
Distillation as a Defense to Adversarial
Perturbations against Deep Neural Networks

Nicolas Papernot∗, Patrick McDaniel∗, Xi Wu§, Somesh Jha§, and Ananthram Swami‡
∗Department of Computer Science and Engineering, Penn State University

§Computer Sciences Department, University of Wisconsin-Madison
‡United States Army Research Laboratory, Adelphi, Maryland

{ngp5056,mcdaniel}@cse.psu.edu, {xiwu,jha}@cs.wisc.edu, ananthram.swami.civ@mail.mil

Abstract—Deep learning algorithms have been shown to per-
form extremely well on many classical machine learning prob-
lems. However, recent studies have shown that deep learning,
like other machine learning techniques, is vulnerable to adver-
sarial samples: inputs crafted to force a deep neural network
(DNN) to provide adversary-selected outputs. Such attacks can
seriously undermine the security of the system supported by the
DNN, sometimes with devastating consequences. For example,
autonomous vehicles can be crashed, illicit or illegal content can
bypass content filters, or biometric authentication systems can be
manipulated to allow improper access. In this work, we introduce
a defensive mechanism called defensive distillation to reduce the
effectiveness of adversarial samples on DNNs. We analytically
investigate the generalizability and robustness properties granted
by the use of defensive distillation when training DNNs. We also
empirically study the effectiveness of our defense mechanisms on
two DNNs placed in adversarial settings. The study shows that
defensive distillation can reduce effectiveness of sample creation
from 95% to less than 0.5% on a studied DNN. Such dramatic
gains can be explained by the fact that distillation leads gradients
used in adversarial sample creation to be reduced by a factor of
1030. We also find that distillation increases the average minimum
number of features that need to be modified to create adversarial
samples by about 800% on one of the DNNs we tested.

I. INTRODUCTION

Deep Learning (DL) has been demonstrated to perform

exceptionally well on several categories of machine learning

problems, notably input classification. These Deep Neural
Networks (DNNs) efficiently learn highly accurate models

from a large corpus of training samples, and thereafter classify

unseen samples with great accuracy. As a result, DNNs

are used in many settings [1], [2], [3], some of which are

increasingly security-sensitive [4], [5], [6]. By using deep

learning algorithms, designers of these systems make implicit

security assumptions about deep neural networks. However,

recent work in the machine learning and security communities

have shown that adversaries can force many machine learning

models, including DNNs, to produce adversary-selected out-

puts using carefully crafted inputs [7], [8], [9].

Specifically, adversaries can craft particular inputs, named

adversarial samples, leading models to produce an output

behavior of their choice, such as misclassification. Inputs are

crafted by adding a carefully chosen adversarial perturbation to

a legitimate sample. The resulting sample is not necessarily un-

natural, i.e. outside of the training data manifold. Algorithms

crafting adversarial samples are designed to minimize the per-

turbation, thus making adversarial samples hard to distinguish

from legitimate samples. Attacks based on adversarial samples

occur after training is complete and therefore do not require

any tampering with the training procedure.

To illustrate how adversarial samples make a system based

on DNNs vulnerable, consider the following input samples:

a car a cat

The left image is correctly classified by a trained DNN as a

car. The right image was crafted by an adversarial sample al-

gorithm (in [7]) from the correct left image. The altered image

is incorrectly classified as a cat by the DNN. To see why such

misclassification is dangerous, consider deep learning as it is

commonly used in autonomous (driverless) cars [10]. Systems

based on DNNs are used to recognize signs or other vehicles

on the road [11]. If perturbing the input of such systems, by

slightly altering the car’s body for instance, prevents DNNs

from classifying it as a moving vehicule correctly, the car

might not stop and eventually be involved in an accident, with

potentially disastrous consequences. The threat is real where

an adversary can profit from evading detection or having their

input misclassified. Such attacks commonly occur today in

non-DL classification systems [12], [13], [14], [15], [16].

Thus, adversarial samples must be taken into account when

designing security sensitive systems incorporating DNNs.

Unfortunately, there are very few effective countermeasures

available today. Previous work considered the problem of

constructing such defenses but solutions proposed are defi-

cient in that they require making modifications to the DNN

architecture or only partially prevent adversarial samples from

being effective [9], [17] (see Section VII).

Distillation is a training procedure initially designed to

train a DNN using knowledge transferred from a different

DNN. The intuition was suggested in [18] while distillation

itself was formally introduced in [19]. The motivation behind

the knowledge transfer operated by distillation is to reduce

the computational complexity of DNN architectures by trans-

ferring knowledge from larger architectures to smaller ones.

This facilitates the deployment of deep learning in resource

constrained devices (e.g. smartphones) which cannot rely on

powerful GPUs to perform computations. We formulate a new
variant of distillation to provide for defense training: instead

of transferring knowledge between different architectures, we

propose to use the knowledge extracted from a DNN to

improve its own resilience to adversarial samples.

2016 IEEE Symposium on Security and Privacy

2375-1207/16 $31.00 © 2016 IEEE

DOI 10.1109/SP.2016.41

582

2016 IEEE Symposium on Security and Privacy

© 2016, Nicolas Papernot. Under license to IEEE.

DOI 10.1109/SP.2016.41

582

In this paper, we explore analytically and empirically the

use of distillation as a defensive mechanism against adversarial

samples. We use the knowledge extracted during distillation

to reduce the amplitude of network gradients exploited by

adversaries to craft adversarial samples. If adversarial gra-

dients are high, crafting adversarial samples becomes easier

because small perturbations will induce high DNN output

variations. To defend against such perturbations, one must

therefore reduce variations around the input, and consequently

the amplitude of adversarial gradients. In other words, we use

defensive distillation to smooth the model learned by a DNN

architecture during training by helping the model generalize

better to samples outside of its training dataset.
At test time, models trained with defensive distillation are

less sensitive to adversarial samples, and are therefore more

suitable for deployment in security sensitive settings. We make

the following contributions in this paper:

• We articulate the requirements for the design of adver-

sarial sample DNN defenses. These guidelines highlight

the inherent tension between defensive robustness, output

accuracy, and performance of DNNs.

• We introduce defensive distillation, a procedure to train

DNN-based classifier models that are more robust to

perturbations. Distillation extracts additional knowledge

about training points as class probability vectors produced

by a DNN, which is fed back into the training regimen.

This departs substantially from the past uses of distillation

which aimed to reduce the DNN architectures to improve

computational performance, but rather feeds the gained

knowledge back into the original models.

• We analytically investigate defensive distillation as a

security countermeasure. We show that distillation gener-

ates smoother classifier models by reducing their sensi-

tivity to input perturbations. These smoother DNN classi-

fiers are found to be more resilient to adversarial samples

and have improved class generalizability properties.

• We show empirically that defensive distillation reduces

the success rate of adversarial sample crafting from

95.89% to 0.45% against a first DNN trained on the

MNIST dataset [20], and from 87.89% to 5.11% against

a second DNN trained on the CIFAR10 [21] dataset.

• A further empirical exploration of the distillation parame-

ter space shows that a correct parameterization can reduce

the sensitivity of a DNN to input perturbations by a

factor of 1030. Successively, this increases the average

minimum number of input features to be perturbed to

achieve adversarial targets by 790% for a first DNN, and

by 556% for a second DNN.

II. ADVERSARIAL DEEP LEARNING

Deep learning is an established technique in machine learn-

ing. In this section, we provide some rudiments of deep neural

networks (DNNs) necessary to understand the subtleties of

their use in adversarial settings. We then formally describe

two attack methods in the context of a framework that we

construct to (i) develop an understanding of DNN vulnerabil-

ities exploited by these attacks and (ii) compare the strengths

… … …

Input Vector
Last Hidden

Layer
Softmax

Layer
Hidden Layers {

0.01

0.93

0.02

0.01

M components N components

Neuron Weighted Link (weight is a parameter of)

X Z(X) F (X)

θF F

Fig. 1: Overview of a DNN architecture: This architecture,

suitable for classification tasks thanks to its softmax output

layer, is used throughout the paper along with its notations.

and weaknesses of both attacks in various adversarial settings.

Finally, we provide an overview of a DNN training procedure,

which our defense mechanism builds on, named distillation.

A. Deep Neural Networks in Adversarial Settings

Training and deploying DNN architectures - Deep neural

networks compose many parametric functions to build increas-

ingly complex representations of a high dimensional input

expressed in terms of previous simpler representations [22].

Practically speaking, a DNN is made of several successive

layers of neurons building up to an output layer. These layers

can be seen as successive representations of the input data [23],

a multidimensional vector X , each of them corresponding to

one of the parametric functions mentioned above. Neurons

constituting layers are modeled as elementary computing units

applying an activation function to their input. Layers are

connected using links weighted by a set of vectors, also

referred to as network parameters θF . Figure 1 illustrates such

an architecture along with notations used in this paper.

The numerical values of weight vectors in θF are evaluated

during the network’s training phase. During that phase, the

DNN architecture is given a large set of known input-output

pairs (X,Y) ∈ (X ,Y). It uses a series of successive forward

and backward passes through the DNN layers to compute pre-

diction errors made by the output layer of the DNN, and cor-

responding gradients with respect to weight parameters [24].

The weights are then updated, using the previously described

gradients, in order to improve the prediction and eventually

the overall accuracy of the network. This training process

is referred to as backpropagation and is governed by hyper-
parameters essential to the convergence of model weight [25].

The most important hyper-parameter is the learning rate that

controls the speed at which weights are updated with gradients.

583583

M
N

IS
T

Da
ta

se
t

C
IF

AR
10

 D
at

as
et

5 8 2 4 3

bird airplane truck automobile bird

Fig. 2: Set of legitimate and adversarial samples for two
datasets: For each dataset, a set of legitimate samples, which

are correctly classified by DNNs, can be found on the top

row while a corresponding set of adversarial samples (crafted

using [7]), misclassifed by DNNs, are on the bottom row.

Once the network is trained, the architecture together with

its parameter values θF can be considered as a classification

function F and the test phase begins: the network is used on

unseen inputs X to predict outputs F (X). Weights learned

during training hold knowledge that the DNN applies to these

new and unseen inputs. Depending on the type of output ex-

pected from the network, we either refer to supervised learning
when the network must learn some association between inputs

and outputs (e.g., classification [1], [4], [11], [26]) or unsu-
pervised learning when the network is trained with unlabeled

inputs (e.g., dimensionality reduction, feature engineering, or

network pre-training [21], [27], [28]). In this paper, we only

consider supervised learning, and more specifically the task of

classification. The goal of the training phase is to enable the

neural network to extrapolate from the training data it observed

during training so as to correctly predict outputs on new and

unseen samples at test time.

Adversarial Deep Learning - It has been shown in previous

work that when DNNs are deployed in adversarial settings,

one must take into account certain vulnerabilities [7], [8], [9].

Namely, adversarial samples are artifacts of a threat vector

against DNNs that can be exploited by adversaries at test

time, after network training is completed. Crafted by adding

carefully selected perturbations δX to legitimate inputs X ,

their key property is to provoke a specific behavior from

the DNN, as initially chosen by the adversary. For instance,

adversaries can alter samples to have them misclassified by a

DNN, as is the case of adversarial samples crafted in experi-

ments presented in section V, some of which are illustrated in

Figure 2. Note that the noise introduced by perturbation δX
added to craft the adversarial sample must be small enough to

allow a human to still correctly process the sample.

Attacker’s end goals can be quite diverse, as pointed out in

previous work formalizing the space of adversaries against

deep learning [7]. For classifiers, they range from simple

confidence reduction (where the aim is to reduce a DNN’s

confidence on a prediction, thus introducing class ambiguity),

to source-target misclassification (where the goal is to be able

to take a sample from any source class and alter it so as to

have the DNN classify it in any chosen target class distinct

from the source class). This paper considers the source-target

misclassification, also known as the chosen target attack,

in the following sections. Potential examples of adversarial

samples in realistic contexts could include slightly altering

malware executables in order to evade detection systems built

using DNNs, adding perturbations to handwritten digits on

a check resulting in a DNN wrongly recognizing the digits

(for instance, forcing the DNN to read a larger amount

than written on the check), or altering a pattern of illegal

financial operations to prevent it from being picked up by

fraud detections systems using DNNs. Similar attacks occur

today on non-DNN classification systems [12], [13], [14], [15]

and are likely to be ported by adversaries to DNN classifiers.
As explained later in the attack framework described in this

section, methods for crafting adversarial samples theoretically

require a strong knowledge of the DNN architecture. However

in practice, even attackers with limited capabilities can per-

form attacks by approximating their target DNN model F and

crafting adversarial samples on this approximated model. In-

deed, previous work reported that adversarial samples against

DNNs are transferable from one model to another [8]. Skilled

adversaries can thus train their own DNNs to produce ad-

versarial samples evading victim DNNs. Therefore throughout

this paper, we consider an attacker with the capability of

accessing a trained DNN used for classification, since the

transferability of adversarial samples makes this assumption

acceptable. Such a capability can indeed take various forms in-

cluding for instance a direct access to the network architecture

implementation and parameters, or access to the network as an

oracle requiring the adversary to approximatively replicate the

model. Note that we do not consider attacks at training time

in this paper and leave such considerations to future work.

B. Adversarial Sample Crafting
We now describe precisely how adversarial sample are

crafted by adversaries. The general framework we introduce

builds on previous attack approaches and is split in two folds:

direction sensitivity estimation and perturbation selection. At-

tacks holding in this framework correspond to adversaries with

diverse goals, including the goal of misclassifying samples

from a specific source class into a distinct target class. This

is one of the strongest adversarial goals for attacks targeting

classifiers at test time and several other goals can be achieved

if the adversary has the capability of achieving this goal. More

specifically, consider a sample X and a trained DNN resulting

in a classifier model F . The goal of the adversary is to produce

an adversarial sample X∗ = X+δX by adding a perturbation

δX to sample X , such that F (X∗) = Y ∗ where Y ∗ �= F (X)
is the adversarial target output taking the form of an indicator

vector for the target class [7].

584584

Legitimate input
classified as “1”

 by a DNN

Adversarial Sample
misclassified as “4”

by a DNN

Direction
Sensitivity
Estimation

Perturbation
Selection

1 2

Neural Network
Architecture

Misclassification
Check for:

Neural Network
Architecture

yes

no

F (X + δX) = 4

X∗ δX+X=

δX+XX←

δX

FF

X

F (X) = 1 F (X∗) = 4

Fig. 3: Adversarial crafting framework: Existing algorithms for adversarial sample crafting [7], [9] are a succession of two

steps: (1) direction sensitivity estimation and (2) perturbation selection. Step (1) evaluates the sensitivity of model F at the

input point corresponding to sample X . Step (2) uses this knowledge to select a perturbation affecting sample X’s classification.

If the resulting sample X+ δX is misclassified by model F in the adversarial target class (here 4) instead of the original class

(here 1), an adversarial sample X∗ has been found. If not, the steps can be repeated on updated input X ← X + δX .

As several approaches at adversarial sample crafting have

been proposed in previous work, we now construct a frame-

work that encompasses these approaches, for future work

to build on. This allows us to compare the strengths and

weaknesses of each method. The resulting crafting framework

is illustrated in Figure 3. Broadly speaking, an adversary starts

by considering a legitimate sample X . We assume that the

adversary has the capability of accessing parameters θF of his

targeted model F or of replicating a similar DNN architecture

(since adversarial samples are transferable between DNNs) and

therefore has access to its parameter values. The adversarial

sample crafting is then a two-step process:

1) Direction Sensitivity Estimation: evaluate the sensitivity

of class change to each input feature

2) Perturbation Selection: use the sensitivity information to

select a perturbation δX among the input dimensions

In other terms, step (1) identifies directions in the data man-

ifold around sample X in which the model F learned by the

DNN is most sensitive and will likely result in a class change,

while step (2) exploits this knowledge to find an effective

adversarial perturbation. Both steps are repeated if necessary,

by replacing X with X+δX before starting each new iteration,

until the sample satisfies the adversarial goal: it is classified

by deep neural networks in the target class specified by the

adversary using a class indicator vector Y ∗. Note that, as

mentioned previously, it is important for the total perturbation

used to craft an adversarial sample from a legitimate sample

to be minimized, at least approximatively. This is essential for

adversarial samples to remain undetected, notably by humans.

Crafting adversarial samples using large perturbations would

be trivial. Therefore, if one defines a norm ‖ · ‖ appropriate

to describe differences between points in the input domain of

DNN model F , adversarial samples can be formalized as a

solution to the following optimization problem:

argmin
δX
‖δX‖ s.t. F (X + δX) = Y ∗ (1)

Most DNN models F will make this problem non-linear

and non-convex, making a closed-solution hard to find in

most cases. We now describe in details our attack framework

approximating the solution to this optimization problem, using

previous work to illustrate each of the two steps.
Direction Sensitivity Estimation - This step considers

sample X , a M -dimensional input. The goal here is to find

the dimensions of X that will produce the expected adversarial

behavior with the smallest perturbation. To achieve this, the

adversary must evaluate the sensitivity of the trained DNN

model F to changes made to input components of X . Building

such a knowledge of the network sensitivity can be done in

several ways. Goodfellow et al. [9] introduced the fast sign

gradient method that computes the gradient of the cost function

with respect to the input of the neural network. Finding

sensitivities is then achieved by applying the cost function

to inputs labeled using adversarial target labels. Papernot et

al. [7] took a different approach and introduced the forward

derivative, which is the Jacobian of F , thus directly providing

gradients of the output components with respect to each input

component. Both approaches define the sensitivity of the

network for the given input X in each of its dimensions [7],

[9]. Miyato et al. [29] introduced another sensitivity estimation

measure, named the Local Distribution Smoothness, based on

the Kullback-Leibler divergence, a measure of the difference

between two probability distributions. To compute it, they use

an approximation of the network’s Hessian matrix. They how-

ever do not present any results on adversarial sample crafting,

but instead focus on using the local distribution smoothness

as a training regularizer improving the classification accuracy.
Perturbation Selection - The adversary must now use this

knowledge about the network sensitivity to input variations

to evaluate which dimensions are most likely to produce the

target misclassification with a minimum total perturbation

vector δX . Each of the two techniques takes a different

approach again here, depending on the distance metric used to

585585

evaluate what a minimum perturbation is. Goodfellow et al. [9]

choose to perturb all input dimensions by a small quantity

in the direction of the sign of the gradient they computed.

This effectively minimizes the Euclidian distance between

the original and the adversarial samples. Papernot et al. [7]

take a different approach and follow a more complex process

involving saliency maps to only select a limited number of

input dimensions to perturb. Saliency maps assign values to

combinations of input dimensions indicating whether they will

contribute to the adversarial goal or not if perturbed. This

effectively diminishes the number of input features perturbed

to craft samples. The amplitude of the perturbation added to

each input dimensions is a fixed parameter in both approaches.

Depending on the input nature (images, malware, ...), one

method or the other is more suitable to guarantee the existence

of adversarial samples crafted using an acceptable perturbation

δX . An acceptable perturbation is defined in terms of a

distance metric over the input dimensions (e.g., a L1, L2
norm). Depending on the problem nature, different metrics

apply and different perturbation shapes are acceptable or not.

C. About Neural Network Distillation
We describe here the approach to distillation introduced by

Hinton et al. [19]. Distillation is motivated by the end goal of

reducing the size of DNN architectures or ensembles of DNN

architectures, so as to reduce their computing ressource needs,

and in turn allow deployment on resource constrained devices

like smartphones. The general intuition behind the technique

is to extract class probability vectors produced by a first DNN

or an ensemble of DNNs to train a second DNN of reduced

dimensionality without loss of accuracy.
This intuition is based on the fact that knowledge acquired

by DNNs during training is not only encoded in weight

parameters learned by the DNN but is also encoded in the

probability vectors produced by the network. Therefore, distil-

lation extracts class knowledge from these probability vectors

to transfer it into a different DNN architecture during training.

To perform this transfer, distillation labels inputs in the training

dataset of the second DNN using their classification predic-

tions according to the first DNN. The benefit of using class

probabilities instead of hard labels is intuitive as probabilities

encode additional information about each class, in addition to

simply providing a sample’s correct class. Relative information

about classes can be deduced from this extra entropy.
To perform distillation, a large network whose output layer

is a softmax is first trained on the original dataset as would

usually be done. An example of such a network is depicted in

Figure 1. A softmax layer is merely a layer that considers a

vector Z(X) of outputs produced by the last hidden layer of

a DNN, which are named logits, and normalizes them into a

probability vector F (X), the ouput of the DNN, assigning a

probability to each class of the dataset for input X . Within the

softmax layer, a given neuron corresponding to a class indexed

by i ∈ 0..N −1 (where N is the number of classes) computes

component i of the following output vector F (X):

F (X) =

[
ezi(X)/T∑N−1

l=0 ezl(X)/T

]
i∈0..N−1

(2)

where Z(X) = z0(X), ..., zN−1(X) are the N logits corre-

sponding to the hidden layer outputs for each of the N classes

in the dataset, and T is a parameter named temperature and

shared across the softmax layer. Temperature plays a central

role in underlying phenomena of distillation as we show later

in this section. In the context of distillation, we refer to this

temperature as the distillation temperature. The only constraint

put on the training of this first DNN is that a high temperature,

larger than 1, should be used in the softmax layer.

The high temperature forces the DNN to produce probability

vectors with relatively large values for each class. Indeed, at

high temperatures, logits in vector Z(X) become negligible

compared to temperature T . Therefore, all components of

probability vector F (X) expressed in Equation 2 converge to

1/N as T →∞. The higher the temperature of a softmax is,

the more ambiguous its probability distribution will be (i.e. all

probabilities of the output F (X) are close to 1/N), whereas

the smaller the temperature of a softmax is, the more discrete

its probability distribution will be (i.e. only one probability in

output F (X) is close to 1 and the remainder are close to 0).

The probability vectors produced by the first DNN are then

used to label the dataset. These new labels are called soft
labels as opposed to hard class labels. A second network with

less units is then trained using this newly labelled dataset.

Alternatively, the second network can also be trained using a

combination of the hard class labels and the probability vector

labels. This allows the network to benefit from both labels

to converge towards an optimal solution. Again, the second

network is trained at a high softmax temperature identical to

the one used in the first network. This second model, although

of smaller size, achieves comparable accuracy than the original

model but is less computationally expensive. The temperature

is set back to 1 at test time so as to produce more discrete

probability vectors during classification.

III. DEFENDING DNNS USING DISTILLATION

Armed with background on DNNs in adversarial settings,

we now introduce a defensive mechanism to reduce vulnerabil-

ities exposing DNNs to adversarial samples. We note that most

previous work on combating adversarial samples proposed

regularizations or dataset augmentations. We instead take a

radically different approach and use distillation, a training

technique described in the previous section, to improve the

robustness of DNNs. We describe how we adapt distillation

into defensive distillation to address the problem of DNN

vulnerability to adversarial perturbations. We provide a justi-

fication of the approach using elements from learning theory.

A. Defending against Adversarial Perturbations

To formalize our discussion of defenses against adversarial

samples, we now propose a metric to evaluate the resilience of

DNNs to adversarial noise. To build an intuition for this metric,

namely the robustness of a network, we briefly comment on the

underlying vulnerabilities exploited by the attack framework

presented above. We then formulate requirements for defenses

capable of enhancing classification robustness.

586586

X

X*
X*

X*

X* X* X*
Δadv(X,F)

Fig. 4: Visualizing the hardness metric: This 2D repre-

sentation illustrates the hardness metric as the radius of the

disc centered at the original sample X and going through

the closest adversarial sample X∗ among all the possible

adversarial samples crafted from sample X . Inside the disc,

the class output by the classifier is constant. However, outside

the disc, all samples X∗ are classified differently than X .

In the framework discussed previously, we underlined the

fact that attacks based on adversarial samples were primarily

exploiting gradients computed to estimate the sensitivity of

networks to its input dimensions. To simplify our discussion,

we refer to these gradients as adversarial gradients in the

remainder of this document. If adversarial gradients are high,

crafting adversarial samples becomes easier because small

perturbations will induce high network output variations. To

defend against such perturbations, one must therefore reduce

these variations around the input, and consequently the ampli-

tude of adversarial gradients. In other words, we must smooth

the model learned during training by helping the network

generalize better to samples outside of its training dataset.

Note that adversarial samples are not necessarily found in

“nature”, because adversarial samples are specifically crafted

to break the classification learned by the network. Therefore,

they are not necessarily extracted from the input distribution

that the DNN architecture tries to model during training.

DNN Robustness - We informally defined the notion

of robustness of a DNN to adversarial perturbations as its

capability to resist perturbations. In other words, a robust

DNN should (i) display good accuracy inside and outside of

its training dataset as well as (ii) model a smooth classifier

function F which would intuitively classify inputs relatively

consistently in the neighborhood of a given sample. The notion

of neighborhood can be defined by a norm appropriate for the

input domain. Previous work has formalized a close definition

of robustness in the context of other machine learning tech-

niques [30]. The intuition behind this metric is that robustness

is achieved by ensuring that the classification output by a

DNN remains somewhat constant in a closed neighborhood

around any given sample extracted from the classifier’s input

distribution. This idea is illustrated in Figure 4. The larger this

neighborhood is for all inputs within the natural distribution

of samples, the more robust is the DNN. Not all inputs

are considered, otherwise the ideal robust classifier would

be a constant function, which has the merit of being very

robust to adversarial perturbations but is not a very interesting

classifier. We extend the definition of robustness introduced

in [30] to the adversarial behavior of source-target class pair

misclassification within the context of classifiers built using

DNNs. The robustness of a trained DNN model F is:

ρadv(F) = Eμ[Δadv(X,F)] (3)

where inputs X are drawn from distribution μ that DNN

architecture is attempting to model with F , and Δadv(X,F) is

defined to be the minimum perturbation required to misclassify

sample x in each of the other classes:

Δadv(X,F) = argmin
δX
{‖δX‖ : F (X + δX) �= F (X)} (4)

where ‖ · ‖ is a norm and must be specified accordingly to

the context. The higher the average minimum perturbation

required to misclassify a sample from the data manifold is,

the more robust the DNN is to adversarial samples.
Defense Requirements - Pulling from this formalization

of DNN robustness. we now outline design requirements for

defenses against adversarial perturbations:

• Low impact on the architecture: techniques introducing

limited, modifications to the architecture are preferred in

our approach because introducing new architectures not

studied in the literature requires analysis of their behav-

iors. Designing new architectures and benchmarking them

against our approach is left as future work.

• Maintain accuracy: defenses against adversarial samples

should not decrease the DNN’s classification accuracy.

This discards solutions based on weight decay, through

L1, L2 regularization, as they will cause underfitting.

• Maintain speed of network: the solutions should not

significantly impact the running time of the classifier at

test time. Indeed, running time at test time matters for the

usability of DNNs, whereas an impact on training time is

somewhat more acceptable because it can be viewed as a

fixed cost. Impact on training should nevertheless remain

limited to ensure DNNs can still take advantage of large

training datasets to achieve good accuracies. For instance,

solutions based on Jacobian regularization, like double

backpropagation [31], or using radial based activation

functions [9] degrade DNN training performance.

• Defenses should work for adversarial samples relatively
close to points in the training dataset [9], [7]. Indeed,

samples that are very far away from the training dataset,

like those produced in [32], are irrelevant to security

because they can easily be detected, at least by humans.

However, limiting sensitivity to infinitesimal perturbation

(e.g., using double backpropagation [31]) only provides

constraints very near training examples, so it does not

solve the adversarial perturbation problem. It is also very

hard or expensive to make derivatives smaller to limit

sensitivity to infinitesimal perturbations.

We show in our approach description below that our defense

technique does not require any modification of the neural

network architecture and that it has a low overhead on training

and no overhead on test time. In the evaluation conducted in

section V, we also show that our defense technique fits the

remaining defense requirements by evaluating the accuracy of

DNNs with and without our defense deployed, and studying

the generalization capabilities of networks to show how the

defense impacted adversarial samples.

587587

Class
Probabilities
Knowledge

 Training Data X

DNN F trained at temperature T

 Training Labels Y

Probability Vector Predictions F(X)

 Training Data X

DNN trained at temperature T

 Training Labels F(X)

Probability Vector Predictions .

Initial Network Distilled Network

1

2

3

4

5

0
1
0
0

0.02
0.92
0.04
0.02

0.02
0.92
0.04
0.02

0.03
0.93
0.01
0.03

F d(X)

F d(X)

0.02
0.92
0.04
0.02

Fig. 5: An overview of our defense mechanism based on a transfer of knowledge contained in probability vectors through
distillation: We first train an initial network F on data X with a softmax temperature of T . We then use the probability vector

F (X), which includes additional knowledge about classes compared to a class label, predicted by network F to train a distilled

network F d at temperature T on the same data X .

B. Distillation as a Defense

We now introduce defensive distillation, which is the tech-

nique we propose as a defense for DNNs used in adversarial

settings, when adversarial samples cannot be permitted. De-

fensive distillation is adapted from the distillation procedure,

presented in section II, to suit our goal of improving DNN

classification resilience in the face of adversarial perturbations.

Our intuition is that knowledge extracted by distillation, in

the form of probability vectors, and transferred in smaller

networks to maintain accuracies comparable with those of

larger networks can also be beneficial to improving gener-

alization capabilities of DNNs outside of their training dataset

and therefore enhances their resilience to perturbations. Note

that throughout the remainder of this paper, we assume that

considered DNNs are used for classification tasks and designed

with a softmax layer as their output layer.

The main difference between defensive distillation and the

original distillation proposed by Hinton et al. [19] is that we

keep the same network architecture to train both the original

network as well as the distilled network. This difference is

justified by our end which is resilience instead of compres-

sion. The resulting defensive distillation training procedure is

illustrated in Figure 5 and outlined as follows:

1) The input of the defensive distillation training algorithm

is a set X of samples with their class labels. Specifically,

let X ∈ X be a sample, we use Y (X) to denote its

discrete label, also referred to as hard label. Y (X) is an

indicator vector such that the only non-zero element cor-

responds to the correct class’ index (e.g. (0, 0, 1, 0, . . . , 0)
indicates that the sample is in the class with index 2).

2) Given this training set {(X,Y (X)) : X ∈ X}, we

train a deep neural network F with a softmax output

layer at temperature T . As we discussed before, F (X)
is a probability vector over the class of all possible

labels. More precisely, if the model F has parameters

θF , then its output on X is a probability distribution

F (X) = p(·|X, θF), where for any label Y in the label

class, p(Y |X, θF) gives a probability that the label is Y .

To simplify our notation later, we use Fi(X) to denote

the probability of input X to be in class i ∈ 0..N − 1
according to model F with parameters θF .

3) We form a new training set, by consider samples of the

form (X,F (X)) for X ∈ X . That is, instead of using

hard class label Y (X) for X , we use the soft-target F (X)
encoding F ’s belief probabilities over the label class.

4) Using the new training set {(X,F (X)) : X ∈ X} we

then train another DNN model F d, with the same neural

network architecture as F , and the temperature of the

softmax layer remains T . This new model is denoted as

F d and referred to as the distilled model.

Again, the benefit of using soft-targets F (X) as training

labels lies in the additional knowledge found in probability

vectors compared to hard class labels. This additional entropy

encodes the relative differences between classes. For instance,

in the context of digit recognition developed later in section V,

given an image X of some handwritten digit, model F may

evaluate the probability of class 7 to F7(X) = 0.6 and the

probability of label 1 to F1(X) = 0.4, which then indicates

some structural similarity between 7s and 1s.

Training a network with this explicit relative information

about classes prevents models from fitting too tightly to the

data, and contributes to a better generalization around training

points. Note that the knowledge extraction performed by dis-

tillation is controlled by a parameter: the softmax temperature

T . As described in section II, high temperatures force DNNs to

produce probabilities vectors with large values for each class.

In sections IV and V, we make this intuition more precise

with a theoretical analysis and an empirical evaluation.

588588

IV. ANALYSIS OF DEFENSIVE DISTILLATION

We now explore analytically the impact of defensive distilla-

tion on DNN training and resilience to adversarial samples. As

stated above, our intuition is that probability vectors produced

by model F encode supplementary entropy about classes that

is beneficial during the training of distilled model F d. Before

proceeding further, note that our purpose in this section is

not to provide a definitive argument about using defensive

distillation to combat adversarial perturbations, but rather we

view it as an initial step towards drawing a connection between

distillation, learning theory, and DNN robustness for future

work to build upon. This analysis of distillation is split in three

folds studying (1) network training, (2) model sensitivity, and

(3) the generalization capabilities of a DNN.

Note that with training, we are looking to converge towards

a function F ∗ resilient to adversarial noise and capable of

generalizing better. The existence of function F ∗ is guaranteed

by the universality theorem for neural networks [33], which

states that with enough neurons and enough training points,

one can approximate any continuous function with arbitrary

precision. In other words, according to this theorem, we know

that there exists a neural network architecture that converges

to F ∗ if it is trained on a sufficient number of samples. With

this result in mind, a natural hypothesis is that distillation helps

convergence of DNN models towards the optimal function F ∗

instead of a different local optimum during training.

A. Impact of Distillation on Network Training

To precisely understand the effect of defensive distillation

on adversarial crafting, we need to analyze more in depth the

training process. Throughout this analysis, we frequently refer

to the training steps for defensive distillation, as described in

Section III. Let us start by considering the training procedure

of the first model F , which corresponds to step (2) of defensive

distillation. Given a batch of samples {(X,Y (X)) | X ∈ X}
labeled with their correct classes, training algorithms typically

aim to solve the following optimization problem:

argmin
θF
− 1

|X |
∑
X∈X

∑
i∈0..N

Yi(X) logFi(X). (5)

where θF is the set of parameters of model F and Yi is the

ith component of Y . That is, for each sample (X,Y (X)) and

hypothesis, i.e. a model F with parameters θF , we consider the

log-likelihood �(F,X, Y (X)) = −Y (X) · logF (X) of F on

(X,Y (X)) and average it over the entire training set X . Very

roughly speaking, the goal of this optimization is to adjust the

weights of the model so as to push each F (X) towards Y (X).
However, readers will notice that since Y (X) is an indicator

vector of input X’s class, Equation 5 can be simplified to:

argmin
θF
− 1

|X |
∑
X∈X

logFt(X)(X). (6)

where t(X) is the only element in indicator vector Y (X)
that is equal to 1, in other words the index of the sample’s

class. This means that when performing updates to θF , the

training algorithm will constrain any output neuron different

from the one corresponding to probability Ft(X)(X) to give

a 0 output. However, this forces the DNN to make overly

confident predictions in the sample class. We argue that this

is a fundamental lack of precision during training as most of

the architecture remains unconstrained as weights are updated.

Let us move on to explain how defensive distillation

solves this issue, and how the distilled model F d is trained.

As mentioned before, while the original training dataset is

{(X,Y (X)) : X ∈ X}, the distilled model F d is trained

using the same set of samples but labeled with soft-targets

{(X,F (X)) : X ∈ X} instead. This set is constructed at step

(3) of defensive distillation. In other words, the label of X
is no longer the indicator vector Y (X) corresponding to the

hard class label of X , but rather the soft label of input X: a

probability vector F (X). Therefore, F d is trained, at step (4),

by solving the following optimization problem:

argmin
θF
− 1

|X |
∑
X∈X

∑
i∈0..N

Fi(X) logF d
i (X) (7)

Note that the key difference here is that because we are using

soft labels F (X), it is not trivial anymore that most compo-

nents of the double sum are null. Instead, using probabilities

Fj(X) ensures that the training algorithm will constrain all

output neurons F d
j (X) proportionally to their likelihood when

updating parameters θF . We argue that this contributes to

improving the generalizability of classifier model F outside

of its training dataset, by avoiding situations where the model

is forced to make an overly confident prediction in one class

when a sample includes characteristics of two or more classes

(for instance, when classifying digits, an instance of a 8

include shapes also characteristic of a digit 3).

Note that model F d should theoretically eventually converge

towards F . Indeed, locally at each point (X,F (X)), the opti-

mal solution is for model F d to be such that F d(X) = F (X).
To see this, we observe that training aims to minimize the cross

entropy between F d(X) and F (X), which is equal to:

H
(
F d(X), F (X)

)
= H(F (X)) +KL

(
F (X) ‖ F d(X)

)
(8)

where H(F (X)) is the Shannon entropy of F (X)) and KL
denotes the Kullback-Leibler divergence. Note that this quan-

tity is minimized when the KL divergence is equal to 0,

which is only true when F d(X) = F (X). Therefore, an ideal

training procedure would result in model F d converging to

the first model F . However, empirically this is not the case

because training algorithms approximate the solution of the

training optimization problem, which is often non-linear and

non-convex. Furthermore, training algorithms only have access

to a finite number of samples. Thus, we do observe empirically

a better behavior in adversarial settings from model F d than

model F . We confirm this result in Section V.

B. Impact of Distillation on Model Sensitivity

Having studied the impact of defensive distillation on op-

timization problems solved during DNN training, we now

further investigate why adversarial perturbations are harder

to craft on DNNs trained with defensive distillation at high

temperature. The goal of our analysis here is to provide an

intuition of how distillation at high temperatures improves the

589589

smoothness of the distilled model F d compared to model F ,

thus reducing its sensitivity to small input variations.

The model’s sensitivity to input variation is quantified by

its Jacobian. We first show why the amplitude of Jacobian’s

components naturally decrease as the temperature of the

softmax increases. Let us derive the expression of component

(i, j) of the Jacobian for a model F at temperature T :

∂Fi(X)

∂Xj

∣∣∣∣
T

=
∂

∂Xj

(
ezi(X)/T∑N−1

l=0 ezl(X)/T

)
(9)

where z0(X), . . . , zN−1(X) are the inputs to the softmax

layer—also referred to as logits—and are simply the outputs of

the last hidden layer of model F . For the sake of notation clar-

ity, we do not write the dependency of z0(X), . . . , zN−1(X)
to X and simply write z0, . . . , zN−1. Let us also write

g(X) =
∑N−1

l=0 ezl(X)/T , we then have:

∂Fi(X)

∂Xj

∣∣∣∣
T

=
∂

∂Xj

(
ezi/T∑N−1

l=0 ezl/T

)

=
1

g2(X)

(
∂ezi(X)/T

∂Xj
g(X)− ezi(X)/T ∂g(X)

∂Xj

)

=
1

g2(X)

ezi/T

T

(
N−1∑
l=0

∂zi
∂Xj

ezl/T −
N−1∑
l=0

∂zl
∂Xj

ezl/T

)

=
1

T

ezi/T

g2(X)

(
N−1∑
l=0

(
∂zi
∂Xj

− ∂zl
∂Xj

)
ezl/T

)

The last equation yields that increasing the softmax tempera-

ture T for fixed values of the logits z0, . . . , zN−1 will reduce

the absolute value of all components of model F ’s Jacobian

matrix because (i) these components are inversely proportional

to temperature T , and (ii) logits are divided by temperature T
before being exponentiated.

This simple analysis shows how using high temperature

systematically reduces the model sensitivity to small variations

of its inputs when defensive distillation is performed at training

time. However, at test time, the temperature is decreased back

to T = 1 in order to make predictions on unseen inputs. Our

intuition is that this does not affect the model’s sensitivity as

weights learned during training will not be modified by this

change of temperature, and decreasing temperature only makes

the class probability vector more discrete, without changing

the relative ordering of classes. In a way, the smaller sensitivity

imposed by using a high temperature is encoded in the weights

during training and is thus still observed at test time. While this

explanation matches both our intuition and the experiments

detailed later in section V, further formal analysis is needed.

We plan to pursue this in future work.

C. Distillation and the Generalization Capabilities of DNNs

We now provide elements of learning theory to analytically

understand the impact of distillation on generalization capa-

bilities. We formalize our intuition that models benefit from

soft labels. Our motivation stems from the fact that not only

do probability vectors F (X) encode model F ’s knowledge

regarding the correct class of X , but it also encodes the

knowledge of how classes are likely, relatively to each other.

Recall our example of handwritten digit recognition. Sup-

pose we are given a sample X of some hand-written 7 but

that the writing is so bad that the 7 looks like a 1. Assume a

model F assigns probability F7(X) = 0.6 on 7 and probability

F1(X) = 0.4 on 1, when given sample X as an input. This

indicates that 7s and 1s look similar and intuitively allows a

model to learn the structural similarity between the two digits.

In contrast, a hard label leads the model to believe that X is a

7, which can be misleading since the sample is poorly written.

This example illustrate the need for algorithms not fitting

too tightly to particular samples of 7s, which in turn prevent

models from overfitting and offer better generalizations.

To make this intuition more precise, we resort to the

recent breakthrough in computational learning theory on the

connection between learnability and stability. Let us first

present some elements of stable learning theory to facilitate

our discussion. Shalev-Schwartz et al. [34] proved that learn-

ability is equivalent to the existence of a learning rule that

is simultaneously an asymptotic empirical risk minimizer and

stable. More precisely, let (Z = X × Y,H, �) be a learning

problem where X is the input space, Y is the output space,

H is the hypothesis space, and � is an instance loss function

that maps a pair (w, z) ∈ H×Z to a positive real loss. Given

a training set S = {zi : i ∈ [n]}, we define the empirical loss

of a hypothesis w as LS(w) =
1
n

∑
i∈[n] �(w, zi). We denote

the minimal empirical risk as L∗S = minw∈H LS(w). We are

ready to present the following two definitions:

Definition 1 (Asymptotic Empirical Risk Minimizer) A
learning rule A is an asymptotic empirical risk minimizer, if
there is a rate function1 ε(n) such that for every training set
S of size n,

LS(A(S))− L∗S ≤ ε(n).

Definition 2 (Stability) We say that a learning rule A is ε(n)
stable if for every two training sets S, S′ that only differ in
one training item, and for every z ∈ Z,

|�(A(S), z)− �(A(S′), z)| ≤ ε(n)

where h = A(S) is the output of A on training set S, and
�(A(S), z) = �(h, z) denotes the loss of h on z.

An interesting result to progress in our discussion is the

following Theorem mentioned previously and proved in [34].

Theorem 1 If there is a learning rule A that is both an
asymptotic empirical risk minimizer and stable, then A gener-
alizes, which means that the generalization error LD(A(S))
converges to L∗D = minh∈H LD(h) with some rate ε(n)
independent of any data generating distribution D.

We now link this theorem back to our discussion. We observe

that, by appropriately setting the temperature T , it follows

that for any datasets S, S′ only differing by one training item,

the new generated training sets (X,FS(X)) and (X,FS′
(X))

satisfy a very strong stability condition. This in turn means

that for any X ∈ X , FS(X) and FS′
(X) are statistically

close. Using this observation, one can note that defensive dis-

tillation training satisfies the stability condition defined above.

1A function that non-increasingly vanishes to 0 as n grows.

590590

Layer Type MNIST
Architecture

CIFAR10
Architecture

Relu Convolutional 32 filters (3x3) 64 filters (3x3)
Relu Convolutional 32 filters (3x3) 64 filters (3x3)
Max Pooling 2x2 2x2
Relu Convolutional 64 filters (3x3) 128 filters (3x3)
Relu Convolutional 64 filters (3x3) 128 filters (3x3)
Max Pooling 2x2 2x2
Relu Fully Connect. 200 units 256 units
Relu Fully Connect. 200 units 256 units
Softmax 10 units 10 units

TABLE I: Overview of Architectures: both architectures are

based on a succession of 9 layers. However, the MNIST

architecture uses less units in each layers than the CIFAR10

architecture because its input is composed of less features.

Parameter MNIST
Architecture

CIFAR10
Architecture

Learning Rate 0.1 0.01 (decay 0.5)
Momentum 0.5 0.9 (decay 0.5)
Decay Delay - 10 epochs
Dropout Rate (Fully Con-
nected Layers)

0.5 0.5

Batch Size 128 128
Epochs 50 50

TABLE II: Overview of Training Parameters: the CIFAR10

architecture training was slower than the MNIST architecture

and uses parameter decay to ensure model convergence.

Moreover, we deduce from the objective function of defensive

distillation that the approach minimizes the empirical risk.

Combining these two results together with Theorem 1 allows

us to conclude that the distilled model generalizes well.

We conclude this discussion by noting that we did not

strictly prove that the distilled model generalizes better than a

model trained without defensive distillation. This is right and

indeed this property is difficult to prove when dealing with

DNNs because of the non-convexity properties of optimization

problems solved during training. To deal with this lack of

convexity, approximations are made to train DNN architectures

and model optimality cannot be guaranteed. To the best of our

knowledge, it is difficult to argue the learnability of DNNs

in the first place, and no good learnability results are known.

However, we do believe that our argument provides the readers

with an intuition of why distillation may help generalization.

V. EVALUATION

This section empirically evaluates defensive distillation,

using two DNN network architectures. The central asked

questions and results of this emprical study include:

• Q: Does defensive distillation improve resilience against
adversarial samples while retaining classification accu-
racy? (see Section V-B) - Result: Distillation reduces the

success rate of adversarial crafting from 95.89% to 0.45%
on our first DNN and dataset, and from 87.89% to 5.11%
on a second DNN and dataset. Distillation has negligible

or non existent degradation in model classification ac-

curacy in these settings. Indeed the accuracy variability

between models trained without distillation and with

distillation is smaller than 1.37% for both DNNs.

Fig. 6: Set of legitimate samples: these samples were ex-

tracted from each of the 10 classes of the MNIST handwritten

digit dataset (top) and CIFAR10 image dataset (bottom).

• Q: Does defensive distillation reduce DNN sensitivity to
inputs? (see Section V-C) Result: Defensive distillation

reduces DNN sensitivity to input perturbations, where

experiments show that performing distillation at high

temperatures can lead to decreases in the amplitude of

adversarial gradients by factors up to 1030.

• Q: Does defensive distillation lead to more robust DNNs?
(see SectionV-D) Result: Defensive distillation impacts

the average minimum percentage of input features to be

perturbed to achieve adversarial targets (i.e., robustness).

In our DNNs, distillation increases robustness by 790%
for the first DNN and 556% for the second DNN: on our

first network the metric increases from 1.55% to 14.08%
of the input features, in the second network the metric

increases from 0.39% to 2.57%.

A. Overview of the Experimental Setup

Dataset Description - All of the experiments described in

this section are performed on two canonical machine learning

datasets: the MNIST [20] and CIFAR10 [21] datasets. The

MNIST dataset is a collection of 70, 000 black and white

images of handwritten digits, where each pixel is encoded as a

real number between 0 and 1. The samples are split between

a training set of 60, 000 samples and a test set of 10, 000.

The classification goal is to determine the digit written. The

classes therefore range from 0 to 9. The CIFAR10 dataset is a

collection of 60, 000 color images. Each pixel is encoded by

3 color components, which after preprocessing have values in

[−2.22, 2.62] for the test set. The samples are split between

a training set of 50, 000 samples and a test set of 10, 000
samples. The images are to be classified in one of the 10

mutually exclusive classes: airplane, automobile, bird, cat,

deer, dog, frog, horse, ship, and truck. Some representative

samples from each dataset are shown in Figure 6.

591591

Architecture Characteristics - We implement two deep

neural network architectures whose specificities are described

in Table I and training hyper-parameters included in Table II:

the first architecture is a 9 layer architecture trained on the

MNIST dataset, and the second architecture is a 9 layer

architecture trained on the CIFAR10 dataset. The architectures

are based on convolutional neural networks, which have been

widely studied in the literature. We use momentum and

parameter decay to ensure model convergence, and dropout to

prevent overfitting. Our DNN performance is consistent with

DNNs that have evaluated these datasets before.

The MNIST architecture is constructed using 2 convolu-

tional layers with 32 filters followed by a max pooling layer,

2 convolutional layers with 64 filters followed by a max

pooling layer, 2 fully connected layers with 200 rectified linear

units, and a softmax layer for classification in 10 classes. The

experimental DNN is trained on batches of 128 samples with

a learning rate of η = 0.1 for 50 epochs. The resulting DNN

achieves a 99.51% correct classification rate on the data set,

which is comparable to state-of-the-art DNN accuracy.

The CIFAR10 architecture is a succession of 2 convolutional

layers with 64 filters followed by a max pooling layer, 2 con-

volutional layers with 128 filters followed by a max pooling

layer, 2 fully connected layers with 256 rectified linear units,

and a softmax layer for classification. When trained on batches

of 128 samples for the CIFAR10 dataset with a learning rate

of η = 0.01 (decay of 0.95 every 10 epochs), a momentum of

0.9 (decay of 0.5 every 10 epochs) for 50 epochs, a dropout

rate of 0.5, the architecture achieves a 80.95% accuracy on

the CIFAR10 test set, which is comparable to state-of-the-art

performance for unaugmented datasets.

To train and use DNNs, we use Theano [35], which is

designed to simplify large-scale scientific computing, and

Lasagne [36], which simplifies the design and implementation

of deep neural networks using computing capabilities offered

by Theano. This setup allows us to efficiently implement

network training as well as the computation of gradients

needed to craft adversarial samples. We configure Theano to

make computations with float32 precision, because they can

then be accelerated using graphics processing. Indeed, we use

machines equipped with Nvidia Tesla K5200 GPUs.

Adversarial Crafting - We implement adversarial sample

crafting as detailed in [7]. The adversarial goal is to alter any

sample X originally classified in a source class F (X) by DNN

F so as to have the perturbed sample X∗ classified by DNN

F in a distinct target class F (X∗) �= F (X). To achieve this

goal, the attacker first computes the Jacobian of the neural

network output with respect to its input. A perturbation is then

constructed by ranking input features to be perturbed using

a saliency map based on the previously computed network

Jacobian and giving preference to features more likely to alter

the network output. Each feature perturbed is set to 1 for the

MNIST architecture and 2 for the CIFAR10 dataset. Note that

the attack [7] we implemented in this evaluation is based on

perturbing very few pixels by a large amount, while previous

attacks [8], [9] were based on perturbing all pixels by a small

amount. We discuss in Section VI the impact of our defense

with other crafting algorithms, but use the above algorithm

to confirm the analytical results presented in the preceding

sections. These two steps are repeated several times until the

resulting sample X∗ is classified in the target class F (X∗).
We stop the perturbation selection if the number of features

perturbed is larger than 112. This is justified because larger

perturbations would be detectable by humans [7] or poten-

tial anomaly detection systems. This method was previously

reported to achieve a 97% success rate when used to craft

90, 000 adversarial samples by altering samples from the

MNIST test set with an average distortion of 4.02% of the

input features [7]. We find that altering a maximum of 112
features also yields a high adversarial success rate of 92.78%
on the CIFAR10 test set. Note that throughout this evalua-

tion, we use the number of features altered while producing

adversarial samples to compare them with original samples.

B. Defensive Distillation and Adversarial Samples

Impact on Adversarial Crafting - For each of our two

DNN architectures corresponding to the MNIST and CIFAR10

datasets, we consider the original trained model FMNIST

or FCIFAR10, as well as the distilled model F d
MNIST or

F d
CIFAR10. We obtain the two distilled models by training

them with defensive distillation at a class knowledge transfer

temperature of T = 20 (the choice of this parameter is

investigated below). The resulting classification accuracy for

the MNIST model F d
MNIST is 99.05% and the classification

accuracy for the CIFAR10 model F d
CIFAR10 is 81.39%, which

are comparable to the non-distilled models.

In a second set of experiments, we measured success rate of

adversarial sample crafting on 100 samples randomly selected

from each dataset2. That is, for each considered sample,

we use the crafting algorithm to craft 9 adversarial samples

corresponding to the 9 classes distinct from the sample’ source

class. We thus craft a total of 900 samples for each model. For

the architectures trained on MNIST data, we find that using

defensive distillation reduces the success rate of adversarial

sample crafting from 95.89% for the original model to 1.34%
for the distilled model, thus resulting in a 98.6% decrease.

Similarly, for the models trained on CIFAR10 data, we find

that using distillation reduces the success rate of adversarial

sample crafting from 89.9% for the original model to 16.76%
for the distilled model, which represents a 81.36% decrease.

Distillation Temperature - The next experiments measure

how temperature impacts adversarial sample generation. Note

the softmax layer’s temperature is set to 1 at test time i.e.,

temperature only matters during training. The objective here

is to identify the “optimal” training temperature resulting in

resilience to adversarial samples for a DNN and dataset.

We repeat the adversarial sample crafting experiment

on both architectures and vary the distillation tempera-

ture each time. The number of adversarial targets success-

fully reached for the following distillation temperatures T :

{1, 2, 5, 10, 20, 30, 50, 100} is measured. Figure 7 plots the

success rate of adversarial samples with respect to temperature

2Note that we extract samples from the test set for convenience, but any
sample accepted as a network input could be used as the original sample.

592592

�

��

��

��

��

��

��

	�

�

��

���

� �� ���

�
��
��
��
��
���

��
��
��
��
��
��
��
�
��
�

������������� ����������

��������������������������������!"#$� % �������������������&�������������!"#$� %
��������������������������������!'$(����% �������������������&�������������!'$(����%

Fig. 7: An exploration of the temperature parameter space: for 900 targets against the MNIST and CIFAR10 based models

and several distillation temperatures, we plot the percentage of targets achieved by crafting an adversarial sample while altering

at most 112 features. Baselines for models trained without distillation are in dashes. Note the horizontal logarithmic scale.

for both architectures and provides exact figures. In other

words, the rate plotted is the number of adversarial sample

targets that were reached. Two interesting observations can be

made: (1) increasing the temperature will generally speaking

make adversarial sample crafting harder, and (2) there is an

elbow point after which the rate largely remains constant

(≈ 0% for MNIST and ≈ 5% for CIFAR10).

Observation (1) validates analytical results from Section III

showing distilled network resilience to adversarial samples:

the success rate of adversarial crafting is reduced from 95.89%
without distillation to 0.45% with distillation (T = 100) on

the MNIST based DNN, and from 87.89% without distillation

to 5.11% with distillation (T = 100) on the CIFAR10 DNN.

The temperature corresponding to the curve elbow is linked

to the role temperature plays within the softmax layer. Indeed,

temperature is used to divide logits given as inputs to the

softmax layer, in order to provide more discreet or smoother

distributions of probabilities for classes. Thus, one can make

the hypothesis that the curve’s elbow is reached when the tem-

perature is such that increasing it further would not make the

distribution smoother because probabilities are already close

to 1/N where N is the number of classes. We confirm this

hypothesis by computing the average maximum probability

output by the CIFAR10 DNN: it is equal to 0.72 for T = 1,

to 0.14 for T = 20, and to 0.11 for T = 40. Thus, the elbow

point at T = 40 correspond to probabilities near 1/N = 0.1.

Classification Accuracy - The next set of experiments

sought to measure the impact of the approach on accuracy. For

each knowledge transfer temperature T used in the previous

set of experiments, we compute the variation of classifica-

tion accuracy between the models FMNIST , FCIFAR10 and

F d
MNIST , F

d
CIFAR10, respectively trained without distillation

and with distillation at temperature T . For each model, the

accuracy is computed using all 10, 000 samples from the

corresponding test set (from MNIST for the first and from

CIFAR10 for the second model). Recall that the baseline

rate, meaning the accuracy rate corresponding to training

�����

�����

�����

�����

����

����

����

����

� � � �� �� 	�
� �� ���

��
�

��
��
��

��
��

���
��
��

���
���

��
���

��
���

�

�����������������������

�� !�������!�������������������� " #�$��������!��������������������

Fig. 8: Influence of distillation on accuracy: we plot the

accuracy variations of our two architectures for a training with

and without defensive distillation. These rates were evaluated

on the corresponding test set for various temperature values.

performed without distillation, which we computed previously

was 99.51% for model FMNIST and 80.95% for model

FCIFAR10. The variation rates for the set of distillation

temperatures are shown in Figure 8.

One can observe that variations in accuracy introduced by

distillation are moderate. For instance, the accuracy of the

MNIST based model is degraded by less than 1.28% for all

temperatures, with for instance an accuracy of 99.05% for

T = 20, which would have been state of the art until very

recently. Similarly, the accuracy of the CIFAR10 based model

is degraded by at most 1.37%. It also potentially improves

it, as some variations are positive, notably for the CIFAR10

model (the MNIST model is hard to improve because its

accuracy is already close to a 100%). Although providing

a quantitative understanding of this potential for accuracy

improvement is outside the scope of this paper, we believe

that it stems from the generalization capabilities favored by

593593

��

���

���

���

���

���

���

	��

��

���

����

��������������� 	
� 	
� 	
� 	
�� 	
�� 	
�� 	
�� 	
�� 	
���

��
�
��
��
)�
��
��
��
��
��
���
���
��
��
��
��

�
��
��
�
�
��
���
��
�

�������������	����������

��� ������ �������� ������ �������� ������ �������� ������ �������� ������ �������� ������ �������� ������ �������� ������ ������� ����� ������� �

��

���

���

���

���

���

���

	��

��

���

����

��������������� 	
� 	
� 	
� 	
�� 	
�� 	
�� 	
�� 	
�� 	
���

��
�
��
��
)�
��
��
��
��
��
���
���
��
��
��
��

�
��
��
�
�
��
���
��
�

�������������	����������

� � ������ �������� ������ �������� ������ �������� ������ �������� ������ ������ � ������ ������ � ������ ������ � ����� ������� ����� ������� �

��

���

���

���

���

���

���

	��

��

���

����

��������������� 	
� 	
� 	
� 	
�� 	
�� 	
�� 	
�� 	
�� 	
���

��
�
��
��
)�
��
��
��
��
��
���
���
��
��
��
���
��
��

�
�
��
���
��
�

�������������	����������

��� ������ �������� ������ �������� ������ �������� ������ �������� ������ �������� ������ �������� ������ �������� ������ ������� ����� ������� �0− 10−40 10−40 − 10−35 10−35 − 10−30 10−30 − 10−25 10−25 − 10−20 10−20 − 10−15 10−15 − 10−10 10−10 − 10−5 10−5 − 10−3 10−3 − 100

Fig. 9: An exploration of the impact of temperature on the amplitude of adversarial gradients: We illustrate how

adversarial gradients vanish as distillation is performed at higher temperatures. Indeed, for each temperature considered, we

draw the repartition of samples in each of the 10 ranges of mean adversarial gradient amplitudes associated with a distinct

color. This data was collected using all 10, 000 samples from the CIFAR10 test set on the corresponding DNN model.

distillation, as investigated in the analytical study of defensive

distillation conducted previously in Section III.

To summarize, not only distillation improves resilience of

DNNs to adversarial perturbations (from 95.89% to 0.45%
on a first DNN, and from 87.89% to 5.11% on a second

DNN), it also does so without severely impacting classification

correctness (the accuracy variability between models trained

without distillation and with distillation is smaller than 1.37%
for both DNNs). Thus, defensive distillation matches the

second defense requirement from Section II. When deploying

defensive distillation, defenders will have to empirically find a

temperature value T offering a good balance between robust-

ness to adversarial perturbations and classification accuracy.

In our case, for the MNIST model for instance, such a

temperature would be T = 20 according to Figure 7 and 8.

C. Distillation and Sensitivity

The second battery of experiments sought to demonstrate

the impact of distillation on a DNN’s sensitivity to inputs. Our

hypothesis is that our defense mechanism reduces gradients

exploited by adversaries to craft perturbations. To confirm this

hypothesis, we evaluate the mean amplitude of these gradients

on models trained without and with defensive distillation.

In this experiment, we split the 10, 000 samples from the

CIFAR10 test set into bins according to the mean value of

their adversarial gradient amplitude. We train these at varying

temperatures and plot the resulting bin frequencies in Figure 9.

Note that distillation reduces the average absolute value of

adversarial gradients: for instance the mean adversarial gradi-

ent amplitude without distillation is larger than 0.001 for 4763

samples among the 10,000 samples considered, whereas it is

the case only for 172 samples when distillation is performed

at a temperature of T = 100. Similarly, 8 samples are in the

bin corresponding to a mean adversarial gradient amplitude

smaller than 10−40 for the model trained without distillation,

whereas there is a vast majority of samples, namely 7908

samples, with a mean adversarial gradient amplitude smaller

than 10−40 for the model trained with defensive distillation at

a temperature of T = 100. Generally speaking one can observe

that the largest frequencies of samples shifts from higher mean

amplitudes of adversarial gradients to smaller ones.

When the amplitude of adversarial gradients is smaller, it

means the DNN model learned during training is smoother

around points in the distribution considered. This in turns

means that evaluating the sensitivity of directions will be

more complex and crafting adversarial samples will require

adversaries to introduce more perturbation for the same orig-

inal samples. Another observation is that overtraining does

not help because when there is overfitting, the adversarial

gradients progressively increase in amplitude so early stopping

and other similar techniques can help to prevent exploding.

This is further discussed in Section VI. In our case, training for

50 epochs was sufficient for distilled DNN models to achieve

comparable accuracies to original models, and ensured that

adversarial gradients did not explode. These experiments show

that distillation can have a smoothing impact on classification

models learned during training. Indeed, gradients characteriz-

ing model sensitivity to input variations are reduced by factors

larger than 1030 when defensive distillation is applied.

D. Distillation and Robustness

Lastly, we explore the interplay between smoothness of

classifiers and robustness. Intuitively, robustness is the aver-

age minimal perturbation required to produce an adversarial

sample from the distribution modeled by F .

Robustness - Recall the definition of robustness:

ρadv(F) = Eμ[Δadv(X,F)] (10)

where inputs X are drawn from distribution μ that DNN

architecture F is trying to model, and Δadv(X,F) is defined

in Equation 4 to be the minimum perturbation required to

misclassify sample X in each of the other classes. We now

594594

�

�

�

�

�

��

��

��

��

� �� �� �� ��

�
�
�
��
��
��
	

��
��
!�
�
��

	
��
��
��
��

��
	��
��
	�
�
�%

���	����	��
�������	��

�����	
����!�����% �����	
����������
��!�����%
�����	
����!�������% �����	
����������
��!�������%

Fig. 10: Quantifying the impact of distillation temperature
on robustness: we plot the value of robustness described in

Equation 11 for several temperatures and compare it to a base-

line robustness value for models trained without distillation.

evaluate whether distillation effectively increases this robust-

ness metric for our evaluation architectures. To do this without

exhaustively searching all perturbations for each possible

sample of the underlying distribution modeled by the DNN,

we approximate the metric: we compute the metric over all

10,000 samples in the test set for each model. This results in

the computation of the following quantity:

ρadv(F)
 1

|X |
∑
X∈X

min
δX
‖δX‖ (11)

where values of δX are evaluated by considering each of the 9

possible adversarial targets corresponding to sample X ∈ X .

and using the number of features altered while creating the

corresponding adversarial samples as the distance measure to

evaluate the minimum perturbation ‖δX‖ required to create

the mentionned adversarial sample. In Figure 10, we plot the

evolution of the robustness metric with respect to an increase

in distillation temperature for both architectures. One can see

that as the temperature increases, the robustness of the network

as defined here, increases. For the MNIST architecture, the

model trained without distillation displays a robustness of

1.55% whereas the model trained with distillation at T = 20
displays a robustness of 13.79%, an increase of 790%. Note

that, perturbations of 13.79% are large enough that they poten-

tially change the true class or could be detected by an anomaly

detection process. In fact, it was empirically shown in previous

work that humans begin to misclassify adversarial samples

(or at least identify them as erroneous) for perturbations

larger than 13.79%: see Figure 16 in [7]. It is not desirable

for adversary to produce adversarial samples identifiable by

humans. Furthermore, changing additional features can be

hard, depending on the input nature. In this evaluation, it

is easy to change a feature in the images. However, if the

input was spam email, it would become challenging for the

adversary to alter many input features. Thus, making DNNs

robust to small perturbations is of paramount importance.

Similarly, for the CIFAR10 architecture, the model trained

without distillations displays a robustness of 0.39% whereas

the model trained with defensive distillation at T = 50 has a

robustness of 2.56%, which represents an increase of 556%.

This result suggests that indeed distillation is able to provide

sufficient additional knowledge to improve the generalization

capabilities of DNNs outside of their training manifold, thus

developing their robustness to perturbations.

Distillation and Confidence - Next we investigate the

impact of distillation temperature on DNN classification con-

fidence. Our hypothesis is that distillation also impacts the

confidence of class predictions made by distilled model.

To test this hypothesis, we evaluate the confidence pre-

diction for all 10, 000 samples in the CIFAR10 dataset. We

average the following quantity over all samples X ∈ X :

C(X) =

{
0 if argmaxi Fi(X) �= t(X)
argmaxi Fi(X) otherwise

(12)

where t(X) is the correct class of sample X . The resulting

confidence values are shown in Table III where the lowest

confidence is 0% and the highest 100%. The monotonically

increasing trend suggests that distillation does indeed increase

predictive confidence. Note that a similar analysis of MNIST

is inconclusive because all confidence values are already near

99%, which leaves little opportunity for improvement.

T 1 2 5 10 20
C(X) 71.85% 71.99% 78.05% 80.77% 81.06%

TABLE III: CIFAR10 model prediction confidence: C(X)
is evaluated on the test set at various temperatures T .

VI. DISCUSSION

The preceding analysis of distillation shows that it can

increase the resilience of DNNs to adversarial samples. Train-

ing extracts knowledge learned about classes from probability

vectors produced by the DNN. Resulting models have stronger

generalizations capabilities outside of their training set.

A limitation of defensive distillation is that it is only appli-

cable to DNN models that produce an energy-based probability

distribution, for which a temperature can be defined. Indeed,

this paper’s implementation of distillation is dependent on

an engergy-based probability distribution for two reasons: the

softmax produces the probability vectors and introduces the

temperature parameter. Thus, using defensive distillation in

machine learning models different from DNNs would require

additional research efforts. However note that many machine

learning models, unlike DNNs, don’t have the model capacity

to be able to resist adversarial examples. For instance, Good-

fellow et al. [9] showed that shallow models like linear models

are also vulnerable to adversarial examples and are unlikely

to be hardened against them. A defense specialized to DNNs,

guaranteed by the universal approximation property to at least

be able to represent a function that correctly processes ad-

versarial examples, is thus a significant step towards building

machine learning models robust to adversarial samples.

595595

In our evaluation setup, we defined the distance measure

between original samples and adversarial samples as the

number of modified features. There are other metrics suit-

able to compare samples, like L1, L2 norms. Using different

metrics will produce different distortions and can be pertinent

in application domains different from computer vision. For

instance, crafting adversarial samples from real malware to

evade existing detection methods will require different metrics

and perturbations [16], [37]. Future work should investigate

the use of various distance measures.

One question is also whether the probabilities, used to

transfer knowledge in this paper, could be replaced by soft

class labels. For a N -class classification problem, soft labels

are obtained by replacing the target value of 1 for the correct

class with a target value of 0.9, and for the incorrect classes

replacing the target of 0 with 1
10·N . We empirically observed

that the improvements to the neural network’s robustness are

not as significant with soft labels. Specifically, we trained

the MNIST DNN used in Section V using soft labels. The

misclassification rate of adversarial samples, crafted using

MNIST test data and the same attack parameters than in

Section V, was of 86.00%, whereas the distilled model studied

in Section V had a misclassification rate smaller than 1% We

believe this is due to the relative information between classes

encoded in probability vectors and not in soft class labels.

Inspired by an early public preprint of this paper, Warde-Farley

and Goodfellow [38] independently tested label smoothing,

and found that it partially resists adversarial examples crafted

using the fast gradient sign method [9]. One possible inter-

pretation of these conflicting results is that label smoothing

without distillation is smart enough to defend against simple,

inexpensive methods [9] of adversarial example crafting but

not more powerful iterative methods used in this paper [7].

Future work should also evaluate the performance of de-

fensive distillation in the face of different perturbation types.

For instance, while defensive distillation is a good defense

against the attack studied here [7], it could still be vulnerable

to other attacks based on L-BFGS [8], the fast gradient sign

method [9], or genetic algorithms [32]. However, against such

techniques, the preliminary results from [38] are promising

and worthy of exploration; it seems likely that distillation will

also have a beneficial defensive impact with such techniques.

In this paper, we did not compare our defense technique

to traditional regularization techniques because adversarial

examples are not a traditional overfitting problem [9]. In

fact, previous work showed that a wide variety of traditional

regularization methods including dropout and weight decay

either fail to defend against adversarial examples or only do

so by seriously harming accuracy on the original task [8], [9].

Finally, we would like to point out that defensive distillation

does not create additional attack vectors, in other words does

not start an arms race between defenders and attackers. Indeed,

the attacks [8], [9], [7] are designed to be approximately

optimal regardless of the targeted model. Even if an attacker

knows that defensive distillation is being used, it is not clear

how he could exploit this to adapt its attack. By increasing

confidence estimates across a lot of the model’s input space,

defensive distillation should lead to strictly better models.

VII. RELATED WORK

Machine learning security [39] is an active research area in

the security community [40]. Attacks have been organized in

taxonomies according to adversarial capabilities in [12], [41].

Biggio et al. studied binary classifiers deployed in adversarial

settings and proposed a framework to secure them [42]. Their

work does not consider deep learning models but rather binary

classifiers like Support Vector Machines or logistic regression.

More generally, attacks against machine learning models can

be partitioned by execution time: during training [43], [44] or

at test time [14] when the model is used to make predictions.
Previous work studying DNNs in adversarial settings fo-

cused on presenting novel attacks against DNNs at test time,

mainly exploiting vulnerabilities to adversarial samples [7],

[9], [8]. These attacks were discussed in depth in section II.

These papers offered suggestions for defenses but their inves-

tigation was left to future work by all authors, whereas we

proposed and evaluated a full defense mechanism to improve

the resilience of DNNs to adversarial perturbations.
Nevertheless some attempts were made at making DNN

resilient to adversarial perturbations. Goodfellow et al. showed

that radial basis activation functions are more resistant to

perturbations, but deploying them requires important modi-

fications to the existing architecture [9]. Gu et al. explored the

use of denoising auto-encoders, a DNN type of architecture

intended to capture main factors of variation in the data, and

showed that they can remove substantial amounts of adver-

sarial noise [17]. However the resulting stacked architecture

can again be evaded using adversarial samples. The authors

therefore proposed a new architecture, Deep Contractive Net-

works, based on imposing layer-wise penalty defined using the

network’s Jacobian. This penalty however limits the capacity

of Deep Contractive Networks compared to traditional DNNs.

VIII. CONCLUSIONS

In this work we have investigated the use of distillation, a

technique previously used to reduce DNN dimensionality, as a

defense against adversarial perturbations. We formally defined

defensive distillation and evaluated it on standard DNN archi-

tectures. Using elements of learning theory, we analytically

showed how distillation impacts models learned by deep neural

network architectures during training. Our empirical findings

show that defensive distillation can significantly reduce the

successfulness of attacks against DNNs. It reduces the success

of adversarial sample crafting to rates smaller than 0.5% on the

MNIST dataset and smaller than 5% on the CIFAR10 dataset

while maintaining the accuracy rates of the original DNNs.

Surprisingly, distillation is simple to implement and introduces

very little overhead during training. Hence, this work lays out

a new foundation for securing systems based on deep learning.
Future work should investigate the impact of distillation on

other DNN models and adversarial sample crafting algorithms.

One notable endeavor is to extend this approach outside of the

scope of classification to other DL tasks. This is not trivial as

it requires finding a substitute for probability vectors used in

defensive distillation with similar properties. Lastly, we will

explore different definitions of robustness that measure other

aspects of DNN resilience to adversarial perturbations.

596596

ACKNOWLEDGMENT

The authors would like to thank Damien Octeau, Ian Good-

fellow, and Ulfar Erlingsson for their insightful comments.

Research was sponsored by the Army Research Laboratory

and was accomplished under Cooperative Agreement Number

W911NF-13-2-0045 (ARL Cyber Security CRA). The views

and conclusions contained in this document are those of the au-

thors and should not be interpreted as representing the official

policies, either expressed or implied, of the Army Research

Laboratory or the U.S. Government. The U.S. Government is

authorized to reproduce and distribute reprints for Government

purposes notwithstanding any copyright notation here on.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[2] T. N. Sainath, A.-r. Mohamed, B. Kingsbury, and B. Ramabhadran,
“Deep convolutional neural networks for lvcsr,” in Acoustics, Speech
and Signal Processing (ICASSP), 2013 IEEE International Conference
on. IEEE, 2013, pp. 8614–8618.

[3] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. Le-
Cun, “Overfeat: Integrated recognition, localization and detection using
convolutional networks,” in International Conference on Learning Rep-
resentations (ICLR 2014). arXiv preprint arXiv:1312.6229, 2014.

[4] G. E. Dahl, J. W. Stokes, L. Deng, and D. Yu, “Large-scale malware
classification using random projections and neural networks,” in Acous-
tics, Speech and Signal Processing (ICASSP), 2013 IEEE International
Conference on. IEEE, 2013, pp. 3422–3426.

[5] Z. Yuan, Y. Lu, Z. Wang, and Y. Xue, “Droid-sec: deep learning in
android malware detection,” in Proceedings of the 2014 ACM conference
on SIGCOMM. ACM, 2014, pp. 371–372.

[6] E. Knorr, “How paypal beats the bad guys
with machine learning,” 2015. [Online]. Avail-
able: http://www.infoworld.com/article/2907877/machine-learning/how-
paypal-reduces-fraud-with-machine-learning.html

[7] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,”
in Proceedings of the 1st IEEE European Symposium on Security and
Privacy. IEEE, 2016.

[8] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” in Proceedings
of the 2014 International Conference on Learning Representations.
Computational and Biological Learning Society, 2014.

[9] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in Proceedings of the 2015 International Con-
ference on Learning Representations. Computational and Biological
Learning Society, 2015.

[10] NVIDIA, “Nvidia tegra drive px: Self-driving car computer,” 2015.
[Online]. Available: http://www.nvidia.com/object/drive-px.html

[11] D. Cireşan, U. Meier, J. Masci et al., “Multi-column deep neural network
for traffic sign classification.”

[12] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. Tygar, “Ad-
versarial machine learning,” in Proceedings of the 4th ACM workshop
on Security and artificial intelligence. ACM, 2011, pp. 43–58.

[13] B. Biggio, G. Fumera et al., “Pattern recognition systems under attack:
Design issues and research challenges,” International Journal of Pattern
Recognition and Artificial Intelligence, vol. 28, no. 07, p. 1460002, 2014.

[14] B. Biggio, I. Corona, D. Maiorca, B. Nelson et al., “Evasion attacks
against machine learning at test time,” in Machine Learning and
Knowledge Discovery in Databases. Springer, 2013, pp. 387–402.

[15] A. Anjos and S. Marcel, “Counter-measures to photo attacks in face
recognition: a public database and a baseline,” in Proceedings of the
2011 International Joint Conference on Biometrics. IEEE, 2011.

[16] P. Fogla and W. Lee, “Evading network anomaly detection systems:
formal reasoning and practical techniques,” in Proceedings of the 13th
ACM conference on Computer and communications security. ACM,
2006, pp. 59–68.

[17] S. Gu and L. Rigazio, “Towards deep neural network architectures
robust to adversarial examples,” in Proceedings of the 2015 International
Conference on Learning Representations. Computational and Biological
Learning Society, 2015.

[18] J. Ba and R. Caruana, “Do deep nets really need to be deep?” in
Advances in Neural Information Processing Systems, 2014, pp. 2654–
2662.

[19] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” in Deep Learning and Representation Learning Workshop at
NIPS 2014. arXiv preprint arXiv:1503.02531, 2014.

[20] Y. LeCun and C. Cortes, “The mnist database of handwritten digits,”
1998.

[21] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” 2009.

[22] Y. Bengio, I. J. Goodfellow, and A. Courville, “Deep learning,”
2015, book in preparation for MIT Press. [Online]. Available:
http://www.iro.umontreal.ca/˜bengioy/dlbook

[23] G. E. Hinton, “Learning multiple layers of representation,” Trends in
cognitive sciences, vol. 11, no. 10, pp. 428–434, 2007.

[24] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning represen-
tations by back-propagating errors,” Cognitive modeling, vol. 5, 1988.

[25] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization,” The Journal of Machine Learning Research, vol. 13, no. 1,
pp. 281–305, 2012.

[26] X. Glorot, A. Bordes, and Y. Bengio, “Domain adaptation for large-
scale sentiment classification: A deep learning approach,” in Proceedings
of the 28th International Conference on Machine Learning (ICML-11),
2011, pp. 513–520.

[27] J. Masci, U. Meier, D. Cireşan et al., “Stacked convolutional auto-
encoders for hierarchical feature extraction,” in Artificial Neural Net-
works and Machine Learning–ICANN 2011. Springer, 2011, pp. 52–59.

[28] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and
S. Bengio, “Why does unsupervised pre-training help deep learning?”
The Journal of Machine Learning Research, vol. 11, pp. 625–660, 2010.

[29] T. Miyato, S. Maeda, M. Koyama et al., “Distributional smoothing by
virtual adversarial examples,” CoRR, vol. abs/1507.00677, 2015.

[30] A. Fawzi, O. Fawzi, and P. Frossard, “Analysis of classifiers’ robustness
to adversarial perturbations,” in Deep Learning Workshop at ICML 2015.
arXiv preprint arXiv:1502.02590, 2015.

[31] H. Drucker and Y. Le Cun, “Improving generalization performance
using double backpropagation,” Neural Networks, IEEE Transactions
on, vol. 3, no. 6, pp. 991–997, 1992.

[32] A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are easily
fooled: High confidence predictions for unrecognizable images,” in In
Computer Vision and Pattern Recognition (CVPR 2015). IEEE, 2015.

[33] G. Cybenko, “Approximation by superpositions of a sigmoidal function,”
Mathematics of Control, Signals, and Systems , vol. 5, no. 4, p. 455,
1992.

[34] S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Sridharan, “Learn-
ability, stability and uniform convergence,” The Journal of Machine
Learning Research, vol. 11, pp. 2635–2670, 2010.

[35] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Des-
jardins, J. Turian, D. Warde-Farley, and Y. Bengio, “Theano: a cpu
and gpu math expression compiler,” in Proceedings of the Python for
scientific computing conference (SciPy), vol. 4. Austin, TX, 2010, p. 3.

[36] E. Battenberg, S. Dieleman, D. Nouri, E. Olson, A. van den Oord,
C. Raffel, J. Schlter, and S. Kaae Snderby, “Lasagne: Lightweight
library to build and train neural networks in theano,” 2015. [Online].
Available: https://github.com/Lasagne/Lasagne

[37] B. Biggio, K. Rieck, D. Ariu, C. Wressnegger et al., “Poisoning
behavioral malware clustering,” in Proceedings of the 2014 Workshop
on Artificial Intelligent and Security Workshop. ACM, 2014, pp. 27–36.

[38] D. Warde-Farley and I. Goodfellow, “Adversarial perturbations of deep
neural networks,” in Advanced Structured Prediction, T. Hazan, G. Pa-
pandreou, and D. Tarlow, Eds., 2016.

[39] M. Barreno, B. Nelson, A. D. Joseph, and J. Tygar, “The security of
machine learning,” Machine Learning, vol. 81, no. 2, pp. 121–148, 2010.

[40] W. Xu, Y. Qi et al., “Automatically evading classifiers,” in Proceedings
of the 2016 Network and Distributed Systems Symposium, 2016.

[41] M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and J. D. Tygar,
“Can machine learning be secure?” in Proceedings of the 2006 ACM
Symposium on Information, computer and communications security.
ACM, 2006, pp. 16–25.

[42] B. Biggio, G. Fumera, and F. Roli, “Security evaluation of pattern
classifiers under attack,” Knowledge and Data Engineering, IEEE Trans-
actions on, vol. 26, no. 4, pp. 984–996, 2014.

[43] B. Biggio, B. Nelson, and L. Pavel, “Poisoning attacks against support
vector machines,” in Proceedings of the 29th International Conference
on Machine Learning, 2012.

[44] B. Biggio, B. Nelson, and P. Laskov, “Support vector machines under
adversarial label noise.” in ACML, 2011, pp. 97–112.

597597

