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+ Hire a large group of real Internet users for malicious attacks
+ Fake reviews, rumors, targerted spam
+ Most existing defenses failed against real users (e.g., CAPTCHA)
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+ Web services that recruit Internet users as workers (spam for $)
+ Connect workers to customers who want to run malicious campaigns

Crowdturfing Sites

Research Questions

+ How does crowdturfing work? '
+ What'’s the scale, economics and impact of crowturfing campaigns?"
+ How to defend against crowdturfing?
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Crowdturfing Site

Key Players

Crowd-workers
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+ Customers: pay to run a campaign
+ Workers: real users, spam for $
+ Target Networks: social networks, revew sites

Scale and Revenue

+ Measurements of two largest crowdturfing sites (in China) 10000
- ZBJ (zhubajie.com), five years g o 100000 £
- SDH (sandaha.com), two yeras = 10000 &
+ 18.5M tasks, 79K campaigns, 180K workers o 1000 &
+ Millions dollars of revenue per month % $ 100 &
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/BJ, SDH == Fiverr, Freelancer, MinuteWorkers, Myeasytasks, Microworkers, Shorttasks ﬁ Paisalive

Classifiers

3. Defense: Machine Learnin

Machine Learning (ML) vs. Crowdturfing

+ Simple method does not work on real users (e.g., CAPTCHA, rate limit)
+ Machine learning: more sophiscaed modeling on user behaviors
+ Perfect context to study adversarial machine learning

- Human workers are adaptive to evade classifiers
- Crowdturf admins can temper with training data by chaning worker behaviors

How Effective is ML-based Detecor?

+ Groundtruth: 28K workers in crowdturfing campaigns on Weibo (Chinenes Twitter)
+ Baseline users: 371K Welbo user accounts

+ 30 behavioral features

+ Classiliers: Random Forest, Decision Tree, SVM, Naive Bayes, Bayesian Network

Detection

Adversarial Machine Learning
Model Training 5
+ Evasion attack: individual workers change behaviors ’ R O
to evade the detection &? Training —
: g"—> e.g. SVM >  Classifier
- Impact: single feature-change saves 95% of workers A
ralining vata
+ Poisoning attack: site admins tamper with training data R )
to mislead classifier training

Evasion Attack

Example: Poisoning Attack
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+ Inject mislabeled samples to training data = wrong classifier
e.g., inject benign accounts as "workers” in training data

+ Uniformly change workers behavior by enforcing task policies
= hard to train an accurate classifier
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Summary
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False Negative Rate

30% + How robust are those classifiers?
20%

+ Machine learning classifiers are effective against current crowd-workers

50% + Random Forest is the most accurate (95% accuracy) + Classifiers are highly vulnerable to adversarial attacks. Future works will focus on improving the
40% + 99% accuracy on professional workers (>100 tasks) robustiness of ML-classifiers
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