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Abstract
Public vulnerability databases such as the Common Vulner-
abilities and Exposures (CVE) and the National Vulnera-
bility Database (NVD) have achieved great success in pro-
moting vulnerability disclosure and mitigation. While these
databases have accumulated massive data, there is a growing
concern for their information quality and consistency.

In this paper, we propose an automated system VIEM to de-
tect inconsistent information between the fully standardized
NVD database and the unstructured CVE descriptions and
their referenced vulnerability reports. VIEM allows us, for the
first time, to quantify the information consistency at a mas-
sive scale, and provides the needed tool for the community to
keep the CVE/NVD databases up-to-date. VIEM is developed
to extract vulnerable software names and vulnerable versions
from unstructured text. We introduce customized designs to
deep-learning-based named entity recognition (NER) and re-
lation extraction (RE) so that VIEM can recognize previous
unseen software names and versions based on sentence struc-
ture and contexts. Ground-truth evaluation shows the system
is highly accurate (0.941 precision and 0.993 recall). Using
VIEM, we examine the information consistency using a large
dataset of 78,296 CVE IDs and 70,569 vulnerability reports
in the past 20 years. Our result suggests that inconsistent vul-
nerable software versions are highly prevalent. Only 59.82%
of the vulnerability reports/CVE summaries strictly match
the standardized NVD entries, and the inconsistency level
increases over time. Case studies confirm the erroneous in-
formation of NVD that either overclaims or underclaims the
vulnerable software versions.

1 Introduction

Security vulnerabilities in computer and networked systems
are posing a serious threat to users, organizations, and na-
tions at large. Unmatched vulnerabilities often lead to real-

∗This work was done when Ying Dong studied at the Pennsylvania State
University.

world attacks with examples ranging from WannaCry ran-
somware that shut down hundreds of thousands of machines
in hospitals and schools [20] to the Equifax data breach that
affected half of America’s population [21].

To these ends, a strong community effort has been estab-
lished to find and patch vulnerabilities before they are ex-
ploited by attackers. The Common Vulnerabilities and Ex-
posures (CVE) program [4] and the National Vulnerability
Database (NVD) [11] are among the most influential forces.
CVE is a global list/database that indexes publicly known
vulnerabilities by harnessing the “the power of the crowd”.
Anyone on the Internet (security vendors, developers and re-
searchers) can share the vulnerabilities they found on CVE.
NVD is a more standardized database established by the U.S.
government (i.e., NIST). NVD receives data feeds from the
CVE website and perform analysis to assign common vul-
nerability severity scores (CVSS) and other pertinent meta-
data [18]. More importantly, NVD standardizes the data for-
mat so that algorithms can directly process their data [12].
Both CVE and NVD play an important role in guiding the
vulnerability mitigation. So far, over 100,000 vulnerabili-
ties were indexed, and the CVE/NVD data stream has been
integrated with hundreds of security vendors all over the
world [10].

While the vulnerability databases are accumulating mas-
sive data, there is also a growing concern about the informa-
tion quality [28, 42, 44]. More specifically, the information
listed on CVE/NVD can be incomplete or outdated, making
it challenging for researchers to reproduce the vulnerabil-
ity [42]. Even worse, certain CVE entries contain erroneous
information which may cause major delays in developing
and deploying patches. In practice, industrial systems often
use legacy software for a long time due to the high cost of an
update. When a relevant vulnerability is disclosed, system
administrators usually look up to vulnerability databases to
determine whether their software (and which versions) need
to be patched. In addition, CVE/NVD are serving as a key
information source for security companies to assess the secu-



rity level of their customers. Misinformation on CVE/NVD
could have left critical systems unpatched.

In this paper, we propose a novel system to automatically
detect inconsistent information between the fully standard-
ized NVD database and the unstructured CVE descriptions
and their referenced vulnerability reports. Our system VIEM
allows us, for the first time, to quantify the information con-
sistency at a massive scale. Our study focuses on vulner-
able software versions, which is one of the most important
pieces of information for vulnerability reproduction and vul-
nerability patching. We face three main technical challenges
to build VIEM. First, due to the high diversity of software
names and versions, it is difficult to build dictionaries or reg-
ular expressions [30, 48, 59] to achieve high precision and
recall. Second, the unstructured text of vulnerability reports
and summaries often contain code, and the unique writing
styles are difficult to handle by traditional natural language
processing tools [22, 49, 50]. Third, we need to extract “vul-
nerable” software names and their versions, and effectively
exclude the distracting items (i.e., non-vulnerable versions).

Our System. To address these challenges, we build VIEM
(short for Vulnerability Information Extraction Model) with
a Named Entity Recognition (NER) model and a Relation
Extraction (RE) model. The goal is to learn the patterns
and indicators from the sentence structures to recognize the
vulnerable software names/versions. Using “contexts” infor-
mation, our model can capture previously unseen software
names and is generally applicable to different vulnerabil-
ity types. More specifically, the NER model is a recurrent
deep neural network [36, 56] which pinpoints the relevant
entities. It utilizes word and character embeddings to en-
code the text and then leverages a sequence-to-sequence bi-
directional GRU (Gated Recurrent Unit) to locate the names
and versions of the vulnerable software. The RE model is
trained to analyze the relationships between the extracted en-
tities to pair the vulnerable software names and their versions
together. Finally, to generalize our model to handle different
types of vulnerabilities, we introduce a transfer learning step
to minimize the manual annotation efforts.

Evaluation and Measurement. We collect a large
dataset from the CVE and NVD databases and 5 highly pop-
ular vulnerability reporting websites. The dataset covers
78,296 CVE IDs and 70,569 vulnerability reports across all
13 vulnerability categories in the past 20 years. For evalua-
tion, we manually annotated a sample of 5,193 CVE IDs as
the ground-truth. We show that our system is highly accurate
with a precision of 0.941 and a recall of 0.993. In addition,
our model is generalizable to all 13 vulnerability categories.

To detect inconsistencies in practice, we apply VIEM to
the full dataset. We use NVD as the standard (since it is the
last hop of the information flow), and examine the inconsis-
tencies between NVD entries and the CVE entries/external
sources. We have a number of key findings. First, the incon-

sistency level is very high. Only 59.82% of the external re-
ports/CVE summaries have exactly the same vulnerable soft-
ware versions as those of the standardized NVD entries. It’s
almost equally common for an NVD entry to “overclaim”
or “underclaim” the vulnerable versions. Second, we mea-
sure the consistency level between NVD and other sources
and discover the inconsistency level increased over the past
20 years (but started to decrease since 2016). Finally, we
select a small set of CVE IDs with highly inconsistent infor-
mation to manually verify the vulnerabilities (including 185
software versions). We confirm real cases where the offi-
cial NVD/CVE entries and/or the external reports falsely in-
cluded non-vulnerable versions and missed truly vulnerable
versions. Such information could affect systems that depend
on NVD/CVE to make critical decisions.

Applications. Detecting information inconsistency is the
first step to updating the outdated entries and mitigating er-
rors in the NVD and CVE databases. There was no exist-
ing tool that could automatically extract vulnerable software
names and versions from unstructured reports before. A key
contribution of VIEM is to enable the possibility to continu-
ously monitor different vulnerability reporting websites and
periodically generate a “diff” from the CVE/NVD entries.
This can benefit the community in various ways. For em-
ployees of CVE/NVD, VIEM can notify them whenever a new
vulnerable version is discovered for an existing vulnerability
(to accelerate the testing and entry updates). For security
companies, VIEM can help to pinpoint the potentially vul-
nerable versions of their customers’ software to drive more
proactive testing and patching. For software users and sys-
tem administrators, the “diff” will help them to make more
informed decisions on software updating. To facilitate fu-
ture research and application development, we released our
labeled dataset and the source code of VIEM1.

In summary, our paper makes three key contributions.

• First, we design and develop a novel system VIEM to ex-
tract vulnerable software names and versions from un-
structured vulnerability reports.

• Second, using a large ground-truth dataset, we show that
our system is highly accurate and generalizes well to dif-
ferent vulnerability types.

• Third, by applying VIEM, we perform the first large-scale
measurement of the information consistency for CVE
and NVD. The generated “diff” is helpful to drive more
proactive vulnerability testing and information curation.

2 Background and Challenges

We first introduce the background of security vulnerability
reporting, and describe the technical challenges of our work.

1https://github.com/pinkymm/inconsistency_detection



2.1 Vulnerability Reporting

CVE. When people identify a new vulnerability, they
can request a unique CVE-ID number from one of the CVE
Numbering Authorities (CNAs) [5]. The MITRE Corpora-
tion is the editor and the primary CNA [19]. CNA will then
do research on the vulnerability to determine the details and
check if the vulnerability has been previously reported. If
the vulnerability is indeed new, then a CVE ID will be as-
signed and the corresponding vulnerability information will
be publicly released through the CVE list [4, 9].

The CVE list [4] is maintained by MITRE as a website on
which the CVE team publishes a summary for each of the
reported vulnerabilities. As specified in [8], when writing
a CVE summary, the CVE team will analyze (public) third-
party vulnerability reports and then include details in their
description such as the name of the affected software, the
vulnerable software versions, the vulnerability type, and the
conditions/requirements to exploit the vulnerability.

In addition to the summary, each CVE entry contains a
list of external references. The external references are links
to third-party technical reports or blog/forum posts that pro-
vide the needed information for the CVE team to craft the of-
ficial vulnerability description [1]. The information on CVE
can help software vendors and system administrators to pin-
point the versions of the vulnerable software, assess their risk
level, and perform remediation accordingly.

NVD. NVD (National Vulnerability Database) is main-
tained by a different organization (i.e., NIST) from that of
CVE [3]. NVD is built fully synchronized with the CVE
list. The goal is that any updates to CVE will appear imme-
diately in NVD. After a new CVE ID appears on the CVE
list, the NIST NVD team will first perform analysis to add
enhanced information such as the severity score before cre-
ating the NVD entries [18].

Compared with CVE, NVD provides two additional fea-
tures. First, NVD data entries are structured. The NIST
NVD team would convert the unstructured CVE information
into structured JSON or XML, where information fields such
as vulnerable software names and versions are formatted and
standardized based on the Common Weakness Enumeration
Specification (CWE) [12]. Second, data entries are contin-
uously updated. The information in NVD may be updated
(manually) after the initial vulnerability reporting. For ex-
ample, as time goes by, new vulnerable software versions
may be discovered by NIST employees or outsiders, which
will be added to the existing NVD entries [17].

2.2 Technical Challenges
CVE and NVD databases are primarily maintained by man-
ual efforts, which leads to a number of important questions.
First, given that a vulnerability may be reported and dis-
cussed in many different places, how complete is the infor-

(a) An Openwall report containing the vulnerable versions of soft-
ware (2.3.x) and non-vulnerable versions (3.0.0 and later).

(b) A CVE summary enclosing multiple entities pertaining to
vulnerable software (the vulnerable component: Windows font
library; vulnerable software: .NET Framework, Skype for
Business, Lync, Silverlight; dependent software: Windows;
software versions tied to these entities).

(c) A CVE summary in which the name and versions of vulnerable
software are not adjacent.

Figure 1: Examples of vulnerability descriptions and reports.

mation (e.g., vulnerable software names and their versions)
in the CVE/NVD database? Second, considering the con-
tinuous community effort to study a reported vulnerability,
how effective is the current manual approach to keep the
CVE/NVD entries up-to-date?

Our goal is to thoroughly understand the inconsistencies
between external vulnerability reporting websites and the
CVE/NVD data entries. According to the statistics from [6],
the CVE list has archived more than 100,000 distinct CVEs
(although certain CVE IDs were merged or withdrawn).
Each CVE ID also has 5∼30 external third-party reports. It
is infeasible to extract such information manually. The main
challenge is to automatically and accurately extract relevant
information items from the unstructured reports.

Many existing NLP tools aim to extract relevant informa-
tion from text (e.g., [22, 49, 50, 53]). However, the unique
characteristics of vulnerability reports impose significant
challenges, making existing techniques inadequate. ¶ Pre-
viously unseen software emerges: the CVE list introduces
new vulnerable software frequently, making it difficult to
use a pre-defined dictionary to identify the names of all vul-
nerable software. As such, dictionary-based method is not
suitable for this problem (e.g., [30, 48]). · Reports are un-
structured: most CVE summaries and vulnerability reports
are highly unstructured and thus simple regular-expression-
based techniques (e.g., [28, 59]) can be barely effective. ¸
Non-interested entities are prevalent: a vulnerability report
usually encloses information about both vulnerable and non-
vulnerable versions of software (see Figure 1a). Our goal is
to extract “vulnerable” software names and versions while
excluding information items related to non-vulnerable soft-
ware. Techniques that rely on pre-defined rules would hardly



work here (e.g., [28, 55, 59]). ¹ Multiple interested entities
exist: the vulnerable software mentioned in a report usually
refers to multiple entities (see Figure 1b) and the relation-
ships of these entities are determined by the context of the
report. This requirement eliminates techniques that lack the
capability of handling multiple entities (e.g., [28,32,59]). º
Vulnerability types are diverse: CVE covers a variety of vul-
nerability types, and each has its own characteristics in the
descriptions. As a result, we cannot simply use techniques
designed for certain vulnerability types. For example, a tool
used by [59] is designed specifically for kernel memory cor-
ruption vulnerabilities. We tested it against our ground-truth
dataset and did not receive satisfying results (the recall is be-
low 40%).

3 The Design of VIEM

To tackle the challenges mentioned above, we develop an
automated tool VIEM by combining and customizing a set
of state-of-the-art natural language processing (NLP) tech-
niques. In this section, we briefly describe the design of
VIEM and discuss the reasons behind our design. Then, we
elaborate on the NLP techniques that VIEM adopts.

3.1 Overview

To pinpoint and pair the entities of our interest, we design
VIEM to complete three individual tasks.

Named Entity Recognition Model. First, VIEM uti-
lizes a state-of-the-art Named Entity Recognition (NER)
model [36, 56] to identify the entities of our interest, i.e., the
name and versions of the vulnerable software, those of vul-
nerable components and those of underlying software sys-
tems that vulnerable software depends upon (see Figure 1b).

The reasons behind this design are twofold. First, an NER
model pinpoints entities based on the structure and semantics
of input text, which provides us with the ability to track down
software names that have never been observed in the train-
ing data. Second, an NER model can learn and distinguish
the contexts pertaining to vulnerable and non-vulnerable ver-
sions of software, which naturally allows us to eliminate non-
vulnerable versions of software and pinpoint only the entities
of our interest.

Relation Extraction Model. With the extracted entities,
the next task of VIEM is to pair identified entities accordingly.
As is shown in Figure 2, it is common that software name
and version jointly occur in a report. Therefore, one instinc-
tive reaction is to group software name and version nearby,
and then deem them as the vulnerable software and version
pairs. However, this straightforward approach is not suitable
for our problem. As is depicted in Figure 1c, the vulnera-
ble software name is not closely tied to all the vulnerable

versions. Merely applying the approach above, we might in-
evitably miss the versions of the vulnerable software.

To address this issue, VIEM first goes through all the pos-
sible combinations between versions and software names.
Then, it utilizes a Relation Extraction (RE) model [38,62] to
determine the most possible combinations and deems them
as the correct pairs of entities. The rationale behind this de-
sign is as follows. The original design of an RE model is not
for finding correct pairs among entities. Rather, it is respon-
sible for determining the property of a pair of entities. For
example, assume that an RE model is trained to assign a pair
of entities one of the following three properties – “born in”,
“employed by” and “capital of”. Given two pairs of enti-
ties P1 = (“Steve Jobs”, “Apple”) and P2 = (“Steve Jobs”,
“California”) in the text “Steve Jobs was born in California,
and was the CEO of Apple.”, an RE model would assign the
“employed by” to P1 and “born in” properties to P2.

In our model, each of the possible version-and-software
combinations can be treated as an individual pair of en-
tities. Using the idea of the relation extraction model,
VIEM assigns each pair a property, indicating the truth-
fulness of the relationship of the corresponding entities.
Then, it takes the corresponding property as the true pair-
ing. Take the case in Figure 2 for example, there are 4 en-
tities indicated by 2 software (Microsoft VBScript and
Internet Explorer) and 2 ranges of versions (5.7 and
5.8 and 9 through 11). They can be combined in 4 dif-
ferent ways. By treating the combinations as 4 different
pairs of entities, we can use an RE model to assign a bi-
nary property to each of the combinations. Assuming that
the binary property assigned indicates whether the corre-
sponding pair of the entities should be grouped as soft-
ware and its vulnerable versions, VIEM can use the prop-
erty assignment as the indicator to determine the entity pair-
ing. It should be noted that we represent paired entities
in the Common Platform Enumeration (CPE) format [2].
For example, cpe:/a:google:chrome:3.0.193.2:beta,
where google denotes the vendor, chrome denotes the prod-
uct, 3.0.193.2 denotes the version number, and beta de-
notes the software update.

Transfer Learning. Recall that we need to measure vul-
nerability reports across various vulnerability types. As men-
tioned in §2.2, the reports of different vulnerability types do
not necessarily share the same data distribution. Therefore,
it is not feasible to use a single machine learning model to
deal with all vulnerability reports, unless we could construct
and manually annotate a large training dataset that covers all
kinds of vulnerabilities. Unfortunately, there is no such la-
beled dataset available, and labeling a large dataset involves
tremendous human efforts. To address this problem, VIEM
takes the strategy of transfer learning, which learns the afore-
mentioned NER and RE models using vulnerability reports
in one primary category and then transfers their capability
into other vulnerability categories. In this way, we can re-
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duce the efforts involved in data labeling, making VIEM ef-
fective for arbitrary kinds of vulnerability reports. More de-
tails of the transfer learning are discussed in §5.

3.2 Named Entity Recognition Model

We start by extracting named entities (vulnerabile software
names and versions) from the text. We develop our system
based on a recent NER model [36,56]. On top of that, we in-
tegrate a gazetteer to improve its accuracy of extracting vul-
nerable software names. At the high level, the NER model
first encodes a text sequence into a sequence of word vectors
using the concatenation of word and character embeddings.
This embedding process is necessary since a deep neural net-
work cannot process text directly. Then taking the sequence
of the word vectors as the input, the model predicts a label for
each of the words in the sequence using a bi-directional Re-
current Neural Network. Below, we introduce the key tech-
nical details.

For word and character embeddings, the NER model first
utilizes a standard word embedding approach [40] to en-
code each word as a vector representation. Then, it utilizes
a Bi-directional Gated Recurrent United (Bi-GRU) network

to perform text encoding at the character level. As shown
in Figure 3, the NER model concatenates these two embed-
dings as a single sequence of vectors and then takes it as the
input for another Bi-GRU network.

Different from the aforementioned Bi-GRU network used
for text embedding, the second Bi-GRU network is respon-
sible for assigning labels to words. Recall that our task is
to identify the entities of our interest which pertain to vul-
nerable software. As a result, we use the Bi-GRU network
to pinpoint the words pertaining to this information. More
specifically, we train this Bi-GRU network to assign each
word with one of the following labels – ¶ SV (software ver-
sion), · SN (software name) and ¸ O (others) – indicating
the property of that word. It should be noted that we assign
the same SN label to vulnerable software, vulnerable compo-
nent and the underlying software that vulnerable software is
dependent upon. This is because this work measures version
inconsistencies of all software pertaining to a vulnerability2.

Considering that the NER model may not perfectly track
down the name of the vulnerable software, we further con-
struct a gazetteer (i.e., a dictionary consisting of 81,551 soft-
ware mentioned in [10]) to improve the recognition perfor-
mance of the NER model. To be specific, we design a heuris-
tic approach to rectify the information that the NER model
fails to identify or mistakenly tracks down. First, we per-
form a dictionary lookup on each of the vulnerability reports.
Then, we mark dictionary words in that report as the soft-
ware name, if the NER model has already identified at least
one dictionary word as a software name. In this way, we
can rectify some labels incorrectly identified. For example,
in Figure 2, assume the NER model assigns the SN labels to
words Microsoft VBScript and Explorer indicating the

2Vulnerable software names may include the names of vulnerable li-
braries or the affected operating systems. The names of vulnerable libraries
and the affected OSes are also extracted by our tool.



software pertaining to the vulnerability. Through dictionary
lookup, we track down software Internet Explorer in the
gazetteer. Since the gazetteer indicates neither Internet
nor Explorer has ever occurred individually as a soft-
ware name, and they are the closest to the dictionary word
Internet Explorer, we extend our label and mark the en-
tire dictionary word Internet Explorer with an SN label
and treat it as single software.

3.3 Relation Extraction Model

The relation extraction model was originally used to extract
the relationships of two entities [41]. Over the past decade,
researchers proposed various technical approaches to build
highly accurate and computationally efficient RE model. Of
all the techniques proposed, hierarchical attention neural net-
works [57] demonstrate better performance in many natural
language processing tasks. For our system, we modify an
existing hierarchical attention neural network to pair the ex-
tracted entities (i.e., pairing vulnerable software names and
their versions). More specifically, we implement a new com-
bined word-level and sentence-level attention network in the
RE model to improve the performance. In the following, we
briefly introduce this model and discuss how we apply it to
our problem. For more details about the RE model in gen-
eral, readers could refer to these research papers [38,57,62].

As is depicted in Figure 2, the RE model pinpoints
the right relationship between software name and version
through a three-step procedure. In the first step, it encodes
the occurrence of the software names as well as that of the
version information, and then yields a group of position
embeddings representing the relative distances from current
word to the two named entities (i.e., software name and ver-
sion) in the same sentence [38]. To be specific, the RE model
first indexes the sequence of the entity labels generated by
the aforementioned NER model. Then, it runs through all
the software names and versions in every possible combina-
tion, and encodes the combinations based on the indexes of
the entity labels using one-hot encoding. With the comple-
tion of one-hot encoding, the RE model further employs a
word embedding approach to convert the one-hot encoding
into two individual vectors indicating the embeddings of the
positions (see Figure 2).

In the second step, similar to the NER model, the RE
model uses the same technique to encode text and transfers
a text sequence into a sequence of vectors. Then, right be-
hind the word sequence vectors, the RE model appends each
group of the position embeddings individually. For example,
in Figure 2, the NER model pinpoints two software names
and two versions which form four distinct combinations (all
the possible ways of pairing software names and versions).
For each combination, the RE model appends the position
embedding vector to the word embedding vector to form the
input for the last step for performing classifications. In this
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Figure 4: # of CVE IDs per vulnerability category.

example, four vectors are produced as the input, and each
represents a possible software name-version pair.

In the last step, the RE model takes each sequence of vec-
tors as the input for an attention-based neural network and
outputs a vector indicating the new representation of the se-
quence. Then, as is illustrated in Figure 2, the RE model
takes the output vectors as the input for another attention
network, through which the RE model predicts which name-
version pairing is most likely to capture the relationship be-
tween software name and its corresponding versions. Con-
tinue the example in Figure 2. The seq 1 and 4 are as-
sociated with a positive output, which indicates the legit-
imate pairing relationships of Microsoft VBScript 5.7
and 5.8 and Internet Explorer 9 through 11.

4 Dataset

To evaluate our system and detect real-world inconsistencies,
we collected a large number of public vulnerability reports
and CVE and NVD entries from the past 20 years. We sam-
ple a subset of these vulnerability reports for manual label-
ing (ground-truth) and use the labeled data to evaluate the
performance of VIEM.

CVE IDs. We first obtain a list of CVE IDs from
cvedetails.com, which divides the security vulnerabilities
indexed in CVE/NVD database into 13 categories. To collect
a representative dataset of publicly-reported vulnerabilities,
we crawled the CVE IDs from January 1999 to March 2018
(over 20 years) of each vulnerability category. A CVE ID
is the unique identifier for a publicly disclosed vulnerability.
Even though the CVE website claimed that they have over
105,000 CVE IDs [6], many of the CVE IDs are either not
publicly available yet, or have been merged or withdrawn. In
total, we obtain 78,296 CVE IDs covering all 13 categories
as shown in Figure 4. Each CVE ID corresponds to a short
summary of the vulnerability as shown in Table 1.

Vulnerability Reports. The webpage of each CVE ID
also contains a list of external references pointing to exter-
nal reports. Our study focuses on 5 representative source
websites to obtain the vulnerability reports referenced by
the CVE, including ExploitDB [7], SecurityFocus [14], Se-
curityTracker [16], Openwall [13], and SecurityFocus Fo-



Dataset CVE IDs CVE Summaries NVD Entries Vulnerability Structured Reports Unstructured Reports
(Unstructured) (Structured) Reports SecTracker SecFocus ExploitDB Openwall SecF Forum

All 78,296 78,296 78,296 70,569 7,320 38,492 9,239 5,324 10,194
G-truth 5,193 5,193 0 1,974 0 0 785 520 669

Table 1: Dataset statistics.

rum [15]. Note that we treat SecurityFocus and SecurityFo-
cus Forum as two different websites. SecurityFocus site only
displays the “structured” information (e.g., affected OS, soft-
ware versions). SecurityFocus Forum (also called Bugtraq
Mailing List) mainly contains “unstructured” articles and
discussion threads between vulnerability reporters and soft-
ware developers. Regarding the other three websites, Secu-
rityTracker also contains well-structured information, while
Openwall and ExploitDB3 contain unstructured information.
In total, we obtain 70,569 vulnerability reports associated
with 56,642 CVE IDs. These CVE IDs cover 72.34% of all
78,296 public CVE IDs. This means 72.34% of the CVE IDs
have a vulnerability report from one of the 5 source websites,
confirming their popularity. There are 45,812 structured re-
ports from SecurityTracker and SecurityFocus, and 24,757
unstructured reports from ExploitDB, Openwall, and Securi-
tyFocus Forum.

NVD Entries. For each CVE ID, we also parse the JSON
version of the NVD entries, which contains the structured
data fields such as vulnerable software names and their ver-
sions. We obtain 78,296 NVD entries in total.

Data Extraction and Preprocessing. For structured re-
ports, we directly parse the vulnerable software name and
version information following the fixed format. For unstruc-
tured vulnerability reports and CVE summaries, we extract
the text information, remove all the web links, and tokenize
the sentences using the NLTK toolkit [24]. Note that we
did not remove any stop words or symbols from the unstruc-
tured text, considering that they are often parts of the soft-
ware names and versions.

Ground-Truth Dataset. To evaluate VIEM, we construct
a “ground-truth” dataset by manually annotating the vulner-
able software names and versions. As shown in Table 1, the
ground-truth dataset contains only unstructured reports, cov-
ering 5,193 CVE IDs (the short summaries) and 1,974 un-
structured reports. Some reports are referenced by multiple
CVE IDs. We choose to label our own ground-truth dataset
instead of using the structured data as the ground-truth, for
two reasons. First, the structured data is not necessarily cor-
rect. Second, the NER model needs labels at the sentence
level and the word level. The labels for the RE model rep-
resent the relationship between the extracted entities. The
structured data cannot provide such labels.

3ExploitDB has some structured information such as the affected OS,
but the vulnerable software version often appears in the titles of the posts
and the code comments.

The 5,193 CVE IDs are not evenly sampled from different
vulnerability categories. Instead, we sampled a large num-
ber of CVE IDs from one primary category and a smaller
number of CVE IDs from the other 12 categories to evaluate
model transferability. We choose memory corruption as the
primary category for its severity and real-world impact (e.g.,
Heartbleed, WannaCry). An analysis of the severity scores
(CVSS) also shows that memory corruption vulnerabilities
have the highest average severity score (8.46) among all the
13 categories. We intend to build a tool that at least performs
well on memory corruption cases. Considering the high costs
of manual annotation, we decide to label a large amount of
data (3,448 CVE IDs) in one category (memory corruption),
and only label a small amount of data (145 CVE IDs) for
each of the other 12 categories. With this dataset, we can
still apply transfer learning to achieve a good training result.

Given a document, we perform annotation in two steps.
First, we manually label the vulnerable software names and
vulnerable software versions. This step produces a ground-
truth dataset to evaluate our NER model. Second, we man-
ually pair the vulnerable software names with the versions.
This step produces a ground-truth mapping to evaluate the
RE model. We invited 6 lab-mates to perform the annota-
tion. All the annotators have a bachelor or higher degree in
Computer Science and an in-depth knowledge of Software
Engineering and Security. Figure 2 shows an example. For
the NER dataset, we label each word in a sentence by assign-
ing one of the three labels: vulnerable software name (SN),
vulnerable software version (SV )4, or others (O). Note that
entities that are related to non-vulnerable software will be la-
beled as O. For the RE dataset, we pair SN and SV entities
by examining all the possible pairs within the same sentence.
Through our manual annotation, we never observe a vulner-
able software name and its versions located in completely
different sentences throughout the entire document.

5 Evaluation

In this section, we use the ground-truth dataset to evaluate
the performance of VIEM. First, we use the dataset of mem-
ory corruption vulnerabilities to assess the system perfor-
mance and fine-tune the parameters. Then, we use the data of
the other 12 categories to examine the model transferability.

4For software versions, we treat keywords related to compatibility pack,
service pack, and release candidate (e.g., business, express edition) as part
of the version. For versions that are described as a “range”, we include the
conjunctions in the version labels.



Metric w/o Gazetteer w/ Gazetteer

Software Version Precision 0.9880 0.9880
Recall 0.9923 0.9923

Software Name Precision 0.9773 0.9782
Recall 0.9916 0.9941

Overall Accuracy 0.9969 0.9970

Table 2: NER performance on “memory corruption” dataset.

5.1 Evaluating the NER and RE Model

To evaluate the NER and RE models, we use the memory
corruption vulnerability reports and their CVE summaries
(3,448 CVE IDs).

NER Model. Given a document, the NER model extracts
the vulnerable software names and vulnerable versions. The
extraction process is first at the word level, and then the con-
secutive words with the SN or SV label will be grouped into
software names or software versions. We use three evalua-
tion metrics on the word-level extraction: (1) Precision rep-
resents the fraction of the relevant entities over the extracted
entities; (2) Recall represents the fraction of the relevant en-
tities that are extracted over the total number of relevant en-
tities; (3) Overall accuracy represents the fraction of the cor-
rect predictions over all the predictions. We compute the
precision and recall for software name extraction and ver-
sion extraction separately.

We split the ground-truth dataset with a ratio of 8:1:1 for
training, validation, and testing. We use a set of default
parameters, and later we show that our performance is not
sensitive to the parameters. Here, the dimension of the pre-
trained word embeddings is 300 (50 for character embed-
dings). To align our input sequences, we only consider the
first 200 words per sentence. Empirically, we observe that
the vast majority of sentences are shorter than 200 words.
All the layers in the NER model are trained jointly except
the word-level embedding weight W (using the FastText
method). The default batch size is 50 and the number of
epochs is 20. We use an advanced stochastic gradient de-
scent approach Adam as the optimizer, which can adaptively
adjust the learning rate to reduce the convergence time. We
also adopt dropout to prevent overfitting.

We repeat the experiments 10 times by randomly splitting
the dataset for training, validation, and testing. We show the
average precision, recall, and accuracy in Table 2. Our NER
model is highly accurate even without applying the gazetteer
(i.e., the dictionary). Both vulnerable software names and
versions can be extracted with a precision of 0.978 and a
recall of 0.991. In addition, we show that gazetteer can im-
prove the performance of software name extraction as ex-
pected. After applying the gazetteer, the overall accuracy is
as high as 0.9969. This high accuracy of NER is desirable
because any errors could propagate to the later RE model.

We also observe that our NER model indeed extracts soft-
ware names (and versions) that never appear in the train-

Metric Ground-truth Software NER Model’s Result as Input
Name/Version as Input w/o Gazetteer w/ Gazetteer

Precision 0.9955 0.9248 0.9411
Recall 0.9825 0.9931 0.9932
Accuracy 0.9916 0.9704 0.9764

Table 3: RE performance on “memory corruption” dataset.

ing dataset. For example, after applying NER to the test-
ing dataset, we extracted 205 unique software names, and 47
(22.9%) of them never appear in the training dataset. This
confirms that the NER model has learned generalizable pat-
terns and indicators to extract relevant entities, which allows
the model to extract previously unseen software names.

RE Model. We then run experiments to first examine the
performance of the RE model itself, and then evaluate the
end-to-end performance by combining NER and RE. Simi-
lar as before, we split the ground-truth dataset with an 8:1:1
ratio for training, validation, and testing. Here, we set the
dimension of the pre-trained word embeddings to 50. The
dimension of position embeddings is 10. The default batch
size is 80 and the number of epochs is 200. We set the num-
ber of bi-directional layers as 2. Like the NER model, our
RE model also uses the pre-trained word embedding weight
W . The position embedding weights (i.e., Ws and Wv) are
randomly initialized and trained together with other parame-
ters in the model.

First, we perform an experiment to evaluate the RE model
alone. More specifically, we assume the named entities are
already correctly extracted, and we only test the “pairing”
process using RE. This assumes the early NER model has a
perfect performance. As shown in Table 3, the RE model is
also highly accurate. The model has a precision of 0.9955
and a recall of 0.9825.

Second, we evaluate the end-to-end performance, and use
the NER’s output as the input of the RE model. In this
way, NER’s errors may affect the performance of RE. As
shown in Table 3, the accuracy has decreased from 0.9916 to
0.9704 (without gazetteer) and 0.9764 (with gazetteer). The
degradation mainly happens in precision. Further inspection
shows that the NER model has falsely extracted a few en-
tities that are not software names, which then become the
false input for RE and hurt the classification precision. In
addition, the benefit of gazetteer also shows up after NER
and RE are combined, bumping the precision from 0.9248
to 0.9411 (without hurting the recall). The results confirm
that our model is capable of accurately extracting vulnera-
ble software names and the corresponding versions from un-
structured text.

Baseline Comparisons. To compare the performance
of VIEM against other baselines, we apply other methods to
the same dataset. First, for the NER model, we tested Sem-
Fuzz [59]. SemFuzz uses hand-built regular expressions to
extract vulnerable software versions from vulnerability re-
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ports. We find that SemFuzz achieves a reasonable precision
(0.8225) but a very low recall (0.371). As a comparison, our
precision and recall are both above 0.978. Second, for the
end-to-end evaluation, we implemented a baseline system
using off-the-shelf NLP toolkits. More specifically, we use
the Conditional Random Field sequence model for extract-
ing named entities. The model uses Stanford Part-Of-Speech
tags [52] and other syntactic features. Then we feed the ex-
tracted entities to a baseline RE model that is trained with
features from Stanford Neural Dependency Parsing [29].
The end-to-end evaluation returns a precision of 0.8436 and a
recall of 0.8851. The results confirm the better performance
of VIEM, at least for our application purposes (i.e., processing
vulnerability reports).

Model Parameters. The above results are based on a
set of default parameters that have been fine-tuned based on
the validation dataset. To justify our parameter choices, we
change one parameter at a time and see its impact on the
model. We perform this test on all parameters (e.g., word
embedding dimensions, batch sizes, network layers, epochs).
The takeaway is that our model is not very sensitive to the
parameter settings.

We pre-trained our own word embedding layer on the cor-
pus built from all the unstructured reports in our dataset.
We have tested two state-of-the-art methods Word2vec [39],
and FastText [25]. We choose FastText since it gives a
slightly higher accuracy (by 1%). Figure 5 shows the overall
accuracy of FastText embeddings under different embed-
ding dimensions. The results show that the performance is
not sensitive to this parameter (as long as it is configured
within a reasonable range). When training RE and NER, we
need to set the batch size, the number of epochs, the number
of bi-directional layers and the dimension of position embed-
dings in the neural networks. Again, we swap the parameters
for RE and NER separately. For brevity, we only show the

Metric Before Transfer After Transfer
w/o Gaze w/ Gaze w/o Gaze w/ Gaze

Software Version Precision 0.8428 0.8467 0.9382 0.9414
Recall 0.9407 0.9400 0.9410 0.9403

Software Name Precision 0.8278 0.8925 0.9184 0.9557
Recall 0.8489 0.9185 0.9286 0.9536

Overall Accuracy 0.9873 0.9899 0.9942 0.9952

Table 4: Transfer learning result of NER model (average
over 12 vulnerability categories).

results for the RE model in Figure 6–Figure 8. The results for
the NER model are similar, which are shown in Appendix-A.

5.2 Evaluating Transfer Learning
Finally, we examine the generalizability of the model to
other vulnerability categories. First, to establish a baseline,
we directly apply the model trained with memory corruption
dataset to other vulnerability categories. Second, we apply
transfer learning, and retrain a dedicated model for each of
the other vulnerability categories. We refer the two experi-
ments as “before transfer” and “after transfer” respectively.

Transfer learning is helpful when there is not enough la-
beled data for each of the vulnerability categories. In this
case, we can use the memory corruption classifier as the
teacher model. By fine-tuning the last layer of the teacher
model with the data of each category, we can train a series
of category-specific classifiers. More specifically, we train a
teacher model using all the ground-truth data from the mem-
ory corruption category (3,448 CVE IDs). Then we use the
teacher model to train a new model for each of the 12 vul-
nerability categories. Given a target category (e.g., SQL In-
jection), we split its ground-truth data with a ratio of 1:1 for
training (Ttrain) and testing (Ttest ). The training data (Ttrain)
will be applied to the pre-trained teacher model to fine tune
the final hidden layer. In this way, a new model that is spe-
cially tuned for “SQL Injection” reports is constructed. Fi-
nally, we apply this new model to the testing data (Ttest ) to
evaluate its performance.

The results are presented in Table 4 and Table 5. We find
that the NER model is already highly generalizable before
transfer learning. Transfer learning only introduces a small
improvement in accuracy (from 0.987 to 0.994). Second, the
RE model (trained on memory corruption data) has a clear
degradation in performance when it is directly applied to
other categories. The overall accuracy is only 0.876. After
transfer learning, accuracy can be improved to 0.9044.

To confirm that transfer learning is necessary, we run an
additional experiment by using all the ground-truth dataset
from 13 categories to train a single model. We find that
the end-to-end accuracy is only 0.883 which is lower than
the transfer learning accuracy. The accuracy of certain cate-
gories clearly drops (e.g., 0.789 for CSRF). This shows that
the vulnerability reports of different categories indeed have
different characteristics, and deserve their own models.



Metric
Before Transfer After Transfer

G-truth NER Result as Input G-truth NER Result as Input
as Input w/o Gaze w/ Gaze as Input w/o Gaze w/ Gaze

Precis. 0.9559 0.7129 0.8105 0.9781 0.8062 0.8584
Recall 0.9521 0.9767 0.9724 0.9937 0.9964 0.9964
Accur. 0.9516 0.8215 0.8760 0.9834 0.8698 0.9044

Table 5: Transfer learning result of RE model (average over
12 vulnerability categories.)

6 Measuring Information Inconsistency

In this section, we apply VIEM to the full dataset to examine
the information consistency. In particular, we seek to exam-
ine how well the structured NVD entries are matched up with
the CVE entries and the referenced vulnerability reports. In
the following, we first define the metrics to quantify consis-
tency. Then we perform a preliminary measurement on the
ground-truth dataset to estimate the measurement errors in-
troduced by VIEM. Finally, we apply our model to the full
dataset to examine how the consistency level differs across
different vulnerability types and over time. In the next sec-
tion (§7), we will perform case studies on the detected incon-
sistent reports, and examine the causes of the inconsistency.

6.1 Measurement Methodology

NVD database, with its fully structured and standardized
data entries, makes it possible for automated information
processing and intelligent mining. However, given that NVD
entries are created and updated by manual efforts [18], we
are concerned about its data quality, in particular, its abil-
ity to keep up with the most recent discoveries of vulnerable
software and versions. To this end, we seek to measure the
consistency of NVD entries with other information sources
(including CVE summaries and external reports).

Matching Software Names. Given a CVE ID, we
first match the vulnerable software names listed in the
NVD database, and those from unstructured text. More
specifically, let C = {(N1,V1),(N2,V2), ...,(Nn,Vn)} be the
vulnerable software name-version tuples extracted from
the NVD, and C′ = {(N1,V ′1),(N2,V ′2), ...,(Nm,V ′m)} be the
name-version tuples extracted from the external text. In our
dataset, about 20% of the CVE IDs are associated with mul-
tiple software names. In this paper, we only focus on the
matched software names between the NVD and external re-
ports. Our matching method has the flexibility to handle the
slightly different format of the same software name. We con-
sider two names as a match if the number of matched words
is higher or equal to the number of unmatched words. For
example, “Microsoft Internet Explorer” and “Internet Ex-
plorer” are matched because there are more matched words
than the unmatched one.

Measuring Version Consistency. Given a software
name N1, we seek to measure the consistency of the reported

Match
Memory Corruption Avg. over 12 Other Categories

Matching Rate
Deviat.

Matching rate
Deviat.

VIEM G-truth VIEM G-truth
Loose 0.8725 0.8528 0.0194 0.9325 0.9371 -0.0046
Strict 0.4585 0.4627 -0.0042 0.6100 0.6195 -0.0095

Table 6: Strict matching and loose matching results on the
ground-truth dataset.

versions V1 and V ′1. We examine two types of matching.
First, strict matching means V1 and V ′1 exactly match each
other (V1 = V ′1). Second, loose matching means one version
is the other version’s superset (V1 ⊆ V ′1 or V1 ⊇ V ′1). Note
that the loosely matched cases contain those that are strictly
matched. Beyond loose matching, it means V1 and V ′1 each
contains some vulnerable versions that are not reported by
the other (i.e., conflicting information).

To perform the above matching procedure, we need to
convert the text format of V1 and V ′1 to a comparable for-
mat. In unstructured text, the software version is either de-
scribed as a set of discrete values (e.g., “version 1.1 and
1.4”) or a continuous range (e.g., “version 1.4 and earlier”).
For descriptions like “version 1.4 and earlier”, we first con-
vert the text representation into a mathematical range. The
conversion is based on a dictionary that we prepared before-
hand. For example, we convert “. . . and earlier” into “≤”.
This means “1.4 and earlier” will be converted into “≤ 1.4”.
Then, for “range” based version descriptions, we look up the
CPE directory maintained by NIST [2] to obtain a list of all
the available versions for a given software. This allows us
to convert the “range” description (“≤ 1.4”) into a set of dis-
crete values {1.0,1.1,1.2,1.3,1.4}. After the conversion, we
can determine if V1 and V ′1 match or not.

If a CVE ID has more than one software names (k > 1),
we take a conservative approach to calculate the matching
result. Only if all the k software version pairs are quali-
fied as strict matching will we consider the report as a “strict
match”. Similarly, only if all the pairs are qualified as loose
matching will we label the report as “loose matching” report.

6.2 Ground-truth Measurement

Following the above methodology, we first use the ground-
truth dataset to estimate the measurement error. More specif-
ically, given all the ground-truth vulnerability reports and the
CVE summaries, we use our best-performing model (with
gazetteer and transfer learning) to extract the vulnerable soft-
ware name-version tuples. Then we perform the strict and
loose matching on the extracted entries and compare the
matching rate with the ground-truth matching rate. The re-
sults are shown in Table 6.

We show that VIEM introduced a small deviation to the
actual matching rate. For memory corruption vulnerabili-
ties, our model indicates that 87.3% of the reports loosely
match the NVD entries, and only 45.9% of the reports strictly
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match. The results are very close to the ground-truth where
the matching rates are 85.3% and 46.3% respectively. For
the rest of the 12 vulnerability categories, our model indi-
cates that the loose matching rate is 93.3% and the strict
matching rate is 61%. Again, the results are quite simi-
lar to the ground-truth (93.7% and 62%). The deviation
from ground-truth (Rateestimated−Rategroundtruth) is bounded
within ±1.9%. The results confirm that our model is accu-
rate enough for the measurement.

6.3 Large-Scale Empirical Measurements

After the validation above, we then use the full ground-truth
dataset to train VIEM and apply the model to the rest of the
unlabeled and unstructured text (vulnerability reports and
CVE summaries). Then we calculate the matching rate be-
tween the versions of NVD and those from external informa-
tion sources (the CVE website and 5 external websites).

Result Overview. Across all 78,296 CVE IDs, we extract
in total 18,764 unique vulnerable software names. These
vulnerable software names correspond to 154,569 soft-
ware name-version pairs from the CVE summaries, 235,350
name-version pairs from the external vulnerability reports,
and 165,822 name-version pairs from NVD database. Af-
ter matching the software names between NVD and other
sources, there are 389,476 pairs left to check consistency.

At the name-version pair level, we find 305,037 strictly
matching pairs (78.32%). This means about 22% of the
name-version pairs from NVD do not match the external in-
formation sources. If we relax the matching condition, we
find 361,005 loosely matched pairs (93.49%).

We then aggregate the matching results at the report level.
Although the loose matching rate is still high (90.05%),
the strict matching rate clearly decreases. Only 59.82% of
the vulnerability reports/CVE summaries strictly match the
NVD entries. This is because strictly matched reports require
all the extracted versions to match those of NVD.

In order to understand how the level of consistency varies
across different aspects, we next break down the results for
more in-depth analyses.

Information Source Websites. Figure 10 shows the
matching rates between the NVD entries and the 5 informa-
tion websites and the CVE website. CVE has a relatively
high matching rate (about 70% strict matching rate). This is
not too surprising given that NVD is claimed to be synchro-
nized with the CVE feed. More interestingly, we find that
ExploitDB has an even higher matching rate with NVD. We
further examine the posting dates of the NVD entries and
the corresponding reports in other websites. We find that the
vast majority (95.8%) of the ExploitDB reports were posted
after the NVD entries were created. However, 81% of the
ExploitDB reports were posted earlier than the reports in the
other 4 websites, which might have helped to catch the atten-
tion of the NVD team to make an update.

Overclaims vs. Underclaims. For the loosely matched
versions, the NVD entries may have overclaimed or un-
derclaimed the vulnerable software versions with respect to
the external reports. An example is shown in Figure 9 for
CVE-2005-4134. Compared with CVE summary, NVD has
overclaimed the vulnerable version for Mozilla Firefox and
Netscape Navigator, given that NVD listed more vulnerable
versions than CVE. On the contrary, for K-Meleon, NVD has
underclaimed the vulnerable software version range.

Figure 11 shows the percentage of overclaimed and un-
derclaimed NVD entries within the loosely matched pairs.
“Strict-matched” pairs are not included in this analysis. We
are not surprised to find NVD entries might overclaim. Given
that NVD is supposed to search for different sources to keep
the entries update-to-date, it is reasonable for the NVD en-
tries to cover more vulnerable versions. Even if we take the
union of the vulnerable versions across 5 websites and CVE,
NVD is still covering more versions. The more interesting
observation is that NVD has underclaimed entries compared
to each of the external information sources. This suggests
that NVD is either suffering from delays to update the en-
tries or fails to keep track of the external information. Only
a tiny portion of NVD entries contain both overclaimed and
underclaimed versions (see the example in Figure 9).

Examples of Conflicting Cases. We then examined the
conflicted pairs, and observed that a common reason for mis-
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Figure 14: Matching rate for different
vulnerability categories.

matching is typos. For example, under CVE-2008-1862,
the versions listed on CVE and ExploitDB are both 0.22
and earlier for software ExBB Italia. However, the NVD
version is slightly different “up to (including) 0.2.2”.
Another example is CVE-2010-0364 where the software
versions from NVD and CVE summary are both 0.8.6 for
Videolan VLC media player. However, the information on
SecurityFocus has a clear typo as 0.6.8.

In other cases, it is not clear whose information is correct.
For example, sometimes the referenced vulnerable reports
provide more detailed information than the CVE summary.
For example, under CVE-2012-1173, the vulnerable version
for libtiff is listed as 3.9.4 on NVD but SecurityTracker
claims the vulnerable version should be 3.9.5. Under
CVE-2000-0773, software Bajie HTTP web server is vul-
nerable for version 1.0 according to NVD. However, CVE
lists version 0.30a and SecurityFocus lists 0.90, 0.92,
0.93. There is no way to determine the correctness of the
contradicting information at the pure text level, but we argue
that the value of such measurement results is to point out the
cases that need validation and correction.

Consistency Over Time. Figure 12 shows the con-
sistency level between NVD and the other 6 information
sources (CVE and the 5 report websites) is decreasing over
time. The strict matching rate has some fluctuation over time
but still shows a decreasing trend. We perform a linear re-
gression for both matching rates and find both have a neg-
ative slope (-0.0015 and -0.0056 respectively). The result
suggests the overall consistency drops over time in the past
20 years. However, if we take a closer look at the recent
three years (2016 to 2018), the consistency level is starting
to increase, which is a good sign.

Figure 13 shows a different trend when we compare the
consistency between CVE and the 5 external websites. The
consistency level between CVE and external sites is rela-
tively stable with a slight upward trend. We perform a linear
regression for both matching rates which returns a positive
slope (0.0006 and 0.0028 respectively). This suggests that
CVE websites are getting better at summarizing the vulnera-
bility versions.

Types of Vulnerabilities. As shown in Figure 14, we
break down the results based on the vulnerability categories.
While the loose matching rates are still similar (around
90%), there are clear differences in their strict matching
rates. For example, “SQL Injection” and “File Inclusion”
have the highest strict matching rate (over 75%), but cat-
egories such as “Memory Corruption” have a much lower
strict matching rate (48%). Further manual examination sug-
gests that memory corruption vulnerabilities are typically
more complex than those under File Inclusion or SQL In-
jection, and thus require a longer time to reproduce and vali-
date. As a result, it is not uncommon for NVD to miss newly
discovered vulnerable versions over time.

Inferring the Causes of Inconsistencies. Finally, we at-
tempt to infer the causes of inconsistencies by analyzing the
NVD entry creation/update time with respect to the posting
time of the external reports. More specifically, NVD main-
tains a “change history” for each CVE ID, which allows us
to extract the entry creation time, and the time when new
software versions are added/removed. Then we can com-
pare it with the posting time of corresponding reports at the
5 websites. For this analysis, we randomly select 5,000 CVE
IDs whose vulnerable versions in NVD are inconsistent with
those of the 5 websites.

We find that 66.3% of the NVD entries have never been
updated since they were created for the first time. This
includes 5.8% NVD entries that were created before any
of the 5 websites posted their reports. For example, for
CVE-2006-6516, NVD claimed KDPics 1.16 was vulnera-
ble in 2006. Later in 2010, SecurityFocus reported that both
version 1.11 and version 1.16 were vulnerable. NVD has
not added the new version 1.11 until today. For the much
bigger portion (60.5%) of NVD entries, they were created
when at least one of the external reports were already avail-
able. An example is CVE-2016-6855 as ExploitDB claimed
Eye of Gnome 3.10.2 was vulnerable in August 2016. A
month later, the NVD entry was created which did not in-
clude version 3.10.2. No update has been made since then.

For the rest of the 33.7% of the NVD entries, they have
made at least one update to the vulnerable versions after the
entry creation. For them, we compare the latest update time



CVE ID Software Vul. Versions Claimed by Different Sources Majority Union Ground truth Versions Manually # Newly Detected # Overclaimed
Vote Tested Versions by Us (12) Reports (15)

CVE-2004-2167 latex2rtf

NVD: 1.9.15 (1)

1.9.15 (1)

1.9.15 and

1.9.15 (1) 1.8aa - 2.3.17 (40) 0 1CVE: 1.9.15 and possibly others (40) possibly
SecurityFocus, SecurityTracker: 1.9.15 (1) others (40)
IBM Security: ≤ 1.9.15 (14)

CVE-2008-2950 poppler

NVD, CVE, SecurityTracker,

≤ 0.8.4 (34) ≤ 0.8.4 (34) 0.5.9 - 0.8.4 (16) 0.1 - 0.8.7 (37) 0 7

Security Forum, OCERT,
CXsecurity, IBM Security: ≤ 0.8.4 (34)
SecurityFocus, ExploitDB: 0.8.4 (1)
RedHat: < 0.6.2 (22)
Gentoo: < 0.6.3 (23)

CVE-2009-5018 gif2png

NVD: 0.99 - 2.5.3 (36)

≤ 2.5.3 (36) ≤ 2.5.3 (36) 2.4.2 - 2.5.6 (13) 0.7 - 2.5.8 (41) 2.5.4 - 2.5.6 (3) 4

CVE, Openwall, IBM Security,
Bugzilla: ≤ 2.5.3 (36)
SecurityFocus: 2.5.2 (1)
Gentoo: < 2.5.1 (33)
Fedora: 2.5.1 (1)

CVE-2015-7805 libsndfile

NVD, CVE, Openwall,

1.0.25 (1) ≤ 1.0.25 (30) 1.0.15 - 1.0.25 (11) 0.0.8 - 1.0.26 (31) 0 2
Fedora, nemux,
Packet Storm: 1.0.25 (1)
ExploitDB: ≤ 1.0.25 (30)
Gentoo: < 1.0.26 (30)

CVE-2016-7445 openjpeg
NVD, Gentoo: ≤ 2.1.1 (16)

2.1.1 (1) < 2.1.2 (16) 1.5 - 2.1.1 (7) ≤ 2.2.0 (18) 0 1SecurityFocus, Openwall: 2.1.1 (1)
CVE: < 2.1.2 (16)

CVE-2016-8676 libav

NVD: ≤ 11.8 (47) 11.3,

11.0 - 11.8 (9) 11.0 - 11.9 (10) 0
CVE: 11.9 (1) 11.4, 11.3, 11.4,
SecurityFocus: 11.3, 11.4, 11.5, 11.7 (4) 11.5, 11.5, 11.7, 11.0, 11.1,
Openwall: 11.8 (1) 11.7 (4) 11.8, 11.9 (6) 11.2, 11.6 (4)
agostino’s blog: 11.3 - 11.7 (5)

CVE-2016-9556 ImageMagick
NVD, CVE: 7.0.3.8 (1)

7.0.3.6
7.0.3.6,

7.0.3.1 - 7.0.3.7 (7) 7.0.3.1 - 7.0.3.8 (8) 7.0.3.1 - 7.0.3.5 (5) 0SecurityFocus, Openwall, 7.0.3.8 (2)
agostino’s blog: 7.0.3.6 (1)

Table 7: The summary of case study results. The number in parentheses denotes the total number of software versions.

and the posting time of the external reports at the 5 websites.
We find all of the NVD entries made the latest update after
the posting time of some of the external reports. Overall,
these results suggest that the NVD team did not effectively
include the vulnerable versions from the external reports, de-
spite that the reports were already available at the time of the
entry creation/update. The results in turn reflect the need
of automatically monitoring different online sources and ex-
tracting vulnerable versions for more proactive version test-
ing and entry updating.

7 Case Study

To demonstrate the real-world implications of our inconsis-
tency measurement, we perform case studies. We randomly
select 7 real-world vulnerabilities from the mismatched cases
in our dataset. Then we attempt to manually reproduce the
vulnerabilities of the related software under different ver-
sions. These vulnerabilities are associated with 7 distinct
CVE IDs, covering 47 vulnerability reports in total. Note
that for the case study, we not only included CVE sum-
maries and the reports from the 5 websites, but considered
all other source websites in the reference lists of these CVE
IDs. For the software mentioned in these reports, we exhaus-
tively gathered all the versions of these software programs
and obtained 185 versions of software in total. We list the
number of unique versions for each software in Table 7.

With the collected software, we examine the vulnerabili-
ties in each version. We form a team of 3 security researchers

to manually analyze the source code of these software pro-
grams, and dynamically verify the reported vulnerabilities
by manually crafting the PoC (proof-of-concept) input. The
185 software versions took us 4 months to fully verify.

The truly vulnerable versions are listed in the “ground-
truth” column in Table 7. In total, out of the 185 software
versions, we confirm that 64 versions are vulnerable. 12 of
the truly vulnerable versions are discovered by us for the first
time, which have never been mentioned in existing vulnera-
bility reports, or CVE/NVD entries.

Observation 1. Erroneous Information Confirmed.
By comparing with the ground-truth vulnerable versions, we
confirmed that most information sources including CVE and
NVD have either missed real vulnerable versions or falsely
included non-vulnerable versions. There are widespread and
routine overclaims and underclaims. Given that many sys-
tem administrators heavily rely on the information in vul-
nerability reports to assess the risk of their system and de-
termine whether they need to upgrade their software, it is a
big concern that the “underclaiming” problem could leave
vulnerable software systems unpatched. The overclaims, on
the other hand, could have wasted significant manual efforts
from security analysts in performing risk assessments.

Observation 2. Benefits and Limits of Majority Voting.
Given a vulnerability, if we take a majority voting among
different information sources, we can diminish the “over-
claiming” issue, which, however, amplifies the “underclaim-
ing” issue. The result suggests that system administrators



and security analysts cannot simply utilize a majority voting
mechanism to determine the risk of their software systems.

Observation 3. Benefits and Limits of Union. If we
take a union set of all the claimed vulnerable versions, we
can see the resulting vulnerable versions are having better
coverage of the truly vulnerable versions. This indicates
the benefit of broadly searching different online informa-
tion sources and automatically extracting newly discovered
vulnerable versions. While acknowledging the benefit, we
also observe that the union approach is not perfect. First, the
union set easily introduced overclaimed versions. Across all
the vulnerabilities in Table 7, we find 15 external reports (not
including NVD/CVE entries) where the claimed vulnerable
versions turned out to be not vulnerable based on our tests
(i.e., overclaimed reports). Second, the union set sometimes
fails to cover truly vulnerable versions. As shown in Table 7,
we confirm 12 new vulnerable versions for CVE-2009-5018,
CVE-2016-8676, and CVE-2016-9556. These vulnerable
versions are discovered for the first time by us, by exhaus-
tively testing all the available versions of the given software.
In practice, our approach (testing all versions) is not scalable
given the significant manual efforts required. To fully au-
tomate the vulnerability verification process is still an open
challenge. Overall, the union approach at least helps to nar-
row down the testing space and improve the coverage of the
truly vulnerable versions.

8 Discussion

Key Insights. The most important takeaway is NVD con-
tains highly inconsistent information from external informa-
tion sources and even the CVE list. The inconsistency in-
volves both overclaiming and underclaiming problems. The
implication is that system administers or security analysts
cannot simply rely on the NVD/CVE information to deter-
mine the vulnerable versions of the affected software. At the
very least, browsing external vulnerability reports can help
to better cover the potentially vulnerable versions.

Our system VIEM makes it possible to automatically keep
track of the information of different sources to generate a
“diff” from the NVD/CVE entries periodically. This allows
employees of NIST NVD and MITRE CVE to get notified
when new vulnerable versions are reported in external web-
sites, and helps them to focus on the most inconsistent or
outdated entries, which potentially accelerates vulnerability
testing, entry updating, and software patching. This was
not possible without VIEM. Although vulnerability testing
and verification are still largely manual efforts (automatically
verifying the correctness of the vulnerability information in
reports is not yet possible, which is an open problem), our
main contribution is that we enable the automation for the
information collection and standardization process.

Limitations. Our study has a few limitations. First, we
only focus on the 5 most popular source websites in order to
make the data collection process manageable (each website
needs its own crawler and content parser). We argue that the
5 websites are referenced by 72.34% of all CVE IDs, and the
results are representative. Future work will seek to expand
the scope of the measurements. Second, our definition of
“vulnerable software” is relatively broad, including all dif-
ferent parts that are related to (or affected by) the vulnerabil-
ity (e.g., dependent libraries, OSes, components, functions).
One way to improve our system is to further classify the dif-
ferent types of “software names” (e.g., differentiating vulner-
able applications and the affected OSes). Finally, the scale
of our case study is still limited. The 185 software versions
already cost months to manually verify, and it is difficult to
increase the scale further.

9 Related Work

NLP for Security. Natural Language Processing (NLP)
has been applied to address different security problems. For
example, researchers apply NLP to extract malware detec-
tion features from researcher papers [63] or systematically
collect cyber threat intelligence from technical blogs [27,37].
Another line of work applies text analysis to mobile apps to
study permission abuse and user input sanitization [33, 35,
43, 45, 46]. Finally, NLP has been used to analyze API doc-
umentation and infer security policies [55, 61].

A more relevant line of works has employed NLP tech-
niques to facilitate the identification and assessment of soft-
ware bugs [47, 51, 54, 58]. A recent work [59] proposed a
method to extract relevant information from CVE to facili-
tate vulnerability reproduction, with a specific focus on ker-
nel vulnerabilities. Our work is the first to build customized
NLP models to extract vulnerable software names and ver-
sions from CVE and vulnerability reports. We apply the
model to systematically measure information consistency.

Security Vulnerability Reports. CVE and vulnerability
reports have been studied in various contexts. Breu et al. [26]
showed that the interaction between software developers and
bug reporters can facilitate the remediation of software bugs.
Guo et al. [34] found that vulnerabilities reported by pro-
fessionals with high reputations usually get fixed quicker.
Bettenburg et al. [23] discovered that additional information
provided by duplicated vulnerability reports can help to re-
solve the problem more timely. Mu et al. [42] showed that
the missing information in vulnerability reports could reduce
the success rate of vulnerability reproduction. The authors
of [42] only tested if one of the versions is vulnerable, and
we need to test all the versions for a given software to obtain
the ground-truth (§7). Zhang et al. [60] used NVD data for
security risk assessment. Christey et al. [31] pointed out the
biased statistics in CVE. Nappa et al. [44] found missing and



extraneous vulnerable versions in NVD data (for 1500 vul-
nerabilities) by comparing the NVD version with those of the
product security advisories. Our work differs from previous
works by focusing on the information consistency between
unstructured information sources and CVE/NVD entries for
a large number of vulnerabilities.

10 Conclusion

In this paper, we design and develop an automated tool
VIEM to conduct a large-scale measurement of the informa-
tion consistency between the structured NVD database and
unstructured CVE summaries and external vulnerability re-
ports. Our results demonstrate that inconsistent informa-
tion is highly prevalent. In-depth case studies confirm that
the NVD/CVE database and third-party reports have either
missed truly vulnerable software versions or falsely included
non-vulnerable versions. The erroneous information could
leave vulnerable software unpatched, or increase the manual
efforts of security analysts for risk assessment. We believe
there is an emerging need for the community to systemati-
cally rectify inaccurate claims in vulnerability reports.
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Appendix

A Model Parameters

The have tested the model performance with respect to dif-
ferent parameter settings for the NER model and the RE
model. Figure 15 shows the RE model performance under
different position embedding dimensions. Figure 16 to Fig-
ure 18 show the NER model performance under different
batch sizes, the number of network layers, and the number
of epochs. The result shows that our model is not very sen-
sitive to parameter settings.
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Figure 15: Position embed
dim. vs. RE accuracy.
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Figure 16: Batch size vs.
NER accuracy.
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