rescanning the

samples. The remaining 25%−30% is therefore labeled
as undetected in Figure 4.

Table 7 shows the AV detection rate on the day of
download for malware, adware and PUPs. Namely, we
consider all SE download samples that were detected by
AVs after aging and rescanning (i.e., after one month),
and show the percentage of these samples that were also
detected on the day we first observed them being down-
loaded. As can be seen, the detection rate in this case
is quite small, thus confirming the reactive nature of AV
detection.

Table 7: Zero day AV detections.

Malware Adware PUP
Invent+Impersonate+Comply 0% 0% 6.9%
Invent+Impersonate+Alarm 5.9% 11.6% 26.9%
Repackage+Entice NA 28.7% 34.4%

6.2 SE Detection Classifier
Guided by our measurements around SE attacks that

we presented in Section 5, we devise a set of statistical
features that can be used to accurately detect ad-driven
SE downloads. We focus on ad-driven attacks because
they are responsible for more than 80% of all SE down-
loads we observed (see Table 1).

Problem Definition. Given an executable file down-
load event observed on the network, we first automati-
cally reconstruct its download path, i.e., the sequence of
pages/URLs the user visited to arrive to the HTTP trans-
action carrying the file, as explained in Section 4. Then,
given a set of labeled ad-driven SE download events
(Section 4.4) and also ad-driven benign software down-
loads (Section 5.3), we first translate the download path
of each event into a vector of statistical features. Finally,
we use the obtained labeled dataset of feature vectors to
train a statistical classifier using the Random Forest [10]
algorithm that can detect future ad-driven SE download
attacks and distinguish them from benign ad-driven soft-
ware downloads.

Statistical Features. We now present the set of detec-
tion features we derived and the intuitions behind their
utility. In the following, we assume to be given as input
the download path related to a software download event
observed on the network, which we translate into a fea-
ture vector. Notice that no single feature by itself enables
accurate detection; it’s their combination that allows us
to reach high accuracy.

• Ad-Driven (binary feature). We check whether the
download path contains an ad-related URL. This
feature is computed by matching AdBlock [1] rules
against the sequence of URLs on the download path.
Intuition: while the majority of SE downloads are

12

USENIX Association 25th USENIX Security Symposium 785

promoted via advertisement (Section 5), only 7%
of benign downloads result from clicking on an ad
(Section 5.3).

• Minimum Ad Domain Age. We measure the age
of each domain on the ad path, namely the sub-
sequence of the download path consisting of ad-
related domains, and use the minimum age across
these domains. Intuition: ad-serving domains that
consistently direct users to malicious ads are of-
ten blacklisted, so they move to new domains. In
essence, this feature is a way of (approximately)
measuring the reputation of the ad path. Our mea-
surements show that the majority of ad paths for the
comply, alarm and entice attack classes all have do-
mains less than one year in age. For benign down-
load paths, this is true in only less than 5% of the
cases.

• Maximum Ad Domain Popularity. Using our
dataset (Section 4), we fist consider all ad-related
domains involved in the download paths observed
in the past (i.e., in the training set). Then, for each
domain, we count the number of distinct download
paths on which the domain appeared, for both ad-
driven SE attacks and the benign download paths.
If the domain is found in more than 1% of the be-
nign download paths, it is discarded. Otherwise, we
compute the number of distinct SE attack paths in
which the domain appeared. Finally, given all ad-
related domains in the download path we are cur-
rently considering, we take maximum number of
times a domain along this path appeared in an SE at-
tack path. Intuition: some ad networks, and the do-
mains from which they serve ads, are more abused
than others, e.g., due to scarce policing of ad-related
fraud and abuse in lower-tier ad networks. There-
fore, they tend to appear more frequently in the
download path of SE downloads. For instance, Ta-
ble 4 in Section 5.2 shows the popularity of ad entry
points for SE downloads.

• Download Domain Age. We measure the number
of days between the download event and the first
time we observed a DNS query to the effective sec-
ond level domain for the download URL (final node
of the web path) using a large historic passive DNS
database. Intuition: the vast majority of benign
downloads are delivered from domains that have
been active for a long time because it takes time for
a website to establish itself and attract visitors. On
the other hand, SE domains are often “young” as
they change frequently to avoid blacklisting. Our
data shows that the download domain of over 80%
of the invent+impersonate SE subcategories comply

and alarm are less than one year in age, whereas for
benign download this only holds in 5% of the cases.

• Download Domain Alexa Rank. We measure the
Alexa rank of the domain that served the software
download. We compute this features using the ef-
fective second level domain for the download URL
and the Alexa top 1 million list. Intuition: malicious
executables are more likely to be hosted on unpopu-
lar domains because of their need of avoiding black-
listing. Conversely, benign software downloads are
often hosted on popular domains. For instance,
measurements on our data show that over 60% of
the benign downloads are from domains with an
Alexa rank in the top 100,000. On the other hand,
the more “aggressive” SE downloads, such as those
from the alarm class, are primarily delivered from
very unpopular domains (very few are in the top 1
million). At the same time, the domains involved
in SE attacks that trigger the download of PUP fall
somewhere between, in terms of domain popularity.

6.3 Evaluating the SE Detection Classifier
In this section, we present the results of the evalua-

tion of our SE detection classifier. We start by describing
the composition of the training and test dataset, and then
present an analysis of the false and true positives.
Datasets. To measure the effectiveness of the SE classi-
fier, we use two separate datasets. The first dataset, D1,
which we use to train the classifier, consists of the soft-
ware downloads described and measured in Sections 4
and 5. Specifically, this dataset includes 1,556 SE down-
load paths (we consider all ad-driven SE attacks from
the dataset described in Section 4), and 11,655 benign
download paths.

The second dataset, D2, consists of new executable
downloads (and their reconstructed download paths) that
we collected from the same deployment network in the
three months following the completion of the measure-
ments we presented in Section 5. Notice also that, D2
was collected after the feature engineering phase and af-
ter building our detection classifier. Namely, both the
feature engineering and the training of the classifier were
completed with no access to the data in D2. Overall, D2
contains 1,338 ad-driven SE downloads, and 9,760 be-
nign downloads paths. We label D2 following the steps
outlined in Section 4.4.
Classification Results. After training our SE detection
classifier using dataset D1 and the Random Forest learn-
ing algorithm, we test the classifier on dataset D2.

Table 8 reports the confusion matrix for the classifica-
tion results. The classifier correctly identified over 91%
of the ad-driven SE downloads. Furthermore, it has a
very low false positive rate of 0.5%.

13

786 25th USENIX Security Symposium USENIX Association

Table 8: Confusion matrix for the SE detection classifier.

Predicted Class
Benign Ad-Based SE

Benign 99.5% 0.5%
Ad-Based SE 8.8% 91.2%

Table 9: SE Subclass Performance.

True Positives
Repackage+Entice 65%
Invent+Impersonate+Alarm 98%
Invent+Impersonate+Comply 90%

Figure 9 shows a breakdown of the classifi-
cation results for the subclasses of ad-based SE
downloads. The invent+impersonate+alarm and in-
vent+impersonate+comply categories have 98% and
90% true positive rates, respectfully. The lower perfor-
mance for repackage+entice is due to downloads of legit-
imate software bundled with PUPs from well established
domains. Because these domains are “mixed use,” and
have high popularity or Alexa ranking, they make the de-
tection task more difficult.

Feature Importance. We estimate feature importance
by performing forward feature selection [20]. The sin-
gle feature that provides the largest information gain is
download domain age. Using only that feature we have
a 69% true positive rate and a 6% false positive rate. By
adding maximum ad domain popularity, we obtain a true
positive rate above 80% with less than 3% false positives.
As we add other features (using the forward search), both
the true positives and false positives continue to improve.
Thus, all the features help achieve high accuracy.

7 Discussion
In this paper, we focus exclusively on successful web-

based SE download attacks (we consider the attacks we
collected and study successful because they actually trig-
ger the delivery of malicious software to the victim’s
machine). Social engineering attacks carried over dif-
ferent channels (e.g., email) and that have different ob-
jectives (e.g., phishing attacks to steal personal informa-
tion, rather than malware infections) are not part of our
measurements, and are therefore also not reflected in the
categories of SE tactics we described in Section 3. How-
ever, we believe ours is an important contribution. In
fact, as defenses for drive-by downloads continue to im-
prove (e.g., through the hardening of browser software
and operating system defenses) we expect the attackers
to increasingly make use of web-based SE attacks for
malware propagation. Therefore, the reconstruction and
analysis of SE download attacks is important because
in-the-wild SE attack samples could be used to better
train users and mitigate the impact of future attacks; thus,
complementing automatic attack detection solutions.

Our study relies on visibility over HTTP traffic and

deep packet inspection. One might think that the in-
ability to analyze HTTPS traffic represents a significant
limitation. However, it is important to take into ac-
count the following considerations. When a user browses
from an HTTPS to an HTTP site, they are often redi-
rected through an unsecured intermediate URL, so that
the Referer field can be populated with the domain
and other information related to the origin site [3]. Alter-
natively, the origin site can set its referrer policies [2]
to achieve the same result without need of intermedi-
ate redirections. As an example, even though many
of the searches performed using search engines such
as Google, Yahoo and Bing occurred over HTTPS, we
were able to identify the search engines as the origin of
web paths because the related domain names appeared
in the Referer field of the subsequent HTTP trans-
actions. Furthermore, modern enterprise networks com-
monly employ SSL man-in-the-middle (MITM) proxies
that decrypt traffic for inspection. Therefore, our SE at-
tack detection system could be deployed alongside SSL
MITM proxies.

Throughout the study, we use the term malicious to
describe the software downloaded as the result of an SE
attack. However, there exist many shades of malicious-
ness and some malicious software (e.g., ransomware,
botnets, etc.) are more “aggressive” than others (e.g.,
adware and PUPs). Therefore, in several parts of the
analysis we broke down our results by distinguishing be-
tween malware, adware and PUPs. As shown in Sec-
tion 6.1, only a relatively small percentage of the SE
downloads collected for our measurements were catego-
rized by our AV-label-based heuristics as malware. The
majority were labeled as adware or PUP. However, we
should notice that AV labels are known to be noisy and
that our labeling heuristics are very conservative (see
Section 4.4). Furthermore, over 25% of the malicious
downloads remained unlabeled due to lack of AV detec-
tion (Section 6.1). Therefore, it is possible that the num-
ber of malware is somewhat higher than reflected in Sec-
tion 6.1. However, the categorization system, network-
level properties and detection results for SE attacks that
deliver adware apply to attacks that result in malware
downloads as well.

While the software downloads and traffic we collected
for our study were collected from a single academic
network, we should consider that the deployment net-
work was very large, serving tens of thousands diverse
users, consisting of users from different ages, cultures
and backgrounds.

Because our SE detection classifier is designed to de-
tect ad-based SE download attacks, an attacker could
evade the system by using tactics other than online ads
to attract the user’s attention (e.g., search or web post, as
discussed in Section 3). However, advertisements are the

14

USENIX Association 25th USENIX Security Symposium 787

predominant tactic used by attackers because they allow
them to “publish” their SE attacks on sites that already
popular with the targeted victims. In addition, ads are
only shown to the users that “match” their delivery crite-
ria, thus reducing exposure to others (including security
researchers) that could result in the discovery and miti-
gation of these attack vectors.

Another way an attacker may try to evade detection,
is to specifically attempt to evade our statistical features
(see Section 6.2). For instance, to evade the download
domain age and domain Alexa rank features, the attacker
could host the malicious files on a free file sharing site.
This could result in a download domain with an age > 1
year and a high Alexa ranking. However, the ad-driven,
minimum ad domain age and maximum ad domain pop-
ularity features, which are harder for the attacker to con-
trol, could still allow to identify most attacks. For exam-
ple, simply knowing that a software download resulted
from an online ad puts its probability of being malicious
at more than 50%, according to the real-world data we
collected (see Section 5.3). Furthermore, if hosting ma-
licious downloads on free hosting sites became popu-
lar, then a Free File Hosting feature could be added to
our feature set, as it is unlikely that many ad-driven be-
nign software downloads are served from free file hosting
sites.

8 Related Work
Social engineering is primarily an attack on users, not

systems. The fundamental concepts that are employed to
exploit the user are rooted in modern psychology, specif-
ically in the study of persuasion [13] and deception [41].
SE attacks have been studied in [21, 27]. While these
works study SE tactics in general, they do not focus on
SE download attacks. To the best of our knowledge, the
only systematic study on SE malware is [8], which dis-
cusses the psychological and technical ploys adopted by
SE attacks and some trends in SE malware. However, [8]
focuses on malware that spreads via e-mail and on SE
tactics used by malware to lure the user to activate (i.e.,
run) the malicious code. In addition, the data analyzed
in [8] is limited to malware attack case studies and statis-
tics published by others in the VirusBulletin journal un-
til 2010. In contrast, we focus on web-based SE down-
loads, and on reconstructing and analyzing how users are
tricked into downloading malicious software in the first
place. Also, our analysis is based on recent real-world
instances of successful SE attacks collected from a live
network.

Malware downloads have been studied in a number
of works [11, 22, 34, 39]. For instance, [34, 39] use a
content-agnostic detection approach that relies on com-
puting a reputation score for the domains/IPs from which
malware downloads are served. However, [34, 39] are

generic malware download detection systems that offer
no understanding of what caused a malware download
in the first place. In other words, they cannot identify
the origin of the attack, but only its side effects (i.e., only
the malware download even itself), and therefore offer no
clue on whether an infection was caused by a SE attack.
Other works focus on the properties of malware drop-
pers [11, 22], whereby already infected machines down-
load malware updates or new malware strains. In con-
trast, we study how users fall victim to web-based SE
download attacks, and design a detection system that can
accurately detect ad-driven SE downloads.

Researchers have also separately examined specific
types of SE malware attacks, such FakeAVs [15, 16, 19,
25,37]. Our work is different because we propose a gen-
eral approach to studying, measuring and classifying SE
download attacks on the web. We do not limit ourselves
to specific attack types such as Fake AVs. Therefore, our
work has broader applications, and also provides mit-
igation against generic ad-based SE download attacks,
which represent a large percentage of all SE download
attacks we observed in the wild.

Other works have focused on traffic redirection chains
to understand and detect malicious websites and at-
tack delivery [23, 26, 38]. Among these systems, Mad-
Tracer [23] studies malicious advertisement, including
ad chains that deliver malware downloads. This is done
by crawling popular websites, and using a supervised
classifier trained on data labeled by leveraging domain
name blacklists (e.g., Google SafeBrowsing). While part
of our work, namely our ad-driven SE download detec-
tion system, also leverages some properties of advertise-
ment chains to detect ad-driven malicious downloads, it
is important to notice that we focus specifically on in-
the-wild SE download attacks and are able to identify a
large variety of SE download attacks. For instance, [23]
only reports fake anti-viruses (AVs) as malware deliv-
ered via ad-based scams. Instead, in our study we find
many other types of SE-driven downloads that leverage
a variety of deception and persuasion tactics. In fact,
our measurements show that fake AVs represent only a
small fraction (less than 1%) of all SE attacks. In addi-
tion, rather than actively looking (or crawling) for possi-
ble malware downloads on popular websites, we collect
live SE attacks by directly witnessing successful attacks
against users in a large academic network. This allows
us to collect successful SE attacks, rather than possible
attacks as done in [23].

In our work, we use a combination of web traffic re-
construction and analysis to trace back the origin of the
attacks, namely the SE tactic that tricked the user into
downloading malicious software. Researchers have stud-
ied web traffic reconstruction in [12, 29, 30, 42]. Among
these, the closest to our work is WebWitness [30], a re-

15

788 25th USENIX Security Symposium USENIX Association

cently proposed incident investigation system that aims
to provide context to malicious downloads by recon-
structing the path taken by the user to download exe-
cutable files. WebWitness is able to classify the cause of
a malicious download as drive-by, social engineering or
update. In [30], the main focus is on studying drive-by
downloads and developing a new defense against drive-
by download attacks. However, social engineering at-
tacks are not studied. WebWitness is able to separate
drive-by downloads from social engineering downloads
once an oracle identifies a download as malicious, and is
not able to independently detect SE attack. Although we
utilize WebWitness’ trace-back algorithm, our contribu-
tions are very different from [30], because we study SE
download attacks in depth, focusing on their collection,
analysis and categorization, as wells as the detection and
mitigation of ad-based SE-driven infections.

9 Conclusion
In this paper, we presented the first systematic study

of social engineering (SE) attacks that trigger software
downloads. To this end, we collected and reconstructed
more than two thousand examples of in-the-wild SE
download attacks captured at a large academic network.
We performed a detailed analysis and measurements on
the collected data, and developed a categorization system
to identify and organize the tactics typically employed
by attackers to make SE download attacks successful.
Furthermore, by measuring the characteristics of the net-
work infrastructure used to deliver such SE attacks, we
were able to engineer a number of features that can be
leveraged to distinguish between SE and benign (or non-
SE) software downloads with a true positive rate of 91%
at a false positive rate of only 0.5%.

References
[1] AdBlock Plus. https://adblockplus.org/.

[2] ReferrerPolicies. https://www.w3.org/TR/referrer-
policy/#referrer-policy-origin.

[3] Protecting privacy with referrers, 2010. https://
www.facebook.com/notes/facebook-engineering/
protecting-privacy-with-referrers/
392382738919/.

[4] The download.com debacle: What CNET needs to do to make it
right, 2011. https://www.eff.org/deeplinks/2011/
12/downloadcom-debacle-what-cnet-needs-do-
make-it-right.

[5] Huge decline in fake av following credit card processing shakeup,
2011. http://krebsonsecurity.com/2011/08/
huge-decline-in-fake-av-following-credit-
card-processing-shakeup/.

[6] Fake virus alert malware (fakeav) information and what
to do, 2013. http://helpdesk.princeton.edu/kb/
display.plx?ID=1080.

[7] Heres what happens when you install the top 10 download.com
apps, 2015. http://www.howtogeek.com/198622/
heres-what-happens-when-you-install-

the-top-10-download.com-apps/?PageSpeed=
noscript.

[8] ABRAHAM, S., AND CHENGALUR-SMITH, I. An overview of
social engineering malware: Trends, tactics, and implications.
Technology in Society 32, 3 (2010), 183 – 196.

[9] BOTT, E. Social engineering in action: how web ads can lead to
malware, 2011.

[10] BREIMAN, L. Random forests. Mach. Learn. 45, 1 (Oct. 2001).

[11] CABALLERO, J., GRIER, C., KREIBICH, C., AND PAXSON, V.
Measuring pay-per-install: The commoditization of malware dis-
tribution. In Proceedings of the 20th USENIX Conference on Se-
curity (Berkeley, CA, USA, 2011), SEC’11, USENIX Associa-
tion, pp. 13–13.

[12] CHEN, K. Z., GU, G., ZHUGE, J., NAZARIO, J., AND HAN,
X. Webpatrol: Automated collection and replay of web-based
malware scenarios. In Proceedings of the 6th ACM Symposium
on Information, Computer and Communications Security (New
York, NY, USA, 2011), ASIACCS ’11, ACM, pp. 186–195.

[13] CIALDINI, R. B. Influence: Science and Practice, 5th ed. Pear-
son Education, 2000.

[14] COVA, M., KRUEGEL, C., AND VIGNA, G. Detection and
analysis of drive-by-download attacks and malicious javascript
code. In Proceedings of the 19th International Conference on
World Wide Web (New York, NY, USA, 2010), WWW ’10, ACM,
pp. 281–290.

[15] DIETRICH, C. J., ROSSOW, C., AND POHLMANN, N. Ex-
ploiting visual appearance to cluster and detect rogue software.
In Proceedings of the 28th Annual ACM Symposium on Ap-
plied Computing (New York, NY, USA, 2013), SAC ’13, ACM,
pp. 1776–1783.

[16] DUMAN, S., ONARLIOGLU, K., ULUSOY, A. O., ROBERTSON,
W., AND KIRDA, E. Trueclick: Automatically distinguishing
trick banners from genuine download links. In Proceedings of the
30th Annual Computer Security Applications Conference (New
York, NY, USA, 2014), ACSAC ’14, ACM, pp. 456–465.

[17] GRIER, C., BALLARD, L., CABALLERO, J., CHACHRA, N.,
DIETRICH, C. J., LEVCHENKO, K., MAVROMMATIS, P., MC-
COY, D., NAPPA, A., PITSILLIDIS, A., PROVOS, N., RAFIQUE,
M. Z., RAJAB, M. A., ROSSOW, C., THOMAS, K., PAXSON,
V., SAVAGE, S., AND VOELKER, G. M. Manufacturing com-
promise: The emergence of exploit-as-a-service. In Proceedings
of the 2012 ACM Conference on Computer and Communications
Security (New York, NY, USA, 2012), CCS ’12, ACM, pp. 821–
832.

[18] GRIER, C., TANG, S., AND KING, S. T. Secure web browsing
with the op web browser. In Proceedings of the 2008 IEEE Sym-
posium on Security and Privacy (Washington, DC, USA, 2008),
SP ’08, IEEE Computer Society, pp. 402–416.

[19] KIM, D. W., YAN, P., AND ZHANG, J. Detecting fake anti-
virus software distribution webpages. Comput. Secur. 49, C (Mar.
2015), 95–106.

[20] KOHAVI, R., AND JOHN, G. H. Wrappers for feature subset
selection. Artificial Intelligence 97, 12 (1997), 273 – 324. Rele-
vance.

[21] KROMBHOLZ, K., HOBEL, H., HUBER, M., AND WEIPPL, E.
Advanced social engineering attacks. J. Inf. Secur. Appl. 22, C
(June 2015), 113–122.

[22] KWON, B. J., MONDAL, J., JANG, J., BILGE, L., AND DUMI-
TRAS, T. The dropper effect: Insights into malware distribution
with downloader graph analytics. In Proceedings of the 22Nd
ACM SIGSAC Conference on Computer and Communications Se-
curity (New York, NY, USA, 2015), CCS ’15, ACM, pp. 1118–
1129.

16

USENIX Association 25th USENIX Security Symposium 789

[23] LI, Z., ZHANG, K., XIE, Y., YU, F., AND WANG, X. Knowing
your enemy: Understanding and detecting malicious web adver-
tising. In Proceedings of the 2012 ACM Conference on Computer
and Communications Security (New York, NY, USA, 2012), CCS
’12, ACM, pp. 674–686.

[24] LU, L., YEGNESWARAN, V., PORRAS, P., AND LEE, W. Blade:
An attack-agnostic approach for preventing drive-by malware
infections. In Proceedings of the 17th ACM Conference on
Computer and Communications Security (New York, NY, USA,
2010), CCS ’10, ACM, pp. 440–450.

[25] MAVROMMATIS, P., BALLARD, L., PROVOS, N., INC, G., AND
ZHAO, X. The nocebo effect on the web: An analysis of fake
anti-virus distribution. In In USENIX Workshop on Large-Scale
Exploits and Emergent Threats (LEET (2010).

[26] MEKKY, H., TORRES, R., ZHANG, Z.-L., SAHA, S., AND
NUCCI, A. Detecting malicious http redirections using trees of
user browsing activity. In INFOCOM, 2014 Proceedings IEEE
(April 2014), pp. 1159–1167.

[27] MITNICK, K. D., AND SIMON, W. L. The Art of Deception:
Controlling the Human Element of Security, 1st ed. John Wiley
& Sons, Inc., New York, NY, USA, 2002.

[28] NAPPA, A., RAFIQUE, M. Z., AND CABALLERO, J. Driving
in the cloud: An analysis of drive-by download operations and
abuse reporting. In Proceedings of the 10th International Con-
ference on Detection of Intrusions and Malware, and Vulnerabil-
ity Assessment (Berlin, Heidelberg, 2013), DIMVA’13, Springer-
Verlag, pp. 1–20.

[29] NEASBITT, C., PERDISCI, R., LI, K., AND NELMS, T. Click-
miner: Towards forensic reconstruction of user-browser inter-
actions from network traces. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security
(New York, NY, USA, 2014), CCS ’14, ACM, pp. 1244–1255.

[30] NELMS, T., PERDISCI, R., ANTONAKAKIS, M., AND
AHAMAD, M. Webwitness: Investigating, categorizing, and
mitigating malware download paths. In Proceedings of the
24th USENIX Conference on Security Symposium (Berkeley, CA,
USA, 2015), SEC’15, USENIX Association, pp. 1025–1040.

[31] POWER, R., AND FORTE, D. Social engineering: attacks have
evolved, but countermeasures have not. Computer Fraud and Se-
curity 2006, 10 (2006), 17 – 20.

[32] PROJECT, T. C. Out-of-process iframes (OOPIFs).
https://www.chromium.org/developers/design-
documents/oop-iframes.

[33] PROVOS, N., MCNAMEE, D., MAVROMMATIS, P., WANG, K.,
AND MODADUGU, N. The ghost in the browser analysis of web-
based malware. In Proceedings of the First Conference on First

Workshop on Hot Topics in Understanding Botnets (Berkeley,
CA, USA, 2007), HotBots’07, USENIX Association, pp. 4–4.

[34] RAJAB, M. A., BALLARD, L., LUTZ, N., MAVROMMATIS, P.,
AND PROVOS, N. Camp: Content-agnostic malware protection.

[35] RAJAB, M. A., BALLARD, L., MAVROMMATIS, P., PROVOS,
N., AND ZHAO, X. The nocebo effect on the web: An analysis
of fake anti-virus distribution. In Proceedings of the 3rd USENIX
Conference on Large-scale Exploits and Emergent Threats: Bot-
nets, Spyware, Worms, and More (Berkeley, CA, USA, 2010),
LEET’10, USENIX Association, pp. 3–3.

[36] REIS, C., AND GRIBBLE, S. D. Isolating web programs in mod-
ern browser architectures. In Proceedings of the 4th ACM Eu-
ropean Conference on Computer Systems (New York, NY, USA,
2009), EuroSys ’09, ACM, pp. 219–232.

[37] STONE-GROSS, B., ABMAN, R., KEMMERER, R. A.,
KRUEGEL, C., STEIGERWALD, D. G., AND VIGNA, G. The
underground economy of fake antivirus software. In In Proc. (on-
line) WEIS 2011 (2011).

[38] STRINGHINI, G., KRUEGEL, C., AND VIGNA, G. Shady paths:
Leveraging surfing crowds to detect malicious web pages. In
Proceedings of the 2013 ACM SIGSAC Conference on Computer
& Communications Security (New York, NY, USA, 2013),
CCS ’13, ACM, pp. 133–144.

[39] VADREVU, P., RAHBARINIA, B., PERDISCI, R., LI, K., AND
ANTONAKAKIS, M. Measuring and detecting malware down-
loads in live network traffic. In Computer Security ESORICS
2013, J. Crampton, S. Jajodia, and K. Mayes, Eds., vol. 8134 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2013, pp. 556–573.

[40] WANG, H. J., GRIER, C., MOSHCHUK, A., KING, S. T.,
CHOUDHURY, P., AND VENTER, H. The multi-principal os
construction of the gazelle web browser. In Proceedings of the
18th Conference on USENIX Security Symposium (Berkeley, CA,
USA, 2009), SSYM’09, USENIX Association, pp. 417–432.

[41] WHALEY, B. Toward a general theory of deception, 1982. Mil-
iary Deception and Strategic Surprise.

[42] XIE, G., ILIOFOTOU, M., KARAGIANNIS, T., FALOUTSOS, M.,
AND JIN, Y. Resurf: Reconstructing web-surfing activity from
network traffic. In IFIP Networking Conference, 2013 (2013),
IEEE, pp. 1–9.

[43] XING, X., MENG, W., LEE, B., WEINSBERG, U., SHETH,
A., PERDISCI, R., AND LEE, W. Understanding malvertising
through ad-injecting browser extensions. In Proceedings of the
24th International Conference on World Wide Web (New York,
NY, USA, 2015), WWW ’15, ACM, pp. 1286–1295.

17

