
Clickstream User Behavior Models

GANG WANG, Virginia Tech and UC Santa Barbara
XINYI ZHANG and SHILIANG TANG, UC Santa Barbara
CHRISTO WILSON, Northeastern University
HAITAO ZHENG and BEN Y. ZHAO, UC Santa Barbara

The next generation of Internet services is driven by users and user generated content. The complex nature
of user behavior makes it highly challenging to manage and secure online services. On one hand, service
providers cannot e�ectively prevent attackers from creating large numbers of fake identities to disseminate
unwanted content (e.g., spam). On the other hand, abusive behavior from real users also poses signi�cant
threats (e.g., cyberbullying).

In this paper, we propose clickstream models to characterize user behavior in large online services. By
analyzing clickstream traces i.e., sequences of click events from users, we seek to achieve two goals. 1)
Detection: to capture distinct user groups for the detection of malicious accounts. 2) Understanding: to extract
semantic information from user groups to understand the captured behavior. To achieve these goals, we
build two related systems. The �rst one is a semi-supervisedsystem to detect malicious user accounts (Sybils).
The core idea is to build a clickstream similarity graph where each node is a user and an edge captures the
similarity of two users’ clickstreams. Based on this graph, we propose a coloring scheme to identify groups of
malicious accounts without relying on a large labeled dataset. We validate the system using ground-truth
clickstream traces of 16,000 real and Sybil users from Renren, a large Chinese social network. The second
system is an unsupervisedsystem that aims to capture and understand the �ne-grained user behavior. Instead
of binary classi�cation (malicious or benign), this model identi�es the natural groups of user behavior and
automatically extracts features to interpret their semantic meanings. Applying this system to Renren and
another online social network Whisper (100K users), we help service providers to identify unexpected user
behaviors and even predict users’ future actions. Both systems received positive feedback from our industrial
collaborators including Renren, LinkedIn, and Whisper after testing on their internal clickstream data.
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1 INTRODUCTION

The next generation of Internet services is driven by users and user generated content. Whether
it’s online social networks, online review services (Yelp, TripAdvisor), content sharing communi-
ties (Reddit) or crowdsourcing systems (Amazon Turk, TaskRabbit), their success is increasingly
dependent on active and well-behaved users.

Due to the complex and diverse nature of user behavior, it is more challenging than ever to
manage and secure these online services. On one hand, service providers cannot prevent attackers
from creating large numbers of fake identities (Sybils) to disseminate unwanted content [15].
Existing defenses such as online Turing tests (CAPTCHAs) are routinely solved by dedicated
workers for pennies [40], and even complex tasks can be overcome by a growing community of
malicious crowdsourcing services [42, 62]. The result is a dramatic rise in forged and malicious
content such as fake reviews on Yelp [57], malware and spam on social networks [5, 19, 21, 30], and
rogue political lobbying campaigns [53]. On the other hand, even among the real-user population,
toxic and abusive behavior such as cyberbullying [7, 27] and trolling [34] is signi�cantly threatening
the well-being of online communities.

Recent work has explored a number of solutions to detect fake accounts (Sybils) and abusive
behavior. Existing Sybil detection systems mostly rely on social graphs [14, 56, 69, 70], with a key
assumption that Sybils have di�culty to befriend with real users. This forces Sybils to connect
to each other to form strongly connected subgraphs, and makes them detectable for community
detection algorithms [58]. However, recent measurements show that real-world Sybils have broken
this assumption by integrating themselves into real user communities [67].

In an e�ort to detect abusive behavior, existing approaches often rely on supervisedmachine
learning to build classi�ers based on pre-de�ned features [3, 59, 68]. However, these systems
require large ground-truth data for training. Once the models are trained, they only detect the same
malicious behavior in the training data and fail to identify new attacks. More importantly, machine
learning models often serve as a “blackbox”, which o�ers little knowledge about how attackers (as
well as real users) behave, and how their behavior changes over time.

In this paper, we describe a new approach towards detectingand understandinguser behavior in
online systems for combatting abuse. The core idea is to build detailed user behavior models using
clickstreamtraces. Clickstreams are timestamped server-side traces of click events, generated by
users during their web browsing “sessions” or interactions with mobile apps [22, 37, 46]. Our goal
is to build clickstream models to detect previously unknown attacks (e.g., Sybil accounts) without
relying on large ground-truth data. More importantly, we seek to provide mechanisms to interpret
and understand captured behavior, and track behavior changes over time.

Our e�orts lead to two related clickstream analytics systems for the detectionand interpretationof
user behavior. The �rst system takes a semi-supervised approach to detect malicious user accounts
(Sybils). The second system is unsupervised, extending the basic model to interpret �ne-grained
user (attacker) behavior.

First, we build a Sybil detection system based on the intuition that Sybils and real users are likely
to have di�erent click patterns when they interact with online services. For example, real users
likely partake of numerous actions while Sybils focus on speci�c actions (i.e., acquiring friends
and disseminating spam) to maximize utility per time spent. These di�erences will manifest as
signi�cantly di�erent (and distinctive) patterns in clickstreams, making them e�ective tools for
“pro�ling” user behavior. To capture the di�erent “pro�les” of user behaviors, we build a clickstream
similarity graph to capture pairwise “similarity distance” between user clickstreams, and apply
clustering to identify groups of user behavior patterns. We validate our models using ground-truth
clickstream traces from 16,000 real and Sybil users from Renren, a large Chinese social network.
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Our system only requires a small set of known “good” users to color captured behavior clusters,
eliminating the need for a large ground-truth data. We apply our system to real social networks
Renren and LinkedIn and detected previously unknown attacks.

To further provide semantic interpretations on captured behavior, we build a second system as
an extension of the above clickstream model. Instead of simply performing binary classi�cation
on users, this model identi�es natural clusters of users, and extracts key features to interpret
captured behavior. More speci�cally, we propose an iterative feature pruningalgorithm to partition
the clickstream similarity graph, which removes the in�uence of dominating features from each
subsequent layer of clusters. The result is a hierarchy of clusters where higher-level clusters
represent more general user behavior patterns, and lower-level clusters further identifying smaller
groups that di�er in key behavioral patterns. We can further use Chi-square statistics to identify
statistical features that can be used to categorize and label behavior groups. We validate the
system using the Renren dataset above, and another 135 million click events from 100K users on
Whisper, a popular anonymous social network app. Our system revealed key insights about users
on both networks, including identifying and predicting dormant users (Whisper), capturing hostile
behaviors during private chat (Whisper), and revealing di�erent Sybil attack strategies that seek to
evade existing defenses (Renren).

Our paper makes four key contributions towards detecting and understanding user/attacker
behavior in online services.

• We propose a novel semi-supervisedsystem to detect malicious users. Our system is based on
a clickstream similarity graph to capture user clusters to di�erentiate normal and malicious
(Sybil) users. Our Sybil detector requires minimal input from the service providers (semi-
supervised). Experiments using real-world clickstream data show accurate detection results
(<1% false positives and <4% false negatives).

• We extend the basic model for a new unsupervisedsystem to interpret the captured user
clusters. With an iterative feature pruningalgorithm, we capture user behavior models as
hierarchical clusters. Our tool automatically produces key features to interpret the meaning
of the clusters. Applying this system to two real-world clickstream datasets (142 million
clicks in total) helps to identify unexpected user behavior (malicious accounts in Renren,
hostile chatters in Whisper), and even predict users’ future actions.

• We build a visualization interface to visualize the clustering results1. Our user study shows
this tool is easy to use. People can e�ective extract semantic labels for given behavior
clusters, and interpret the meaning of the captured behavior.

• Working closely with industrial collaborators, we have deployed our Sybil detector in real-
world social networks (Renren and LinkedIn) and captured previously unknown attacks.
Our unsupervised behavior model and the visualization tool have received positive feedback
from Whisper Data Science team.

2 RELATED WORK

User Behavior Modeling in Online Services. Understanding user behavior is important to
the design and operation of online services. Recent works analyze network tra�c and server logs
to study users’ search intent [44] and Wikipedia editing patterns [20] and to characterize user
activities in online social networks [4, 48].
Clickstream Analysis. Earlier research used clickstream data for Web Usage Mining [2, 24, 25,
49]. Researchers applied simple methods such as Markov Chains to capture users’ navigation paths

1Our tool is available for sharing: http://sandlab.cs.ucsb.edu/clickstream
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within a website [4, 26, 37, 46]. However, these models focus on the simple aspects of user behavior
(e.g., user’s favorite webpage), and are incapable of modeling more sophisticated user behavior.
Other approaches use clustering techniques to identify user groups that share similar clickstream
activities [22, 51, 55]. The resulting clusters can be used to infer user interests [51] or predict future
user behaviors [22]. However, existing clustering based models are largely supervised, requiring
large samples of ground-truth data to train or �ne-tune parameters [46, 55]. Also, many behavioral
models are built as “black boxes” for classi�cation tasks, o�ering little explanations on how users
behave and why [22]. Our work seeks to build unsupervised (or semi-supervised) clickstream
behavioral models and produce intuitive explanations on the models.
Sybil Attack and Defenses. One of the primary goals of analyzing user behavior is to detect
malicious users and activities. Sybils (i.e., groups of fake identi�es) are the foundation of many
online attacks such as spam, scam and political campaigns, malware distribution and identity
theft (collecting personally identi�able information) [19, 21, 53]. The major body of existing work
leverages social graphs to detect Sybils. These systems detect tight-knit Sybil communities that
have a small quotient-cut from the honest region of the graph [10, 14, 58, 69, 70]. However, recent
studies have demonstrated the limitations of this approach. Yang et al.show that Sybils on Renren
blend into the social graph rather than forming tight communities [67]. Mohaisen et al.show that
many social graphs are not fast-mixing, which is a necessary precondition for community-based
Sybil detectors to be e�ective [39].

A second body of work has used supervised classi�ers to detect Sybil behavior on Twitter [3, 68],
Facebook [50] and Amazon [43]. However, relying on speci�c features (e.g., URLs, content, followers)
makes these systems vulnerable to Sybils with di�erent attack strategies. All theses motivate us to
develop novel user behavior models to detect Sybils. In this work, we build Sybil detectors based
on clickstream models (semi-supervised), which do not rely on speci�c assumptions on Sybils
behaviors and resilient to their behavior changes.

Finally, recent works propose to detect spammers and Sybils based on synchronized behaviors,
i.e., performing similar tasks around the same time [5, 6, 11, 30, 31, 36]. These systems build graphs
based on users and their actions such as Facebook likes [6], Twitter following [31], and YouTube
comments [36]). Then they use semi-supervised clustering to detect suspicious user groups with
synchronized actions. These systems along with ours demonstrate the value of semi-supervised
learning in detecting new attacks. Our system di�ers from existing ones: instead of focusing on a
speci�c action (liking or following), but using clickstreams to capture a wider range of user actions
to model their behavior.
Clickstream Visualization. Researchers have developed interactive interfaces to visualize and
inspect clickstream data. Existing tools generally focus on visualizing raw user clicks [38], click
event sequences [71] or click transitions [64]. Instead, we build a tool to visualize clickstream
behavioral clusters and provide hints for understanding user behavior patterns.

3 CLICKSTREAM DATA AND PRELIMINARY ANALYSIS

In this work, we seek to apply clickstream analysis to detecting malicious attackers (i.e., Sybils)
and interpreting complex user behavior. To provide context, we �rst describe the clickstream
datasets used in our study. We obtained server-side clickstream data from two large-scale online
social networks: Renren and Whisper. Renren dataset contains ground-truth normal user accounts
and Sybil accounts, and will be used to evaluate both proposed systems. Whisper dataset only
contains normal users, and will be exclusively used to evaluate the second system for behavior
interpretation. In the following, we brie�y introduce the two datasets, and perform preliminary
analysis to highlight the challenges in detecting malicious users and understanding user behavior.
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Table 1. Clickstream datasets from Whisper and Renren.

Dataset Time # of Users # of Events
Whisper Oct.13–Nov.26 2014 99,990 135,208,159
Renren-Normal Mar.31–Apr.30 2011 5,998 5,856,941
Renren-Sybil Feb.28–Apr.30 2011 9,994 1,008,031

3.1 Renren

Renren is one of the largest online social networks in China with 236 million users as of 2016.2
Renren o�ers similar functionalities as Facebook, allowing users to maintain a personal pro�le
and build social connections. Users can post status updates, write blog entries, share photos, and
interact with other users’ content (e.g., liking and commenting). The key di�erence between Renren
and Facebook is Renren’s “footprint” feature, which allows users to see who have recently visited
their pro�les.

We obtained detailed clickstream data from Renren in collaboration with Renren’s Security team.
A clickstream is the sequence of HTTP requests made by a user to Renren website.3 Most requests
correspond to a user explicitly fetching data by clicking a link or a button, although some requests
may be programmatically generated. A clickstream can be unambiguously attributed to a speci�c
user account, e.g.by examining the HTTP request cookies.

Our Renren dataset contains 5,998 normal users and their clickstream traces over two months
in 2011 (Table 1). These users were selected uniformly at random from Renren user population,
and were manually veri�ed by Renren’s security team. In addition, the dataset includes 9994 Sybil
accounts randomly sampled from all previously banned accounts by Renren. These accounts were
�agged by a number of internal detectors (e.g.,URL blacklists, spam �lters) and crowdsourced user
reports. Sybils accounts in our dataset were manually veri�ed by a volunteer team of Renren. Note
that Renren allows mis-banned users to claim their accounts back by calling Renren’s customer
support. Sybil accounts in our dataset have been banned for at least a year without being claimed,
further eliminating potential false positives. Regarding false negatives, there should be Sybil
accounts that have not been �agged by existing detectors. We will use this dataset to develop and
test new Sybil detection systems to capture previously unknown Sybils.

In this dataset, each click event is characterized by userID, timestamp, event type and event
parameter. The userID in our dataset (including Whisper data) is globally unique and has been fully
anonymized to protect user privacy. We obtained userIDs from each company through internal
collaborators. Our study has been approved by our local IRB under protocol #COMS-ZH-YA-010-6N.
There are 55 types of events grouped into 8 primary categories. These categories cover the major
user actions on Renren, but exclude administrative events such as changing pro�les and resetting
passwords:

• Friending: Sending friend requests, accepting or denying those requests, and un-friending.
• Photo: Uploading photos, organizing albums, tagging friends, browsing photos, and writing

comments.
• Pro�le: Browsing user pro�les. Pro�les on Renren can be browsed by anyone, but the

displayed information is restricted by the owner’s privacy settings.
• Sharing: Users posting URLs linking to videos, blogs or photos in/outside Renren.
• Message: Status updates and instant-messages.
• Blog: Reading/writing blogs, and commenting.
• Noti�cation: Users actively clicking on the noti�cations.

2http://www.renren-inc.com/en/
3Renren also has a mobile version, but it is not as popular as the website at the time of our experiments.
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Table 2. Event types in the Renren dataset. # of click events are presented in thousands. Activities with <1%
of clicks are omi�ed for brevity. All of the events are user-initiated events.

Category Description Sybil Clicks Normal Clicks
# (K) % # (K) %

Friending
Send request 417 41 16 0
Accept invitation 20 2 13 0
Invite from guide 16 2 0 0

Photo Visit photo 242 24 4,432 76
Visit album 25 2 330 6

Pro�le Visit pro�les 160 16 214 4
Share Share content 27 3 258 4
Message Send IM 20 2 99 2
Blog Visit/reply blog 12 1 103 2
Noti�cation Check noti�cation 8 1 136 2

• Like: Users liking (or unliking) content.
Table 2 displays the most popular events. Note that the percentages for click events are calculated

for Sybils and normal users separately, i.e., each “%” column sums to 100%. We �nd Sybils and normal
users behave di�erently. Normal users spend most of their clicks on viewing photos (76%), albums
(6%), and sharing (4%). In contrast, Sybils are skewed to making friend requests (41%), viewing
photos (24%), and browsing pro�les (16%). On Renren, it makes sense for malicious accounts (Sybils)
to try to become friends with normal users, because only by doing so can they access the user’s
private information and share content (spam) with the user. In addition, passively viewing photos
may correspond to data scrapers (crawlers) that massively collect pro�le photos and sell to third
parties (e.g.,dating websites). However, given that other attacks are possible (e.g., manipulating
trending topics [28], passively collecting friends [54]), we cannot rely on these features alone to
identify Sybils.

Note that normal users and Sybils share content (4% and 3%, respectively) as well as send messages
(2% and 2%) at similar rates. It is likely that spammers try to be less aggressive to avoid detection.
This is an important observation, because sharing and messaging are the primary channels for
spam dissemination on Renren. The similar rates of legitimate and illegitimate sharing/messaging
indicate that spam detection systems cannot simply leverage numeric thresholds to detect spam
content.

3.2 Whisper

Whisper is a popular smartphone app for anonymous social messaging. It allows users to share
confessions and secrets under anonymous nicknames without worrying about privacy [13, 61].
As of December 2015, Whisper has reached 20 million users.4 Unlike traditional social networks,
Whisper does not maintain user pro�les or social connections. Its key function is messaging: the
app overlays a user’s short text message on top of a background picture selected by keywords.
For example, a message that describes a “funny moment” may be automatically attached to a
background picture of a smiling face. The resulting whispermessage, looking like an Internet meme,
is posted to the public stream where other users can read, reply or heart (like) it. In addition, the
app provides a chat feature to facilitate direct communication. Any user can start a private chat
with the whisper author. Finally, users browse whispers from several public lists.

We collect detailed clickstream data from Whisper in collaboration with Whisper’s Data Science
team. The dataset contains 135 million click events from 99,990 users over 45 days in 2014 (Table 1).
Users were randomly selected from the Whisper user populations that have at least 250 clicks

4http://money.cnn.com/2015/12/11/technology/whisper-20-million-users-privacy
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Table 3. Event types in the Whisper dataset. # of click events are presented in thousands. Events that are
<1% are omi�ed for brevity.

Category Event Type Events Initiated
# (K) % By User?

Browsing View whisper 52437 38 Yes
View popular feed 16008 12 Yes
View nearby feed 5354 4 Yes
View latest feed 2346 2 Yes
View other feed 196 1 Yes

Account Login 16994 12 Yes

Posting
Heart whisper 2156 2 Yes
Upload image 1325 1 Yes
Create whisper 1308 1 Yes

Chatting
Being blocked in chat 3271 3 No
Block user in chat 3271 3 Yes
Start a chat 2238 2 Yes

Noti�cation Receive noti�cation 9680 7 No
Whisper recommendation 2530 2 No

(Figure 1) over this time period as a representative sample. Our Whisper dataset does not contain
Sybils accounts. To the best of our knowledge, Sybils are not a primary threat to the Whisper network.
The Whisper dataset contains 33 types of events grouped into 6 categories. These categories are:

• Browsing: Browsing whispers, visiting the public whisper feeds (popular/nearby/latest
list).

• Account: Creating a user account and login the app.
• Posting: Posting original whispers and replies, hearting/unhearting a whisper, sharing

whispers, and tagging a whisper to a topic.
• Chatting: Initiating a chat, blocking other users in a chat, and being blocked in a chat.
• Noti�cation: Receiving noti�cations about hearts/replies on their whispers, and whisper

recommendations.
• Spam: Whispers being examined or deleted by system admins, �agging other people’

whispers. Events in this category are all below 1% (omitted from Table 3).

Among the 33 event types, 25 are user-initiated events corresponding to the user performing
an action on the app (e.g., “posting a whisper”). The rest 8 events are system events which don’t
require user action (e.g., “receiving noti�cations”). Table 3 shows the most popular events and
the absolute number (in thousands) and the percent of clicks. Overall, the most prevalent events
are related to content consumption such as viewing whispers. Interestingly, under the chatting
category, the most prevalent events are “blocking users” and “being-blocked” by others. Intuitively,
an anonymous environment is more likely to foster abusive behaviors (e.g., bullying) [52]. Later,
we investigate this behavior in greater details using behavioral models.

Our Whisper dataset also contains the content of the public whispers (about 1 million) posted by
these users. This content data is not used to construct clickstreams, but used to understand speci�c
user behavior and user intent later in our analysis. We don’t have any content data in the Renren
dataset.

3.3 Session-level Characteristics

To provide contexts for user activities in Renren and Whisper, we analyze their session-level
characteristics. Each user’s clickstream can be divided into sessions, where a session represents the
sequence of a user’s clicks during a single visit to Renren (or Whisper). Unfortunately, users do

ACM Transactions on the Web, Vol. 0, No. 0, Article 0. Publication date: March 2017.



0:8 Gang Wang, Xinyi Zhang, Shiliang Tang, Christo Wilson, Haitao Zheng, and Ben Y. Zhao

 0

 20

 40

 60

 80

 100

 10  100  1000  10000

C
D

F 
of

 U
se

rs
 (%

)

Total # of Events per User

Renren-Sybil

Renren-Normal

Whisper

Fig. 1. Number of click events per
user.

 0

 20

 40

 60

 80

 100

 1  2  3  4  5  6  7  8  9  10

C
D

F 
of

 U
se

rs
 (%

)

Sessions Per Day Per User

Renren-Sybil
Whisper

Renren-Normal

Fig. 2. # of Sessions per day per
user.

 0

 20

 40

 60

 80

 100

 1  10  100  1000

C
D

F
 o

f U
se

rs
 (

%
)

Average Session Length Per User (Seconds)

Renren-Sybil
Renren-Normal

Whisper

Fig. 3. Average session length per
user.

 0

 20

 40

 60

 80

 100

 1  10  100

C
D

F
 o

f U
se

rs
 (

%
)

Average Clicks Per Session Per User

Renren-Sybil
Renren-Normal

Whisper

Fig. 4. Avg. # of click events per ses-
sion per user.

 0

 20

 40

 60

 80

 100

 0.1  1  10  100

C
D

F 
of

 U
se

rs
 (%

)

Average Inter-arrival Time 
 Per Session Per User (Seconds)

Renren-Sybil
Whisper

Renren-Normal

Fig. 5. Avg. click time interval per
session per user.

not always explicitly end their session by logging out. As in prior work, we assume that a user’s
session is over if they do not make any requests for 20 minutes [4]. Session duration is calculated
as the time interval between the �rst and last click within a session. Overall, Renren traces contain
113,595 sessions for Sybils and 467,179 sessions for normal users. Whisper traces contain 2,440,264
sessions in total. In the following, we examine their session-level statistics as well as the click
transitions within sessions.
Session Length and Frequency. Figure 2–5 shows di�erent statistics regarding the sessions
of Renren normal users and Sybils, and Whisper users. We �nd both Renren normal users and
Whisper users behave signi�cantly di�erent from Sybil accounts. More speci�cally, Sybils have
fewer sessions per day. As shown in Figure 2, 80% of Sybil accounts only have 1 sessions per day.
In addition, the duration of Sybil sessions is also much shorter with fewer clicks (Figure 3–4): 70%
of Sybil sessions are <100 seconds long, while the vast majority of normal sessions last several
minutes. Finally, as shown in Figure 5, the average inter-arrival time between Sybil clicks is an
order of magnitude shorter than for normal clicks. This indicates that Sybils do not linger on pages,
and some of their activities may be automated.

The observed session-level Sybil characteristics are driven by attacker’s attempts to circumvent
Renren’s security features. Renren limits the number of actions each account can take, e.g., 50
friend requests per day, and 100 pro�les browsed per hour. Thus, in order to maximize e�ciency,
attackers create many Sybils, quickly login to each one and perform malicious activities (e.g.,
sending unsolicited friend requests and spam), then logout and move to the next Sybil. As shown
in Table 2, Sybils spend a great deal of clicks sending friend requests and browsing pro�les, despite
Renren’s security restrictions.

In addition, we observe that Whisper users have longer sessions than Renren users (Figure 3 and
Figure 4). One possibly explanation is that Whisper takes advantage of the always-on smartphones,
which enables easier access to the service (e.g., users can login to the service even when they are
walking or taking the bus).
Click Transitions. Next, we examine di�erences in their click ordering, i.e., how likely is it
for a user to transition from activity A to activity B during a single session? We use a Markov
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Chain model to analyze click transitions. In this model, each state is a click category, and edges
represent transitions between categories. We add two abstract states, initial and �nal, that mark
the beginning and end of each click session. Figure 6 shows the category transition probabilities for
is the result for Whisper users, and Figure 7 and Figure 8 are the results for normal users and Sybils
in Renren. The sum of all outgoing transitions from each category is 1.0. To reduce the complexity
of the diagram, edges with probability <5% are pruned (except for transitions to the �nal state).

Figure 8 demonstrates that Sybils follow a very regimented set of behaviors. After logging-
in Sybils immediately begin with friend invitation spamming or pro�le browsing. The pro�le
browsing path represents crawling behavior: the Sybil repeatedly views user pro�les until their
daily allotment of views is exhausted. Sybils don’t often start with photo crawling (0.06). But once
they get started, they are likely to keep crawling photos without switching to other actions (0.91).

On the contrary, Figure 6–7 show that normal users engage in a wider range of activities, and
the transitions between states are more diverse. For Renren normal users, the highest centrality
category is photos, and it is also the most probable state after login. Intuitively, users start from
their newsfeed, where they are likely to see and click on friends’ recent photos. The second most
probable state after login is checking recent noti�cations. Similar for Whisper, the most probable
state after login is checking noti�cations and browsing whisper messages. Note that some people
will go through “login” again5 before browsing, if they have closed the app on the phone. For both
Renren and Whisper users, actions related to generating new content (e.g., Sharing, Messaging,
Posting) have low probability states. This is consistent with the results of earlier studies, which
show that content generation is less frequent than consumption in online social networks [29, 65].

5Login is usually automated, without requiring users to enter a password.
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3.4 Discussion

In summary, we have analyzed the clickstream data from Renren and Whisper to characterize
user behavior from three angles: click events, sessions, and click transitions. We have two key
observations from our initial data analysis:
Sybil detection. Our analysis reveals the di�erent behaviors of Sybil and normal users accounts
on Renren, which suggests the possibility of using clickstream data for Sybil detection. Here we
�rst explore a supervised Sybil detection method by directly applying these features, and discuss
why this approach is limited in practice.

For this experiment, we extract features from session-level information and click activities, and
build a Support Vector Machine (SVM) [45] classi�er. These features include 4 session features
(average clicks per session, average session length, average inter-arrival time between clicks, and
average sessions per day) and 8 activity features (percentage of clicks in each of the 8 Renren event
categories). We computed values for all 12 features for all users in Renren dataset, input the data to
an SVM, and ran 10 fold cross-validation. The resulting classi�cation accuracy was 98.9%, with 0.8%
false positives (i.e., classify normal users as Sybils) and 0.13% false negatives (i.e., classify Sybils as
normal users).

While our SVM results are quite good, a supervised approach has key limitations. In practice, we
would like to avoid detection models that are heavily dependent on large ground truth datasets,
since the resulting detector can only capture attackers observed in the past (biased). In addition,
Sybils can apply speci�c changes to their behavior to evade the detection [67]. For a practical Sybil
detection system, we seek to develop clickstream analysis techniques that leverage unsupervised
learning on real-time data samples, i.e.require zero or little ground-truth. In the following, we will
focus on developing clickstreams models for real-time, unsupervised Sybil detection (Section 4, 5,
6), and detecting new attacks in real-world online social networks (Section 7).
From Sybil detection to behavior modeling and interpretation. Sybil detection only treats
users in a binary fashion, while user behaviors in today’s online services are more complex. Tools
like session analysis or Markov Chain models can only scratch the surface. First, these tools treat
all the users as a single population (or group) and analyze their behaviors as a whole. This is
insu�cient to identify the �ne-grained, di�erent user types or behaviors in the service. For example,
even within the Sybil accounts, there are likely di�erent attacking strategies by di�erent attackers,
which are hidden from the current analysis. Second, as shown in Figure 6–8, user behavior can be
very complex even though we only look at the high-level “categories” of their click events. To these
ends, we will further build a generic clickstream analysis tool to identify the natural groups of
user behaviors. More importantly, we provide mechanisms to help service providers to e�ectively
interpret and understand the captured behavior (Section 8, 9, 10 and 11).

4 CLICKSTREAM MODELING AND CLUSTERING

We start by addressing the “detection” part of behavior modeling (§ 4 –7), and will discuss the
“interpretation” aspect in later sections (§ 8–11). In the following, we build a clickstream model to
detect Sybils in online social networks. As shown in earlier analysis, clickstream data for Sybils and
normal users captured the di�erences in their behavior. We build models of user activity patterns
that can e�ectively distinguish Sybils from normal users. Our goal is to cluster similar clickstreams
together to form general user “pro�les” that capture speci�c activity patterns. We then leverage
these clusters (or pro�les) to build a Sybil detection system. The current section (Section 4) focuses
on the clickstream model, and in Section 5, we develop an incremental Sybil detector that can
scale with today’s large social networks. We extend this detector in Section 6 by proposing a
semi-supervised Sybil detector, where only a minimal (and �xed) amount of ground-truth is needed.
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Finally, in Section 7, we describe the experimental experience of testing our prototype code in
real-world social networks (Renren and LinkedIn).

We begin this section by de�ning three models to represent a user’s clickstream. For each model,
we describe similarity metrics that allow us to cluster similar clickstreams together. Finally, we
use our ground-truth data to evaluate the e�cacy of each model in distinguishing Sybils from
normal users. We build upon these results later to develop practical Sybil detection systems based
on clickstream analysis.

4.1 Clickstream Models

We start by de�ning clickstream models. At the high-level, we construct one clickstream for each
user to capture all her clicks, since our Sybil detection is at the user account level. We did not divide
the clickstream into sessions, considering individual sessions can be too short to model a user’s
behavior. Below, we present three models to capture a user’s clickstream.
Click Sequence Model. We start with the most straightforward model, which only considers
click events. As shown in Section 3, Sybils and normal users exhibit di�erent click transition
patterns and focus their energy on di�erent activities. The Click Sequence (CS) Model treats each
user’s clickstream as a sequence of click events, sorted by order of arrival.
Time-based Model. As shown in Figure 5, Sybils and normal users generate click events at
di�erent speeds. The Time-based Model focuses on the distribution of gaps between events: each
user’s clickstream is represented by a list of inter-arrival times [t1, t2, t3, ..., tn] where n is the
number of clicks in a user’s clickstream.
Hybrid Model. The Hybrid Model combines click types and click inter-arrival times. Each user’s
clickstream is represented as an in-order sequence of clicks along with inter-event gaps between
clicks. An example is shown in Figure 9: [A, t1, B, t2,C, t3,A, t4, B] where A, B,C are click types, and
ti is the time interval between the i th and (i + 1)th event.

Click types.Both the Click Sequence Model and the Hybrid Model represent each event in the
sequence by its click event type. We note that we can control how granular the event types are
in our sequence representation. One approach is to encode clicks based on their speci�c activity.
Renren’s logs de�ne 55 unique activities. Another option is to encode click events using their
broader category. In our dataset, our 55 activities fall under 8 click categories (see Section 3). Our
experimental analysis evaluates both representations to understand the impact of granularity on
model accuracy.

4.2 Computing Sequence Similarity

Having de�ned three models of clickstream sequences, we now move on to investigating methods
to quantify the similarity between clickstreams. In other words, we want to compute the distance
between pairs of clickstreams. First, we discuss general approaches to computing the distance
between sequences. Then we discuss how to apply each approach to our three clickstream models.

4.2.1 Defining Distance Functions. We de�ne three distance functions as following:
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Common Subsequences. The �rst distance metric involves locating the common subsequences
of varying lengths between two clickstreams. We formalize a clickstream as a sequence S =
(s1s2...si ...sn ), where si is the i th element in the sequence. We then de�ne TN as the set of all
possible k-grams (k consecutive elements) in sequence Swith where k ≤ N : TN (S) = {k-gram|k-
gram = (sisi+1...si+k−1), i ∈ [1,n + 1 − k],k ∈ [1, N]}. Simply put, each k-gram in TN (S) is a
subsequence of S with a length of k. Finally, the distance between two sequences can then be
computed based on the number of common subsequences shared by the two sequences. Inspired
by the Jaccard Coe�cient[35], we de�ne the distance between sequences S1 and S2 as:

DN (S1,S2) = 1 −
|TN (S1) ∩ TN (S2) |
|TN (S1) ∪ TN (S2) |

(1)

We will discuss the choice of N in Section 4.2.2.
Common Subsequences With Counts. The common subsequence metric de�ned above only
measures distinct common subsequences, i.e.it does not consider the frequency of common subse-
quences. We propose a second distance metric that recti�es this by taking the countof common
subsequences into consideration. For sequences S1, S2 and a chosen N , we �rst compute the set
of all possible subsequences from both sequences as T = TN (S1) ∪ TN (S2). Next, we count the
frequency of each subsequence within each sequence i (i = 1, 2) as array [ci1,ci2, ...,cin] where
n = |T |. Finally, the distance between S1 and S2 can be computed as the Euclidean Distancebetween
the two arrays:

D(S1,S2) =
1

√
2

√√ n∑

j=1
(c1j − c2j )2 (2)

Distribution-based Method. Unfortunately, the prior metrics cannot be applied to sequences
of continuous values (i.e., the Time-based Model). Instead, for continuous value sequences S1
and S2, we compute the distance by comparing their value distribution using a two-sample Kol-
mogorovâĂŞSmirnov test (K-Stest). A two-sample K-Stest is a general nonparametric method
for comparing two empirical samples. It is sensitive to di�erences in location and shape of the
empirical Cumulative Distribution Functions (CDF) of the two samples. We de�ne the distance
function using K-S statistics:

D(S1,S2) = supt |Fn;1 (t ) − Fn′;2 (t ) | (3)

where Fn;i (t ) is the CDF of values in sequence Si .

4.2.2 Applying Distances Functions to Clickstreams. Having de�ned three distance functions
for computing sequence similarity, we now apply these metrics to our three clickstream models.
Table 4 summarizes the distance metrics we apply to each of our models. The Time-based Model is
the simplest case, because it only has one corresponding distance metric (K-S Test). For the Click
Sequence and Hybrid Models, we use several di�erent parameterizations of our distance metrics.
Click Sequence Model. We use the common subsequence and common subsequence with
counts metrics to compute distances in the CS model. However, these two metrics require that we
choose N , the maximum number of k for k-gram subsequences to consider. We choose two values
for N : 1 and 10, which we refer to as unigramand 10gram. Unigramrepresents the trivial case of
comparing common click events in two clickstreams, while ignoring the ordering of clicks. 10gram
consider all k-grams where k ≤ 10 (unigram, bigrams, trigrams, etc.). As shown in Table 4, we also
instantiate unigram+countand 10gram+count, which include the frequency counts of each unique
subsequence.
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Table 4. Summary of distance functions.

Model Distance Metrics

Click Sequence Model unigram, unigram+count,
10gram, 10gram+count

Time-based Model K-Stest
Hybrid Model 5gram, 5gram+count

Although values of N > 10 are possible, we limit our experiments to N = 10 for two reasons.
First, given a clickstream of length n, the computational complexity of Ngram is O(nN). When
N = n, this overhead is signi�cant considering that O(n2) subsequences will be computed for
every user in a clickstream dataset. Second, long subsequences have diminishing utility, because
they are likely to be unique for a particular user instead of representing common patterns. In our
tests, we show N = 5 already provides a good limit on computational overhead and subsequence
over-speci�city.
Hybrid Model. Like the Click Sequence Model, distances between sequences in the Hybrid
Model can also be computed using the common subsequence and common subsequence plus count
metrics. The only change between the Click Sequence and Hybrid Models is that we must discretize
the inter-arrival times between clicks so they can be encoded into the sequence. We do this by placing
inter-arrival times into log-scale buckets (in seconds): [0, 1], [1, 10], [10, 100], [100, 1000], [1000, ∞].
Based on Figure 5, the inter-arrival time distribution is highly skewed, so log-scale buckets are
better suited than linear buckets to evenly encode the times.

After we discretize the inter-arrival times and insert them into the clickstream, we use N = 5 as the
parameter for con�guring the two distance metrics. Further increasing N o�ers little improvement
in the model but introduces extra computation overhead. As shown in Table 4, we refer to these
metrics as 5gramand 5gram+count. Thus, each 5gram contains three consecutive click events along
with two tokens representing inter-arrival time gaps between them.

4.3 Sequence Clustering

At this point, we have de�ned models of clickstreams as well as metrics for computing the distance
between them. Our next step is to cluster users with similar clickstreams together. As shown
in Section 3, Sybil and normal users exhibit very di�erent behaviors, and should naturally form
distinctive clusters.

To achieve our goal, we build and then partition a clickstream similarity graph. As shown
in Figure 10, each user’s clickstream is represented by a single node. The similarity graph is
complete, i.e.every pair of nodes is connected by a weighted edge, where the weight is the similarity
distance between the sequences. Partitioning this graph means producing the desired clusters while
minimizing the total weight of cut edges: users with similar activities (high weights between them)
will be placed in the same cluster, while users with dissimilar activities will be placed in di�erent
clusters. The assumption is the clustering process can separate Sybil from normal users. Note that
not all Sybils and normal users exhibit homogeneous behavior; thus, we expect there to be multiple,
distinct clusters of Sybils and normal users.
Graph Clustering. To cluster similarity graphs, we use METIS [32], a widely used multilevel
k-way partitioning algorithm. The objective of METIS is to minimize the weight of edges that
cross partitions. In the sequence similarity graph, longer distances (i.e., dissimilar sequences) have
lower weights. Thus, METIS is likely to place dissimilar sequences in di�erent partitions. METIS
requires a parameter K that speci�es the number of partitions desired. We will assess the impact of
K on our system performance in Section 4.4. We choose METIS for its scalability. There are other
fast clustering algorithms available such as DBSCAN [16], which however is non-deterministic
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and requires pre-de�ning a distance threshold. Note that METIS is a non-overlapping clustering
algorithm where one node can only be assigned to one cluster. We choose non-overlapping clustering
for its advantage of simplicity, and the need for a binary decision in Sybil detection. An alternative
approach is to use overlapping clustering algorithms where one node is assigned to multiple
clusters. The label of the node then can be determined by a majority voting of all assigned clusters.
Considering the complexity of overlapping clustering, we leave related experiments to future work.
Cluster Quality. A key question when evaluating our methodology is assessing the quality of
clusters produced by METIS. In Section 4.4, we leverage our ground-truth data to evaluate false
positives and negatives after clustering the sequence similarity graph. We label each cluster as
“Sybil” or “normal” based on whether the majority of nodes in the cluster are Sybils or normal
users. Normal users that get placed into Sybil clusters are false positives, while Sybils placed in
normal clusters are false negatives. We use these criteria to evaluate di�erent clickstream models
and distance functions.

4.4 Model Evaluation

We now evaluate our clickstream models and distance functions to determine which can best
distinguish Sybil activity patterns from those of normal users. We examine four di�erent variables:
1) the choice of clickstream model, 2) the choice of distance function for each model, 3) what
representation of clicks to use (speci�c activities or categories), and 4) K, the number of desired
partitions for METIS.
Experiment Setup. The experimental dataset consists of 4000 normal users and 4000 Sybils
randomly selected from our dataset. Given the large number of possible combinations of parameters,
we used this sampled dataset to speed up the experiments. In each scenario, we build click sequences
for each user (based on a given clickstream model and click representation), compute all distances
between each pair of sequences, and then cluster the resulting sequence similarity graph for a given
value of K. Finally, each experimental run is evaluated based on the false positive and negative
error rates.
Model Analysis. First, we examine the error rates of di�erent clickstream models and click
representations in Figure 11. For the CS and Hybrid models, we encode clicks based on activities as
well as categories. In the Time model, all clicks are encoded as inter-arrival times. In this experiment,
we use 10gram+count, 5gram+count, and K-Sas the distance function for CS, Hybrid, and Time,
respectively. We �x K = 100. We investigate the impact of distance functions and K in subsequent
experiments.

Two conclusions can be drawn from Figure 11. First, the CS and Hybrid models signi�cantly
outperform the Time-based model, especially in false negatives. Manual inspection of false negative
Sybils (about 10%) reveals that these Sybils click at a similar rate as normal users. These Sybils
are either operated by real people, or the software that controls them has been intentionally rate
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limited. Despite the statistical di�erence between Sybils and normal users in click inter-arrival time
(Figure 5), this metric alone is insu�cient to disambiguate Sybils from normal users.

The second conclusion from Figure 11 is that encoding clicks based on category outperforms
encoding by activity. This result con�rms �ndings from the existing literature on web usage
mining [1]: representing clicks using high-level categories (or concepts) instead of raw click types
better exposes the browsing patterns of users. A possible explanation is that high-level categories
have better tolerance for noise in the clickstream log. In the rest of our paper, we use categories to
encode clicks.

Next, we examine the error rate of di�erent distance functions for the CS and Hybrid models.
As shown in Figure 12, we evaluate the CS model using the unigramand 10gramfunctions, as
well as counting versions of those functions. We evaluate the Hybrid model using the 5gramand
5gram+countfunctions.

Several conclusions can be drawn from Figure 12. First, the unigramfunctions have the highest
false negative rates. This indicates that looking at clicks in isolation (i.e., without click transitions)
is insu�cient to discover many Sybils. Second, the counting versions of all three distance functions
produce low false positive rates. This demonstrates that the repeat frequency of sequences is
important for identifying normal users. Finally, we observe that CS 10gram+countand Hybrid have
similar accuracy. This shows that click inter-arrival times are not necessary to achieve low error
rates.

Finally, we examine the impact of the number of clusters K on detection accuracy. Figure 13
shows the error rate of Hybrid 5gram+countas we vary K. The overall trend is that larger K
produces lower error rates. This is because larger K grants METIS more opportunities to partition
weakly connected sequences. This observation is somewhat trivial: if K equals to the total number
of sequences in the graph, then the error rate would be zero given our evaluation methodology. In
Section 6, we discuss practical reasons why K must be kept ≈100.
Summary. Our evaluation shows that the Click Sequence and Hybrid models perform best at
disambiguating Sybils and normal users. 10gram+countand 5gram+countare the best distance
functions for each model, respectively. We �nd that accuracy is highest when clicks are encoded
based on categories, and when the number of partitions K is large. In the following sections, we
will use these parameters when building our Sybil detection system.

5 INCREMENTAL SYBIL DETECTION

Our results in Section 4 showed that our models can e�ectively distinguish between Sybil click-
streams and normal user clickstreams. In this section, we leverage this methodology to build a
real-time, incremental Sybil detector. This system works in two phases: �rst, we create clusters of
Sybil and normal users based on ground-truth data, as we did in Section 4. Second, we compute
the position of unclassi�ed clickstreams in our sequence similarity graph. If an unclassi�ed click-
stream falls into a cluster representing clickstreams from ground-truth Sybils, we conclude the new
clickstream is a Sybil. Otherwise, it is benign.

5.1 Incremental Detection

To classify a new clickstream given an existing clustered sequence similarity graph, we must deter-
mine how to “re-cluster” new sequences into the existing graph. We investigate three algorithms.

The �rst is K Nearest Neighbor(KNN). For a given unclassi�ed sequence, we �nd the top-K
nearest sequences in the ground-truth data. If the majority of these sequences are located in Sybil
clusters, then the new sequence is classi�ed as a Sybil sequence. For our experiment, we set to use
the top 3 nearest sequences.
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The second algorithm is Nearest Cluster(NC). We compute the average distance from an unclas-
si�ed sequence to all sequences in each cluster. The unclassi�ed sequence is then added to the
cluster with the closest average distance. The new sequence is classi�ed as Sybil or normal based
on the cluster it is placed in.

The third algorithm is a less computationally-intensive version of Nearest Cluster that we refer to
as Nearest Cluster-Center(NCC). NC and KNN require computing the distance from an unclassi�ed
sequence to all sequences in the ground-truth clusters. We can streamline NC’s classi�cation
process by precomputing centersfor each cluster. In NCC, we only need to compute the distance
from an unclassi�ed sequence to the center of each existing cluster.

For each existing cluster, the center is chosen by closeness centrality. Intuitively, the center
sequence is the one that has the shortest distance to all the other sequences in the same cluster. To
be more robust, we precompute three centers for each cluster, that is, the three sequences with
highest closeness centrality.
5.2 System Evaluation

In this section, we evaluate our incremental Sybil detection system using our ground-truth click-
stream dataset. We start by evaluating the basic accuracy of the system at classifying unknown
sequences. Next, we evaluate how quickly the system can identify Sybils, in terms of the number
of clicks in their clickstream. Finally, we explore how long the system can remain e�ective before
it needs to be retrained using updated ground-truth data.
Detection Accuracy. We start with a basic evaluation of system accuracy using our ground-
truth dataset. We split the dataset into training data and testing data. The training data contains
randomly selected 3000 normal users and 3000 Sybils. The testing data contains the rest 2998 normal
users and 2998 randomly selected Sybils. There is no overlap between training and testing data. We
build sequence similarity graphs from the training data using Hybrid Model with 5gram+countas
distance function. The number of clusters K = 100. In each sequence similarity graph, we label the
Sybil and normal clusters.

Next, we examine the error rates of the incremental detector when unclassi�ed users (2998 Sybils
and 2998 normal users) are added to the sequence similarity graph. We perform this experiment
three times, once for each of the proposed reclustering algorithms (KNN, NC and NCC). As shown
in Figure 14, the error rates for all three reclustering algorithms are very similar, and all three have
<1% false positives. NC has slightly fewer false positives, while NCC has the fewest false negatives.
Detection Speed. The next question we want to address is: what is the minimum number of
clicks necessary to accurately classify clickstreams?Another way to frame this question is in terms
of detection speed: how quickly (in terms of clicks) can our system accurately classify clickstreams?
To identify and respond to Sybils quickly, we must detect Sybils using the minimal number of click
events.

Figure 15 shows the results of our evaluation when the maximum number of clicks per sequence
is capped in the testing data. The “All” results refer to a cap of in�nity, i.e., all clicks in our dataset
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are considered. Note that not all sequences in our dataset have 50 or 100 clicks: some Sybils were
banned before they produced this may clicks. Hence, the caps are upper bounds on sequence length.

Surprisingly, the “All” results are not the most accurate overall. As shown in Figure 15, using
all clicks results in more false negatives. This occurs due to over�tting: given a large number of
very long clickstreams from normal users, it is likely that they will occasionally exhibit unusual,
Sybil-like behavior. However, this problem is mitigated if the sequence length is capped, since this
naturally excludes these infrequent, aberrant clickstreams.

In contrast to the “All” results, the results from the ≤ 50 click experiments produce the most
false positives. This demonstrates that there is a minimum sequence length necessary to perform
accurate classi�cation of clickstreams. We repeated these experiments using CS/10gram+countand
received similar result, which we omit for brevity.

There are two additional, practical take-aways from Figure 15. First, the NCC algorithm performs
equally well versus NC and KNN. This is a positive result, since the computational complexity of
NCC is dramatically lower than NC and KNN. Second, we observe that our system can produce
accurate results (false positives <1%, false negatives <3%) when only considering short sequences.
This means that the system can make classi�cations quickly, without needing to store very long
clickstreams in memory.
Accuracy Over Time. In order for our incremental detection system to be practically useful, its
accuracy should remain high for long periods of time. Put another way, sequence similarity graphs
trained with old data should be able to detect fresh Sybil clickstreams. To evaluate the accuracy
of our system over time, we split our dataset based on date. We train our detector using the early
data, and then apply the detector to the later data. We restrict our analysis to data from April 2011;
although we have Sybil data from March 2011, we do not have corresponding data on normal users
for this month.

Figure 16 shows the accuracy of the detector when it is trained on data from March 31-April 15,
then applied to data from April 16-30. As the results show, the detector remains highly accurate for
at least two weeks after it has been trained using the NCC reclustering algorithm. Unfortunately,
the limited duration of our dataset prevents us from examining accuracy at longer time intervals.

We repeated this experiment using only one week of training data, but the false negative rate of
the detector increased to ≈10%. This shows that the detector needs to be trained on su�cient data
to provide accurate results. Note that the age of the accounts may also a�ect the detection accuracy
over time. Unfortunately, we don’t have the information on account age to analyze the edge e�ects.

6 SEMI-SUPERVISED SYBIL DETECTION

Our incremental Sybil detection system from Section 5 has a serious shortcoming: it must be
trained using large samples of ground-truth data. In this section, we develop a semi-supervised
Sybil detection system that requires only a small, constant amount of ground-truth. The key idea is
to build a clustered sequence similarity graph as before. But instead of using full ground-truth of
all clickstreams to mark a cluster as Sybil or normal, we only need a small number of clickstreams
of known real users as “seeds” that color the clusters they reside in. These seeds can be manually
veri�ed as needed. We colorall clusters that include a seedsequence as “normal,” while uncolored
clusters are assumed to be “Sybil.” Since normal users are likely to fall under a small number of
behavioral pro�les (clusters in the graph), we expect a small �xed number of seeds will be su�cient
to color all clusters of normal user clickstreams. We explicitly don’t use known Sybils as seeds
because they will optimize the model to only capture existing (or outdated) types of attacks. Instead,
we use real users as seeds to model normal behavior, which has the chance to capture new attacks
based on “abnormal” activities.
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Figure 17 depicts our semi-supervised approach, showing how METIS partitions nodes into
clusters which are then colored if they contain seed users. Once the system is trained in this manner,
it can be used incrementally to detect more Sybils over time, as described in Section 5.

In this section, we discuss the design of our unsupervised system and evaluate its performance.
We begin by analyzing the number and composition of seeds that are necessary to ensure high
accuracy of the system. Next, we evaluate the performance of the system by comparing its accuracy
to our ground-truth data. Finally, we examine how the ratio of Sybils to normal users in the
unclassi�ed data impacts system accuracy.

6.1 Seed Selection and Composition

Number of Seeds. The most important parameter in our unsupervised Sybil detection system
is the number of seeds. On one hand, the number of seeds needs to be large and diverse enough
to color all “normal” clusters. Normal clusters that remain uncolored are potential false positives.
On the other hand, the seed set needs to be small enough to be practical. If the size of the seed set
is large, it is equivalent to having ground-truth about the dataset, which is the situation we are
trying to avoid.

We now conduct experiments to determine how many seeds are necessary to color the clusters.
We choose 3000 Sybils and 3000 normal users at random from our dataset to be the unclassi�ed
dataset. We also randomly choose some number of additional normal users to be the seeds. As in
Section 5, we use the Hybrid Model with the 5gram+countdistance function. We also conducted
experiments with CS/10gram+count, but the results are very similar and we omit them for brevity.

Figure 18 depicts the percentage of normal clusters that are correctly colored for di�erent values
of K (number of METIS partitions) as the number of seeds is varied. As expected, fewer seeds are
necessary when K is small because there are fewer clusters (and thus each cluster includes more
sequences). When K = 100, 250 seeds (or 4% of all normal users in the experiment) are able to color
99% of normal clusters.
Seed Consistency Over Time. Next, we examine whether a set of seeds chosen at an early
date are equally e�ective at coloring clusters based on later data. In other words, we want to know
if the seeds are consistent over time. If this is not the case, it would represent additional overhead
on the deployment of our system.

To test seed consistency over time, we divide our two months of Sybil clickstream data into four,
two-week long datasets. We add an equal number of randomly selected normal users to each of the
four datasets. Finally, we select an additional x random normal users to act as seeds. We verify (for
each value of x) that these seeds color 100% of the normal clusters in the �rst temporal dataset. We
then evaluate what percentage of normal clusters are colored in the subsequent three temporal
datasets. In all experiments, we set K = 100, i.e., the worst case scenario for our graph coloring
approach.
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The results of the temporal consistency experiments are shown in Figure 19. In general, even
though the Sybil and normal clickstreams change over time, the vast majority of normal clusters are
successfully colored. Given 600 seeds, 99% of normal clusters are colored after 4 weeks, although
the percentage drops to 83% with 300 seeds. These results demonstrate that the seed set does not
need to be drastically altered over time.

6.2 Coloring Evaluation

We now evaluate the overall e�ectiveness of our Sybil detection system when it leverages unsuper-
vised training. In these experiments, we use our entire clickstream dataset. We choose x random
normal users as seeds, build and cluster the sequence similarity graph using Hybrid/5gram+count,
and then color the clusters that contain the seeds. Finally, we calculate the false positive and
negative rates using the same methodology as in Section 5, i.e.by comparing the composition of the
colored clusters to ground-truth.

The results are shown in Figure 20. As the number of seeds increases, the false positive rate
decreases. This is because more seeds mean more normal clusters are correctly colored. With
just 500 seeds, the false positive rate drops to 0.7% (false positive rate is 0.5% for 600 seeds).
Unfortunately, relying on unsupervised training does increase the false negative rate of our system
by 2% versus training with ground-truth data. However, in cases where ground-truth data is
unavailable, we believe that this is a reasonable tradeo�. Note that we also repeated these experiment
with CS/10gram+count, and it produced slightly higher false positive rates, although they were still
<1%.
Unbalanced Training Dataset. Next, we evaluate the impact of having an unbalanced training
dataset (e.g., more normal users than Sybils) on the accuracy of our system. Thus far, all of our
experiments have assumed a roughly equal percentage of Sybils and normal users in the data.
However, in practice it is likely that normal users will outnumber Sybils when unsupervised
learning is used. For example, Facebook suspects that 8.7% of its user base is illegitimate, out of >1
billion total users [12].

We now evaluate how detection accuracy changes when we decrease the percentage of Sybils in
the training data. In these experiments, we construct training sets of 6000 total users with di�erent
normal-to-Sybil ratios. We then run unsupervised training with 500 seeds (based on Figure 20).
Finally, we incrementally add an additional 2998 Sybils and 2998 normal users to the colored
similarity graph using the NCC algorithm (see Section 5.1). We ran additional tests using the NC
and KNN algorithms, but the results were very similar and we omit them for brevity.

Figure 21 shows the �nal error rate of the system (i.e., after testing data has been incrementally
added) for varying normal-to-Sybil ratios. The false positive rate remains ≤1.2% regardless of the
normal-to-Sybil ratio. This is a very good result: even with highly skewed training data, the system
is unlikely to penalize normal users. Unfortunately, the false negative rate does rise as the number
of Sybils in the training data falls. This result is to be expected: the system cannot adequately
classify Sybil clickstreams if it is trained on insu�cient data.
Handling False Positives. The above analysis demonstrates that our system achieves high
accuracy with a false positive rate of 1% or less. Through manual inspection, we �nd that “false
positives” generated by our detector exhibit behaviors generally attributed to Sybils, including
aggressively sending friend requests or browsing pro�les. In real-world OSNs, suspicious users
identi�ed by our system could be further veri�ed via existing complementary systems that examines
other aspects of users. For example, this might include systems that classify user pro�les [54, 67],
systems that verify user real-world identity [17], or even Sybil detection systems using crowdsourced
human inspection [60]. These e�orts could further protect benign users from misclassi�cation.
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Model Updating Over Time. In practice, we foresee that our model needs to be updated
periodically to capture dynamic changes of attackers, and handle compromised accounts. Our
ground-truth dataset does not di�erentiate compromised accounts with Sybils as long as they are
controlled by the attacker. In practice, compromised accounts are likely to have legitimate historical
clickstreams, which can be confusing to the detector. By building new models periodically, we can
mitigate this issue with the more recent clickstream data.

7 PRACTICAL SYBIL DETECTION

In this section, we examine the practical performance of our proposed Sybil detection system. First,
we shipped our code to the security teams at Renren and LinkedIn, where it was evaluated on
fresh data in a production environment. Both test results are very positive, and we report them
here. Second, we discuss the fundamental limits of our approach, by looking at our impact on Sybil
accounts that can perfectly mimic the clickstream patterns of normal users.

7.1 Real-world Sybil Detection

With the help of supportive collaborators at both Renren and LinkedIn, we were able to ship
prototype code to the security teams at both companies for internal testing on fresh data. We
con�gured our system to use semi-supervised learning to color clusters. Sequence similarity graphs
are constructed using the Hybrid Model and the 5gram+countdistance function, and the number of
METIS partitions K is 100.
Renren. Renren’s security team trained our system using clickstreams from 10K users, of which
8K were randomly selected, and 2K were previously identi�ed as suspicious by the security team.
These clickstreams were collected between January 17–27, 2013. 500 honest users that have been
manually veri�ed by Renren’s security team were used as seeds. Once trained, our system was fed
clickstreams from 1,000,000 random users (collected in early February, 2013) for classi�cation as
normal or suspicious. In total, our system identi�ed 22K potential Sybil accounts.

While corporate privacy policies prevented Renren from sharing detailed results with us, their
feedback was very positive. They indicated that our system identi�ed a new type of attackperformed
by a large cluster of “image spammers”. These accounts’ clickstream behavior focused heavily
on photo sharing. Manual inspection revealed that these accounts embedded spammy text and
URLs to promote brands of clothes and shoes. Traditional text analysis-based spam detectors and
URL blacklists were unable to catch this new attack since the content were embedded into images.
Our system identi�ed it immediately for their abnormal clickstream behavior compared to normal
users. A dedicated engineering team has taken over our code for production level implementation.
Renren’s corporate policy prevents the team from revealing further implementation details and
detection results.
LinkedIn. LinkedIn’s security team used our software to analyze the clickstreams of 40K users,
of which 36K were randomly sampled, and 4K were previously identi�ed as suspicious by the
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security team. These clickstreams were gathered in February, 2013. Again, our feedback was very
positive, but did not include precise statistics. However, we were told that our system con�rmed
that ≈1700 of the 4000 suspicious accounts are likely to be Sybils. Our system also detected an
additional 200 previously unknown Sybils.

A closer look at the data shows that many of the accounts not detected by our system were
borderline accounts with speci�c �ags popping up in their pro�les. For example, some accounts had
unusual names or occupational specialties, while others had suspicious URLs in their pro�les. These
results remind us that a user behavior model is clearly only a part of the equation. For example,
clickstream analysis does not examine the content that users posted, and may miss Sybils that only
exhibit anomalies in content. To this end, our system should be used in conjunction with existing
pro�le analysis tools and spam detectors [3, 19, 59, 60, 68].

7.2 Limits of Sybil Detection

Finally, we wish to discuss the worst case scenario for our system, i.e., a scenario where attackers
have full knowledge of the clickstream patterns for real users, and are able to instrument the
behavior of their Sybils to mimic them precisely. In this attack model, the attacker’s goal is to have
Sybils carry out malicious actions (e.g., sending spam) without being detected. However, to evade
detection, these Sybils must limit themselves to behavior consistent with that of normal users.

We can thus bound the capabilities of Sybils that avoid detection in this attack model. First, the
Sybil’s clickstream must remain inside the “normal” clusters produced by our detector. Second,
the most aberrant behavior within a given “normal” cluster is exhibited by real users within the
cluster who are farthest from the center. The activities performed by these outliersserve as e�ective
bounds on Sybil behavior. Sybil clickstreams cannot deviate from the center of the cluster more
than these outliers, otherwise they will be excluded from the cluster and risk detection. Thus, we
can estimate the maximum amount of malicious activity a Sybil could perform (without getting
caught) by studying these outliers.

We now examine the behavior of outliers. We calibrate our system to produce clusters with
false positive rate <1% using Hybrid/5gram+count, and K = 100. In this con�guration, the detector
outputs 40 Sybil and 60 normal clusters when run on our full dataset. Next, we identify the two
farthest outliers in each normal cluster. Finally, we plot the clicks per day in three activities from the
120 outliers in Figure 22. We focus on clicks for sending friend requests, posting status updates/wall
messages, and viewing user pro�les. These activities correspond to the three most common attacks
observed in our data, i.e., sending friend request spam, status/wall spam, and pro�le crawling.

As shown in Figure 22, 99% of outliers generate ≤10 clicks per day in the target activities. In the
vast majority of cases, even the outliers generate <2 clicks per day (re�ecting bursty usage). These
results show that the e�ective bound on Sybil behavior is very tight, i.e., to avoid detection, Sybils
can barely generate any clicks each day. These bounds signi�cantly increase the cost for attackers
who will have to use many more Sybils to maintain the same level of spam generation capacity.

8 UNSUPERVISED USER BEHAVIOR MODELING

Thus far, we have demonstrated the e�ectiveness of clickstream analysis for Sybil detection. How-
ever, the current model over-simpli�es the di�erences among users with a binary classi�cation (i.e.,
either malicious or benign). It helps to capture attackers but does not provide explicit knowledge
and interpretation about how users (or attackers) behave and how their behavior changes over
time. For instance, among the Sybil accounts, there are likely di�erent attacking strategies used by
di�erent attackers while the current model cannot di�erentiate or explain them.
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To this end, we extend this clickstream model beyond binary classi�cation to identifying and
understanding �ne-grained user behaviors in online services. Our goal is to identify prevalent user
behaviors in a given service without any prior knowledge or labels (unsupervised). In addition, we
seek to provide interpretable results/interface to help service providers to understand captured
user behavior.

At the high level, our system assumes that human behavior naturally forms clusters. Despite
users’ di�erences in personalities and habits, their behavioral patterns within a given service cannot
be entirely disparate. Our goal is to identify such natural clusters as behavioral models. In addition,
user behavior is likely multi-dimensional. We expect user clusters to fall into a tree hierarchy
instead of a one-dimensional structure (Figure 23). In this hierarchy, most prominent features are
used to place users into high-level categories while less signi�cant features characterize detailed
sub-structures.

We build our system with a new algorithm to capture hierarchical clickstream clusters, called
iterative feature pruning. We use the new algorithm to replace METIS to partition the similarity
graph and identify clusters of users with similar clickstream activities. To capture the hierarchical
structure, we recursively partition newly generated clusters, while pruningthe feature set used
to measure clickstream similarity. Intuitively, by identifying and pruning dominating features in
higher-level clusters, we allow the secondary features to manifest and discover more �ne-grained
subclusters. Also, the pruned features are indicative of why this cluster is formed, which can help
service providers to understand the behavioral model.

In this section, we �rst describe the feature-pruning algorithm to identify clusters in clickstream
similarity graph. Then, we build a visualization tool to help service providers examine and under-
stand behavioral clusters. We will evaluate the system with a user study (Section 9), and selected
case study analysis (Section 10). We then discuss the quality of results (Section 11), and scalability
issues (Section 12).

8.1 Feature Pruning based Clickstream Clustering

A similarity graph dominated by very few features gives little insight on subtle di�erences between
users. The generated clusters may only describe the broadest user categories, while interesting and
detailed behavioral patterns remain hidden. We recognize that similarity graph has the capability
to capture user behavior at di�erent levels of granularity. We implement iterative feature pruning
as a means of identifying �ne-grained behavioral clusters within existing clusters, and recursively
partitioning the similarity graph. In the following, we �rst introduce the key steps of our clustering
algorithm and feature pruning. Then we describe using pruned features to interpret the meaning
of the clusters, and the technical details to determine the number of clusters.
Iterative Feature Pruning & Clustering. We explain how our algorithm works using the
example in Figure 23. We start with a similarity graph of all users, where clickstream similarity is
measured based on the full feature set (union of all k-grams). By partitioning the similarity graph,
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we get the top-level clusters C1 and C2. The partitioning algorithm we use is Divisive Hierarchical
Clustering [33], which can work on arbitrary metric space and �nd clusters of arbitrary shapes.

To identify more �ne-grained subclusters within C1 or C2, we perform feature pruning: We
identify the primary features that are responsible for forming the parent cluster, remove them
from the feature set, and use the remaining secondary features to further partition the parent. For
example, suppose C1 is the current parent cluster. We �rst perform feature selection to determine
the key features (i.e., k-grams) that classify users into C1. Then to partition C1, we remove those top
k-grams from the feature set, and use the remaining k-grams to compute a new similarity graph for
C1. In this way, secondary features can step out to partition C1 into C3 and C4 (by running Divisive
Hierarchical Clustering on the new similarity graph). For each of the newly generated clusters (e.g.,
C3 and C4), we recursively run the same process to produce more �ne-grained subclusters. Our
algorithm stops when all the new partitions cannot be further split, i.e.clustering quality reaches a
minimal threshold. The result is a tree hierarchy of behavioral clusters.

The key step of feature pruning is �nding the primary features responsible for forming the parent
cluster. We select features based on Chi-square statistics (� 2) [66], a classic metric to measure
feature’s discriminative power in separating data instances of di�erent classes. For a given cluster,
e.g., C1, we compute a � 2 score for each feature. The � 2 score measures the di�erence between the
distribution of this feature value in C1 and the distribution of this feature outside of C1. We sort and
select the top features with the highest � 2 scores, which are the key features to distinguish users
in C1 from the rest of users. Our empirical data shows � 2 distribution usually exhibits “long-tail”
property — only a small number of dominating features have high � 2 scores. We automatically
select top features by identifying the sweet point (or turning point) in the � 2 distribution [47]. An
example is shown in Figure 26.
Understanding the Behavioral Clusters. We can infer the meaning of the clusters based on
the selected features during feature pruning phase. A feature is selected because users in this cluster
are distinct from users outside the cluster on this particular feature dimension. Thus it can serve
as explanations for why a cluster has formed and which user behaviors the cluster encompasses.
Later we construct a visualization tool to help service providers interpret behavioral clusters.
Determining the Number of Subclusters. For each parent cluster (and its similarity graph),
our system identi�es the natural number of subclusters within. To do so, we monitor the changes
of the overall clustering qualitywhile continuously partitioning the graph to more subclusters. We
stop when generating more subclusters will no longer improve the clustering quality. The metric
to assess clustering quality is the widely-used modularity, which measures the density of edges
inside clusters to edges outside clusters [8]. Modularity Q = 1

2m
∑

i j [Wi j − ki kj
2m ]� (ci ,cj ), where Wi j

is the edge weight (similarity) between user i and j ; ki and kj are their weighted degrees; m is the
total number of edges in the graph; � (ci ,cj ) = 1 if i and j belong to the same cluster (otherwise
the value is 0). The modularity value ranges from -1 to 1, with a higher value indicating a better
clustering quality.

8.2 Cluster Visualization

We then build a visualization tool for service providers to examine and understand user behavioral
clusters generated by our algorithm. The tool allows service providers to answer key questions
about their users, e.g., what are the major behavioral categories? Which behavior is more prevalent?
What’s the relationship between di�erent types of behavior?
Visualization Interface. Figure 24 shows a screenshot of our tool displaying the behavioral
clusters of Whisper (best viewed in color). We built this tool using D3.js, a JavaScript library for
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Fig. 25. Renren behavioral clusters. The pop-up win-
dow shows users in Cluster #2 focus on sending friend
requests and browsing user profiles.

data visualization. By default, we display the cluster hierarchy using Packed Circle [63], where
child clusters are nested within their parent cluster. This gives a clear view of the hierarchical
relationships of di�erent clusters. Circle sizes re�ect the number of users in the cluster, which allows
service providers to quickly identify the most prevalent user behaviors. Finally, the visualization
tool is zoomable and easy to navigate among clusters. We also implemented other interfaces such
as Treemaps, Sunburst and Icicle. Service providers can choose any of these based on personal
preference. We use Packed Circle as default because it leaves more space between clusters, making
it easier to visually separate di�erent clusters.

To understand the user behavior in a speci�c cluster, we can click the cluster to pop-up an
information window. Take the one in Figure 24 for example: we show the basic cluster information
on top, including clusterID and the number of users. Below is a list of “Action Patterns” (k-grams)
selected by our Feature Pruning algorithm to describe how users behave. Each row contains one
pattern, ranked by � 2 score (brighter color indicates higher score). The “Frequency (PDF)” column
shows how frequently each action pattern appears among users of this cluster. The red bar indicates
the pattern frequency (probability density function) inside the cluster, and the green bar denotes
frequency outside of this cluster. Intuitively, the more divergent the two distributions are, the
more distinguishing power the pattern has. In this example, the �rst pattern shows users viewing
whispers sequentially with a time interval of one minute or less. The red bar is much more skewed
to the right, indicating users in this cluster perform this action more often than users outside.
Finally, service providers can “add descriptions” to the cluster using the button in blue.

8.3 Whisper and Renren Clusters

Con�gurations. We run our system on Whisper and Renren datasets and display the behavioral
clusters in Figure 24–25. We apply the same con�guration on both runs: the partitioning of a cluster
stops if the modularity reaches a threshold 0.01 (insigni�cant cluster structure). We intentionally
set a loose threshold to let the algorithm dig out very detailed sub-clusters. In practice, service
providers can tune this parameter depending on how detailed behavioral clusters they need. Details
regarding algorithm implementation and complexity are explained in Section 11.
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Table 5. Clustering results for Renren and Whisper data.
Dataset # Clusters Depth Total # Selected Selected Feature

(Leaf) Features Features Per Cluster
Renren 108 (95) 4 80,903 409 5.42
Whisper 107 (95) 4 66,098 592 6.81

0.5

1

1.5

 0  5000  10000  15000  20000  25000  30000

C
hi

-s
qu

ar
e 

S
ta

tis
tic

s 
(1

05 )

Feature Idx

0.5
1

1.5

 0  5  10  15  20

Threshold

Fig. 26. The distribution of Chi-square sta-
tistics in an example Whisper cluster.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50

C
D

F 
of

 C
lu

st
er

s

# of Selected Features per Cluster

Renren
Whisper

Fig. 27. Number of selected features per
cluster for Renren and Whisper datasets.

Clustering Results. The high level clustering results are shown in Table 5. For Renren dataset,
the resulting hierarchy contains 108 clusters (95 leaf clusters). For Whisper, our system produces a
tree hierarchy of 107 clusters (root included) with 95 leaf clusters. The depths of both trees are 4.

Recall that our system selects key features for each cluster to help the interpretation of cor-
responding user behaviors. A quick analysis shows that Chi-square statistics for features in the
clusters are highly skewed, meaning that only a few features are strongly associated with the respec-
tive cluster. An example is shown in Figure 26. The distribution is clearly a long-tail distribution
with a “turning point” at the 7th feature. We can automatically select the top features by identifying
the turning point in the curve using the algorithm of [47].

As shown in Table 5, our feature selection reduces the feature space by orders or magnitude. For
instance, the Whisper data originally contains 80903 unique kgrams as features. After clustering,
we only have on average 6.81 features per cluster to characterize the user behavior in the cluster.
As shown in Figure 27, 80% of the clusters have less than 5 selected features, and 90% of the clusters
have less than 10. This makes it possible for people to understand the cluster without looking
through the full feature set. Our visualization tool also exclusively display the selected features
in the pop-up window, so that people can focus on key features on user behaviors without being
distracted by the long tail of less important features.

9 EVALUATION: CLUSTER LABELS

In the following, we analyze the behavioral clusters in Whisper and Renren, and demonstrate their
e�ectiveness in identifying unexpected behavior and predicting future activities. Our evaluation
contains three steps. First, to evaluate the ease of understanding and labeling behavioral clusters, we
run a user study. We ask the participant to read cluster information and describe the corresponding
user behavior. Then we examine whether di�erent people give consistent descriptions. Second, we
perform in-depth case studies on the unusual behavioral clusters, and provide new insights to both
networks. Third, we evaluate cluster quality, i.e., how well behavioral clusters capture similar users.

9.1 User Study to Interpret Clusters

User behavioral models need to be intuitive and understandable to the service providers. Thus we
conduct a user study to answer two key questions: Are these behavioral clusters understandable to
humans? How consistently do di�erent people interpret the corresponding user behaviors?
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In this user study, we ask participants to browse behavioral clusters using our visualization tool
(Packed Circle interface). For each cluster, the participant is asked to describe the user behavior
using her own words (in one sentence) based on the information displayed. If a cluster is not
understandable to the participant, she can mark it as “N/A”. Since our tool is designed for service
providers, we expect they will have basic technical backgrounds. Our participants include 15
graduate students in Computer Science who have basic knowledge in online social networks. Our
experiment is likely to represent a lower bound of performance, since real system admins are likely
to have a more in-depth knowledge about their services. To best utilize participants’ time, we only
use the Whisper clusters (Figure 24), and the participants only look at top clusters that cover 90%
of users at each level of the hierarchy (37 clusters in total). Before the test, we ask the participants
to use the Whisper app for at least 10 minutes to get familiar with it. Each participant also goes
through a quick instruction session to learn how to use the visualization tool and how to read the
information in the pop-up window.

9.2 User Study Results

We gathered a total of 555 descriptions from the participants on the 37 clusters (15 descriptions per
cluster). We �nd that the behavioral clusters are generally understandable to the participants. Out
of the 555 descriptions, 530 (95.5%) are valid descriptions about user behaviors (others are “N/A”
marks). In addition, most participants can �nish the task within a reasonable amount of time. The
average completion time is 28.7 minutes (46 seconds per cluster).

To understand the consistency of the descriptions, we let 3 external experts independently read
and assess the collected descriptions. These experts are graduate students recruited outside of our
research group and none of them participated in labeling clusters in the �rst round. For each cluster,
an expert reads all 15 descriptions and selects the largest group of consistent descriptions. Two
descriptions are considered “consistent” if they are describing semantically the same aspect of user
behavior. Then we compute a consistency score (0 to 1), which is the ratio of the maximum number
of consistent descriptions over all descriptions. For example, if 10 out of the 15 descriptions are
consistent, the score is 10/15=0.667. The �nal consistency score is averaged over three experts.
Figure 28 shows the consistency score distribution. The most common scores range from 0.6 to
0.8. The score distribution skews heavily to the right. This indicates that most clusters can be
interpreted consistently.

Upon examining clusters with low consistency scores, we have two key observations. First, lower-
level clusters are more di�cult to interpret. As shown in Figure 29, average consistency scores
decrease as we move further along the tree hierarchy. Intuitively, lower-level clusters represent
more speci�c or even outlier behavior that is di�cult to describe. Second, we �nd clusters with
more “complex” features are harder to interpret. We perform correlation analysis between the
consistency score and the number of unique event types in selected features, and �nd they correlate
negatively (Pearson coe�cient r =-0.4, p =0.02). We also manually examined the few clusters that
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received “N/A” marks. These clusters often exhibit a mixed behavior (e.g., users are engaged in
both posting whispers and sending hearts), which are di�cult to interpret for some participants.

Finally, regarding the correctness of the descriptions, the authors manually examined the cluster
descriptions and validated them based on the distributions of top behavioral features in each cluster.
We will present more detailed case studies in the next section. We also add short labels to the
top-level clusters in Whisper and Renren based on the descriptions from user study and our own
interpretations. The labels are shown in Figure 24 and Figure 25 respectively.

10 EVALUATION: CASE STUDIES

Next, we present in-depth analysis on a few behavioral clusters as case studies. We have two goals.
First, by analyzing the user behavior in these clusters, we validate the correctness of our cluster
labels. Second, we explore the interesting (or unexpected) user behavior, and demonstrate the
prediction power of the user behavioral models. Due to space limitation, we focus on two clusters
from Whisper (Cluster#2 and Cluster#4), and one from Renren (Sybil Cluster).

10.1 Case Study 1: Inactive Whisper Users

We start with Cluster#2, which is labeled as inactive users. The selected action patterns of this
cluster consist almost entirely of “receiving noti�cation” events, indicating these users have not
been actively engaged with the app. This is also con�rmed in Figure 30: users in Cluster#2 have far
fewer active days (when users actively generate clicks) than the rest of users. A remarkable 80% of
users in Cluster#2 did not generate any active events through the 45 days, representing completely
dormant users. In fact, our algorithm successfully groups dormant users into a separate subcluster
(Figure 24, the biggest subcluster in Cluster#2).

Contrary to expectation, inactive users are not outliers. Cluster#2 is the second largest cluster
with 21,962 users (20% of all users). From the perspective of service providers, it is important
to identify the early signals of user disengagement, and implement mechanisms to re-gain user
activities.
Predicting Dormant Users. We demonstrate the e�ectiveness of our behavioral models in
predicting future user dormancy. The high-level idea is simple: Whisper can build behavioral
models using users’ most recent clickstreams, and update the models at regular intervals (e.g.,
every month). Our hypothesis is that users placed in the “inactive” cluster are more likely to turn
completely dormant. Thus we can use the inactive cluster to predict future dormant users.

We validate this hypothesis by investigating whether users in the “inactive” cluster will migrate
to the “dormant” cluster over time. To do so, we split our clickstream data by date into three
snapshots: Oct.13–27, Oct.28–Nov.12 and Nov.13–26. Then we generate behavioral clusters for each
snapshot. The inactive cluster can be easily pinpointed within each snapshot based on selected
activity patterns (i.e., noti�cation events). Also, we consistently �nd the following sub-structures
within the inactive cluster: a big “dormant” cluster in which users have zero active events, alongside
several “semi-dormant” clusters in which users are occasionally active.

In Table 6, we compare clusters from two adjacent snapshots to determine the likelihood of users
migrating into the dormant cluster. The results con�rm our hypothesis: Users in semi-dormant
clusters are more likely to migrate to the dormant cluster than others. For example, 17% of semi-
dormant users in snapshot-2 end up in the dormant cluster in snapshot-3, while only 1.1% of other
users do so. Users already within the dormant cluster are highly likely to remain there through
future snapshots (94%-99%). This result shows that our behavioral models can successfully track and
predict the dormancy of Whisper users. It allows service providers to make timely interventions
before losing user participation.
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Table 6. Users becoming dormant over time. We split the clickstream data into three snapshots, and report
the number of users who migrate to the dormant cluster over two adjacent snapshots.

Cluster # (%) of Users Migrating to the Dormant Cluster
Snap 1 → Snap 2 Snap 2 → Snap 3

Dormant Cluster 15873/16872 (94%) 16161/16314 (99%)
Semi-dormant Clusters 363/9383 (4%) 2026/11773 (17%)
Other Clusters 63/73735 (0.09%) 804/71903 (1.1%)
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Table 7. Activity statistics for users inside and outside Cluster#4. *The di�erence is statistically significant
based on Welch two-sample t-tests.

Actions per day Statistics: Mean (STD) T-statistics (p value)
Inside C#4 Outside C#4 In vs. Out

Whisper Posted 1.25 (1.77) 0.65 (1.46) 27.43 (p< 0.001)*
Replies Received 0.70 (4.09) 0.26 (1.41) 8.89 (p< 0.001)*
Heart Received 2.39 (48.68) 0.69 (5.34) 2.93 (p=0.0034)*
Chats Initiated 2.20 (10.93) 1.18 (3.98) 7.79 (p< 0.001)*

10.2 Case Study 2: Hostile Behaviors of Whisper Cha�ers

Next, we analyze Cluster#4, which contains 7026 users who tend to block other people during
private chat. As shown in Figure 31, users in this cluster perform blocking actions much more
frequently. 80% of users spend more than 10% of their total clicks on blocking events. In contrast,
only 1% of users outside Cluster#4 achieve this ratio.

Next, we explore the possible causes of the blocking events. A private chat is initiated by the
user who wants to talk to whisper authors. Our hypothesis is that users in Cluster#4 are more
likely to post whispers which attract unwanted chatters to harass them. To validate this, we list
behavioral statistics for users inside and outside Cluster#4 in Table 7. Users in Cluster#4 are more
active in posting public whispers, which attract more hearts and replies from others (statistically
signi�cant based on Welch t-tests). These users are likely to experience harassment as a side e�ect.

Users may attract unwanted chat messages due to the topics they write about. We analyze users’
whisper content in Cluster#4 and �nd they often consist of sexually explicit messages (sexting).
Table 8 lists top keywords from users in and outside Cluster#4. Keywords are ranked based on how
strongly they are associated with the cluster. For each keyword, we compute a simple correlation
ratio for ranking, as the number of whispers in Cluster#4 containing this keyword divided by the
total number of whispers with this word. We exclude common stopwords [9] and low frequency
words to avoid statistical outliers. A mere glance at Table 8 reveals that Cluster#4 users are focused
on exchanging sexual content. Terms like “20f”, “f”,“17” and “lesbian” indicate age, gender (f =
female) and sexual orientation. Other frequently used words are associated with the exchange of
nude photos (“trade”, “shower”, “nipples”) or more general erotic terms.
Users Who Get Blocked. Within Cluster#4, we �nd a subcluster of 1412 users who often get
blocked by others (Cluster#4-2-1 in Figure 32). As shown in Figure 33, these users have more
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Table 8. Top whisper keywords for users in Cluster#4 and users outside Cluster#4.
Users Top 30 Keywords
Inside C#4 20f, 19f, 18f, 17f, 29, f, roleplay, daddy, wet, role, lesbians, 17, lesbian, kinky, trade, bored,

kik, weakness, nude, threesome, bestfriend, msg, shower, boys, chubby, nipples, horny,
female, dirty, message

Outside
C#4

religion, que, bullshit, 18m, personally, bible, eventually, faith, sign, plenty, hilarious,
congratulations, gender, brain, idiot, dumbass, ignorant, quite, depends, animals, google,
society, loss, count, health, sexuality, em, business, sound, foot
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Table 9. Characteristics of users the 5 biggest Sybil clusters (S1–S5) and the normal user cluster. We add the
cluster label based on the selected action pa�erns per cluster. “FrdReq” stands for “friend requests.”

ID Cluster Label # Users FriendReq per Day Pro�leReq per Day FriendReq: In/out
S1 Friending in bulks 4064 25.13 0.30 0.002
S2 Friending quickly 1891 19.81 2.08 0.004
S3 Crawl pro�les 1348 11.41 6.44 0.050
S4 Friending slowly 899 8.76 1.93 0.00004
S5 Receive FrdReq 129 25.65 3.43 0.286
#1 Normal users 6141 1.65 2.80 1.06

“being-blocked” events in their clickstreams. In the meantime, as members of Cluster#4, these users
are also highly likely to block other users.

Then the question is how often blocks are “bidirectional”, i.e., user X blocks Y and then Y
immediately blocks X . Unfortunately, our dataset cannot directly measure bidirectional blocks. For
a blocking event, the known information includes the whisperID where two users chat, the userID
issuing the block, but not the userID being blocked. Thus we take an approximation approach to
match potential “bidirectional” blocks (as upper bound). For each user, we group her blocking and
being-blocked events under the same whisperID as a pair if their time interval is within a short
time window (e.g., one hour). This approximates immediate blocking back after getting a block.
Figure 34 shows the matching result using time window as 1-hour. Users in Cluster#4, particularly
in Cluster#4-2-1 have a higher number of paired blocking events. It is likely these users are easily
o�ended or often o�end other users during private chat, suggesting a strong hostile behavior. We
also test 10 minutes and 1-day time window and have similar conclusions.

10.3 Case Study 3: Renren Sybil Accounts

Finally, we analyze the Sybil cluster in Renren (Cluster#2 in Figure 25). Our system groups Sybil
accounts into one single cluster with a high accuracy. Based on the ground-truth labels in Renren
data, we �nd 95% of true Sybils are clustered into the cluster and only 0.74% of normal users are
misclassi�ed. The selected features indicate Sybils are more likely to engage in sending friend
requests. This makes sense because a Sybil must �rst befriend a user before accessing private
information or spamming.
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Di�erent Sybil Attack Strategies. Our system uncovers more �ne-grained subclusters within
the Sybil cluster, representing di�erent attack strategies. Here we focus on the largest 5 (out of 8
subclusters), which encompass 99.36% of Sybil accounts. Table 9 shows their behavioral statistics.
First, S3 appears to describe “crawlers” who specialize in collecting user information and photos for
sale on the black market [41]. Second, S1, S2 and S4 all focus on “sending friend requests.” Sybils in
S1 send requests in bulks via Renren’s friend recommendation system, resulting in a high volume
of friend requests per day (25.13). On the other hand, Sybils in S4 tend to build social connections
slowly (8.76 requests per day), possibly to avoid being detected. Finally, Sybils in S5 are likely to
receivefriend requests. The ratio of incoming friend requests over outgoing ones is notably higher
(0.286) than other Sybil clusters (< 0.05). One possible explanation is that these Sybils are controlled
by a single attacker to befriend with each other to bootstrap their social connections.
Sybil Behavior Changes. Finally, we examine the behavior changes of Sybil accounts over
our data collection period (i.e., two months). We divide Sybil clickstream data into two snapshots
(one per month), and perform clustering on each snapshot. For cross-comparison purpose, we only
consider Sybils accounts that appear in both snapshots (2583 accounts). The results in displayed in
Figure 35. We manually examine the top features in each cluster and add labels to the clusters.

We have three key observations: First, in the March snapshot, we �nd a cluster of Sybils that view
photos in a similar way as normal users (S13), but they then act di�erently in the April snapshot.
We suspect (but cannot con�rm) that these are legitimate accounts compromised by attackers [18].
Second, in April snapshot, there is a new cluster where Sybils send friends requests in a medium
speed (S23). These Sybils often have a series of fast friend requests followed by a long pause. It is
likely they are trying to maximize attack e�ciency without triggering Renren’s limit on number of
requests per day. Finally, our snapshot results do not include the original S1 cluster in Figure 25
where Sybils send friending requests in bulks via Renren’s recommendation system. This is because
those Sybils were quickly banned in March and did not appear the April snapshot. Also, the original
group of crawlers (S3) now is a sub-cluster at the secondary layer (S111 and S211).

Figure 36 shows how Sybils migrate across two consecutive snapshots. Clearly, some users are
reducing their friending request frequency possibly to avoid detection (S11 to S22/S23). On the
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Fig. 37. The precision and recall of using the behavioral clusters to detect certain type of users. We compare
our method with K-means and Hierarchical Clustering algorithm (HC).

other hand, some slow Sybils (S12) also accelerate their friend request in the next snapshot (S21). In
addition, we �nd the majority of users who look like normal users in March (S13) migrate to Sybils
cluster S22 where they send friend requests slowly. Also, it suggests that the attackers try to act
stealthily by delivering friend requests in a slow speed instead of quickly sending bulks of requests
immediately. In this way, attackers try to avoid alerting the account owners.

11 EVALUATION: CLUSTER QUALITY

Finally, we evaluate the quality of behavioral clusters produced by our system by examining how
well they capture similar users. For this analysis, we compare our algorithm with existing clustering
methods. In addition, we brie�y discuss the system implementation and scalability tests.

11.1 Clustering �ality

At the high-level, an e�ective clustering algorithm should accurately group similar users together
while separating di�erent ones. We evaluate the quality of our behavioral clusters by testing
how well they capture similar users. More speci�cally, given a small sample of known users, how
accurately can they retrieve other users of the same type?
Experiment Setups. We �rst explain our experiment method, using Sybil detection in Renren
as an example. Suppose a small sample of Sybils is known to us (x%). To detect the rest of the
Sybil accounts, we use the known samples as seedsto color Renren’s behavioral clusters. Any
cluster that contains a known Sybil will be colored as Sybil-cluster (uncolored ones as normal). We
evaluate the accuracy using two metrics: Precision(percentage of users in Sybil-clusters that are
true Sybil accounts) and Recall(percentage of true Sybils that are captured by Sybil-clusters). A
higher precision and recall indicate a better clustering quality. We vary the parameter x (1%, 5%,
10%) and repeat each experiment 10 times.

To perform this experiment on Whisper dataset, we need to construct known groups of users.
We use the two types of users identi�ed in earlier analysis: Dormantusers who have zero active
events (16688 users) and Blockedusers who have been blocked at least once in a private chat (68302
users).
Comparison Baselines. Our baselines are two widely used clustering algorithms: K-means
algorithm [23] and Hierarchical Clustering (HC) algorithm [33]. We run both algorithms to cluster
the full similarity graph (without feature pruning). At the high-level, K-means divides users into K
clusters where each user is assigned to the nearest cluster (center). The number of clusters K must
be pre-de�ned. Here we generate multiple versions of K-means clusters, and pick the K with the
highest clustering quality (modularity). As a result, K-means generates 10 clusters on the Renren
dataset and 10 for Whisper. In the same way, HC generates 7 clusters for Whisper and 2 clusters
for Renren.
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Table 10. Computation time of di�erent clustering algorithms. The computation time includes two major
parts: Distance Matrix computation and Clustering.

Algorithm Whisper (100K Users) Renren (16K Users)
Total Distance Matrix Clustering Total Distance Matrix Clustering

Our Method 58 hours 33 hours 25 hours 47 minutes 16 minutes 31 minutes
Simple HC 39 hours 33 hours 6 hours 18 minutes 16 minutes 9 minutes
K-means 49 hour 33 hours 16 hours 2 minutes 16 minutes 67 minutes

Results. First, for Sybil detection on Renren, our algorithm is highly accurate with a precision
of 93% and a recall of 94% (1% ground-truth as seed) as shown in Figure 37(a). Using more seeds (e.g.
5%) produces a higher recall (99%) but reduces precision (82%). Nonetheless, the overall performance
is better than K-means and HC (precision 67% and 61%). On the Whisper dataset, our algorithm
achieves accurate results (98% precision, 100% recall) in identifying dormant users (Figure 37(b)).
K-means and HC have a much lower precision (32% and 78%) with the same recall. Finally, all
three algorithms achieve similar accuracy in detecting blocked users (73% precision and 99% recall).
These results indicate that our system produces high quality clusters to capture similar users.

12 IMPLEMENTATION AND SCALABILITY

Implementation. Our system is implemented in Python, and runs on 9 servers (HP DL360P
Gen8). The clustering algorithm includes two major steps: 1) distance matrix computation, where
we calculate the distance (or similarity) between any give node pairs; 2) graph partitioning (or
clustering) using iterative feature pruning algorithm. Note that the distance matrix computation can
be parallelized, and we run this step using 9 servers (4 threads per server). The graph partitioning
step can only be partially parallelized: we use a single thread to split all users into the �rst-level
clusters (centralized); then for any new sub-clusters, we recursively assign new threads to handle
its splitting (parallelized).
Performance. We run our system on Whisper dataset (100K users) and Renren dataset (16K
users). We record the running time of each step in Table 10. For Whisper dataset, it takes about 58
hours to generate the complete behavioral clusters. For the smaller Renren data, it only takes 47
minutes. This performance is already su�cient for practical usage to build behavioral models on
a weekly basis. Because these servers are a shared resource with other research teams, we only
take 4 threads per server. Potentially, we can speed this up by increasing the server utility (e.g., 40
threads).

In addition, Table 10 shows our algorithm has comparable performance to simpler algorithms
such as K-means and simple hierarchical clustering. For instance, it takes about 58 hours for our
algorithm to cluster 100,000 Whisper users’ clickstreams; It is only slightly quicker for K-means (49
hours) and simple HC (39 hours), but those algorithms don’t produce natural cluster hierarchy or
extract key features for cluster interpretation. Also, note that our algorithm is actually faster than
K-means on the smaller Renren dataset.

To scale up the system to handle even larger datasets (e.g., 236 million users in Renren), one cannot
simply add more machines. Despite the parallelization, the primary computational bottleneck is
still in constructing the distance matrix for the similarity graph due to the high complexity. For a
dataset of n users, the time complexity is O(n2). A promising approach is incremental clustering. The
key idea is similar to the mechanism is Section 5: we take a small sample from a clickstream dataset
to build the initial clusters (e.g., K clusters). Then we incrementally assign the rest of the users to
existing clusters, based on their distance to the “centers” of existing clusters. In this way, we only
need to compute each node’s distance to the K cluster centers. The time complexity becomes O(nK)
where K is a small number. For Sybil detection, incremental clustering can already handle 1 million
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users in the real-world evaluation in Renren (Section 7). For unsupervised behavior modeling, there
are open questions regarding how to perform sampling and how to maintain the consistency of the
cluster hierarchy, which we leave to future work.

13 CONCLUSION & FUTURE WORK

In this work, we describe a clickstream analysis framework to model online user behavior and
detect malicious user accounts. The resulting systems achieve accurate behavior detection and easy
interpretation. For a given clickstream dataset, our model automatically identi�es clusters of users
with similar clickstream activities. Our results show that we can build an accurate Sybil detector by
identifying and coloring clusters of “similar” clickstreams. To the best of our knowledge, this is the
�rst work to leverage clickstream models for detecting malicious users in online social networks.
Our system has been validated on ground-truth data, and a prototype has already detected new
types of image-spam attacks on Renren and previous unknown Sybils on LinkedIn.

In addition, we extend this model beyond attacker classi�cation to understanding more �ne-
grained user behaviors. The new model captures the natural hierarchical structure for user clusters.
With a visualization tool, service providers can explore dominating user behaviors and categories
as an overview, while tracking �ne-grained user behavioral patterns along each category. Our tool
does not require prior knowledge or assumptions of user categories (unsupervised), thus it can
e�ectively capture unexpected or previously unknown behaviors. We demonstrate its e�ectiveness
using case studies on real-world online social networks at Renren and Whisper.

We believe our proposed techniques are generalizable beyond online social networks. For example,
Wikipedia, News or Q&A sites might extract events based on the category or topic of the pages.
E-commerce web sites can de�ne user events based on the functionality of the clickable links
or product categories. Crowdsourcing sites can de�ne click events based on the crowdsourcing
work�ow. In future work, we will explore broader applications of clickstream behavioral models,
and expand our tool to other user-driven systems.
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