Ghost Riders: Sybil Attacks on Crowdsourced
Mobile Mapping Services

Gang Wang, Bolun Wang, Tianyi Wang, Ana Nika,
Haitao Zheng, Fellow, IEEE, and Ben Y. Zhao, Senior Member, IEEE,

Abstract—Real-time crowdsourced maps such as Waze provide timely updates on traffic, congestion, accidents and points of interest.
In this paper, we demonstrate how lack of strong location authentication allows creation of software-based Sybil devices that expose
crowdsourced map systems to a variety of security and privacy attacks. Our experiments show that a single Sybil device with limited
resources can cause havoc on Waze, reporting false congestion and accidents and automatically rerouting user traffic. More
importantly, we describe techniques to generate Sybil devices at scale, creating armies of virtual vehicles capable of remotely tracking
precise movements for large user populations while avoiding detection. To defend against Sybil devices, we propose a new approach
based on co-location edges, authenticated records that attest to the one-time physical co-location of a pair of devices. Over time,
co-location edges combine to form large proximity graphs that attest to physical interactions between devices, allowing scalable
detection of virtual vehicles. We demonstrate the efficacy of this approach using large-scale simulations, and how they can be used to
dramatically reduce the impact of the attacks. We have informed Waze/Google team of our research findings. Currently, we are in
active collaboration with Waze team to improve the security and privacy of their system.

Index Terms—Online Social Networks; Crowdsourcing; Sybil Attack; Location Privacy

1 INTRODUCTION

Crowdsourcing is indispensable as a real-time data gathering
tool for today’s online services. Take for example map and
navigation services. Both Google Maps and Waze use periodic
GPS readings from mobile devices to infer traffic speed and
congestion levels on streets and highways. Waze, the most popular
crowdsourced map service, offers users more ways to actively
share information on accidents, police cars, and even contribute
content like editing roads, landmarks, and local fuel prices. This
and the ability to interact with nearby users made Waze extremely
popular, with an estimated 50 million users when it was acquired
by Google for a reported $1.3 Billion USD in June 2013. Today,
Google integrates selected crowdsourced data (e.g. accidents) from
Waze into its own Maps application.

Unfortunately, systems that rely on crowdsourced data are
inherently vulnerable to mischievous or malicious users seeking
to disrupt or game the system [1]. For example, business owners
can badmouth competitors by falsifying negative reviews on Yelp
or TripAdvisor, and FourSquare users can forge their physical
locations for discounts [2], [3]. For location-based services, these
attacks are possible because there are no widely deployed tools
to authenticate the location of mobile devices. In fact, there are
few effective tools today to identify whether the origin of traffic
requests are real mobile devices or software scripts.

The goal of our work is to explore the vulnerability of today’s

o G. Wang is with the Department of Computer Science, Virginia Tech,
Blacksburg, VA, 24060. E-mail: gangwang @vt.edu

o B. Wang and A. Nika, are with the Department Computer Science, UC
Santa Barbara, Santa Barbara, CA, 93106.

o H. Zheng and B. Y. Zhao are with the Department Computer Science, UC
Santa Barbara, Santa Barbara, CA, 93106, and now at the Department of
Computer Science at University of Chicago, Chicago, IL 60637.

o 1. Wang is with ByteDance Inc., Beijing, China, 100084.

o This project was supported by NSF grants CNS-1527939, CNS-1224100,
CNS-1705042, and CNS-1717028.

crowdsourced mobile apps against Sybil devices, software scripts
that appear to application servers as “virtual mobile devices.!
While a single Sybil device can damage mobile apps through
misbehavior, larger groups of Sybil devices can overwhelm normal
users and significantly disrupt any crowdsourced mobile app. In
this paper, we identify techniques that allow malicious attackers to
reliably create large populations of Sybil devices using software.
Using the context of the Waze crowdsourced map service, we
illustrate the powerful Sybil device attack, and then develop and
evaluate robust defenses against them.

While our experiments and defenses are designed with Waze
(and crowdsourced maps) in mind, our results generalize to a
wide range of mobile apps. With minimal modifications, our
techniques can be applied to services ranging from Foursquare
and Yelp to Uber, YikYak and Pokemon Go, allowing attackers to
cheaply emulate numerous virtual devices with forged locations to
overwhelm these systems via misbehavior. Misbehavior can range
from falsely obtaining coupons on Foursquare/Yelp, gaming the
new user coupon system in Uber, imposing censorship on Yik Yak,
to cheating in the game play of Pokemon Go. We believe our
proposed defenses can be extended to these services as well. We
discuss broader implications of our work in Section 9.

Sybil attacks in Waze. In the context of Waze, our experiments
reveal a number of potential attacks by Sybil devices. First is
simple event forgery, where devices can generate fake events to
the Waze server, including congestion, accidents or police activity
that might affect user routes. Second, we describe techniques
to reverse engineer mobile app APIs, thus allowing attackers to
create lightweight scripts that effectively emulate a large number
of virtual vehicles that collude under the control of a single
attacker. We call Sybil devices in Waze “ghost riders.” These

1. We refer to these scripts as Sybil devices, since they are the manifestations
of Sybil attacks [4] in the context of mobile networks.

Sybils can effectively magnify the efficacy of any attack, and
overwhelm contributions from any legitimate users. Finally, we
discover a significant privacy attack where ghost riders can silently
and invisibly “follow” and precisely track individual Waze users
throughout their day, precisely mapping out their movement to
work, stores, hotels, gas station, and home. We experimentally
confirmed the accuracy of this attack against our own vehicles,
quantifying the accuracy of the attack against GPS coordinates.
Magnified by an army of ghost riders, an attacker can potentially
track the constant whereabouts of millions of users, all without
any risk of detection.

Defenses. Prior proposals to address the location authentication
problem have limited appeal, because of reliance on widespread
deployment of specialized hardware, either as part of physical
infrastructure, i.e., cellular base stations, or as modifications to
mobile devices themselves. Instead, we propose a practical solu-
tion that limits the ability of Sybil devices to amplify the potential
damage incurred by any single attacker. We introduce collocation
edges, authenticated records that attest to the one-time physical
proximity of a pair of mobile devices. The creation of collocation
edges can be triggered opportunistically by the mapping service,
e.g., Waze. Over time, collocation edges combine to form large
proximity graphs, network structures that attest to physical in-
teractions between devices. Since ghost riders cannot physically
interact with real devices, they cannot form direct edges with real
devices, only indirectly through a small number of real devices
operated by the attacker. Thus, the edges between an attacker and
the rest of the network are limited by the number of real physical
devices she has, regardless of how many ghost riders are under
her control. This reduces the problem of detecting ghost riders to
a community detection problem on the proximity graph (The graph
is seeded by a small number of trusted infrastructure locations).
Our paper includes these key contributions:

e We explore limits and impacts of single device attacks on
Waze, e.g., artificial congestion and events.

e We describe techniques to create light-weight ghost riders,
virtual vehicles emulated by client-side scripts, through
reverse engineering of the Waze app’s communication
protocol with the server.

e We identify a new privacy attack that allows ghost riders
to virtually follow and track individual Waze users in real-
time, and describe techniques to produce precise, robust
location updates.

e We propose and evaluate defenses against ghost riders,
using proximity graphs constructed with edges repre-
senting authenticated collocation events between pairs of
devices. Since collocation can only occur between pairs
of physical devices, proximity graphs limit the number of
edges between real devices and ghost riders, thus isolating
groups of ghost riders and making them detectable using
community detection algorithms.

Impacts. We have informed the Google/Waze team of our
findings, and our efforts have led to significant improvements to
the security and privacy of Waze system. In addition to Waze and
Google Maps, there is more and more evidence of real-world Sybil
threats in similar services, including “ghost drivers” in Uber who
generate fake rides to earn financial bonus [5], [6], and cheaters in
Pokemon Go by spoofing GPS data [7], [8]. Our study provides
insights and mechanisms to counter such attacks.

0.4 miles 175 feet

Pine St

W 6th St, Baird

Callowhill st W

i Rage-St
fd st_g Arch st
b/ Market St

=

g

Chestrut

Spruce St

' E5thst

i
y
|

2:04 AM ‘ |
2min 0.4m

Fig. 1. Before the attack (left), Waze shows the fastest route for the user.
After the attack (right), the user gets automatically re-routed by the fake
traffic jam.

2 WAZE BACKGROUND
Waze is the most popular crowdsourced navigation app on smart-

phones, with more than 50 million users when it was acquired by
Google in June 2013 [9]. Waze collects GPS values of users’ de-
vices to estimate real-time traffic. It also allows users to report on-
road events such as accidents, road closures and police vehicles,
as well as editing roads and even updating local fuel prices. Some
features, e.g., user reported accidents, have been integrated into
Google Maps [10]. Here, we briefly describe the key functionality
in Waze as context for our work.

Trip Navigation. = Waze’s main feature is assist users to find the
best route to their destination and turn-by-turn navigation. Waze
generates aggregated real-time traffic updates using GPS data from
its users, and optimizes user routes both during trip planning and
during navigation. If and when traffic congestions is detected,
Waze automatically re-routes users towards an alternative.

Crowdsourced User Reports. Waze users can generate real-
time event reports on their routes to inform others about ongoing
incidents. Events range from accidents to road closures, hazards,
and even police speed traps. Each report can include a short note
with a photo. The event shows up on the map of users driving
towards the reported location. As users get close, Waze pops up a
window to let the user “say thanks,” or report the event is “not
there.” If multiple users choose “not there”, the event will be
removed. Waze also merges multiple reports of the same event
type at the same location into a single event.

Social Function. To increase user engagement, Waze supports
simple social interactions. Users can see avatars and locations of
nearby users. Clicking on a user’s avatar shows more detailed user
information, including nickname, ranking, and traveling speed.
Also, users can send messages and chat with nearby users. This
social function gives users the sense of a large community. Users
can elevate their rankings in the community by contributing and
receiving “thanks” from others.

3 ATTACKING CROWDSOURCED MAPS
In this section, we describe basic attacks to manipulate Waze by

generating false road events and fake traffic congestion. Since
Waze relies on real-time data for trip planning and route selection,
these attacks can influence user’s routing decisions. Attackers can
attack specific users by forging congestion to force automatic

= = =

[=% [=% [=%

E £ £

° el e

{7 [} [

[[@

Q Q. Q.

(7] 7])

L L L

-] - Average S 4 --o - Average % 371 --o- - Average

= 51 Predicted = Predicted = | #-- Predicted
0 Waze o™= Waze oL—™= Waze
1:4 1:3 1:2 11 2:1 31 41 1:4 13 1:2 11 2:1 31 41 1:4 1:3 1:2 11 21 31 41

Ratio of Slow Cars to Fast Cars

(a) Highway

Ratio of Slow Cars to Fast Cars

(b) Local Road

Ratio of Slow Cars to Fast Cars

(c) Residential

Fig. 2. The traffic speed of the road with respect to different combinations of number of slow cars and fast cars. We show that Waze is not using the
average speed of all cars, and our inferred function can correctly predict the traffic speed displayed on Waze.

rerouting on their trips. The attack is possible because Waze has
no reliable authentication on user reported data, such as their GPS.

We first discuss experimental ethics and steps we took to limit
impact on real users. Then, we describe basic mechanisms and
resources needed to launch attacks, and use controlled experiments
on two attacks to understand their feasibility and limits. One attack
creates fake road events at arbitrary locations, and the other seeks
to generate artificial traffic hotspots to influence user routing.

3.1 Ethics

Our experiments seek to understand the feasibility and limits of
practical attacks on crowdsourcing maps like Waze. We are very
aware of the potential impact to real users from any experiments.
We consulted our local IRB and have taken all possible precautions
to ensure that our experiments do not negatively impact real
Waze users. In particular, we choose experiment locations where
user population density is extremely low (unoccupied roads), and
only perform experiments at low-traffic hours, e.g., between 2am
and Sam. During experiments, we continuously scan the entire
experiment region and neighboring areas, to ensure no other Waze
users (except our own accounts) are within miles of the test area. If
any Waze users are detected, we immediately terminate all running
experiments. Our study received the IRB approval under protocol#
COMS-ZH-YA-010-7N.

Our work is further motivated by our view of the risks of
inaction versus risks posed to users by our study. On one hand, we
can and have minimized risk to Waze users during our study, and
we believe our experiments have not affected any Waze users.
On the other hand, we believe the risk to millions of Waze
users from pervasive location tracking (Section 5) is realistic and
potentially very damaging. We feel that investigating these attacks
and identifying these risks to the broad community at large was the
ethically correct course of action. Furthermore, full understanding
of the attacks was necessary to design a practical defense.

3.2 Basic Attack: Generating Fake Events

Launching attacks against crowdsourced maps like Waze requires
three steps: automate input to mobile devices that run the Waze
app; control the device GPS and simulate device movements (e.g.,
car driving); obtain access to multiple devices. All three are easily
achieved using widely available mobile device emulators.

Most mobile emulators run a full OS (e.g., Android, iOS)
down to the kernel level, and simulate hardware features such as
camera, SDCard and GPS. We choose the GenyMotion Android
emulator [11] for its performance and reliability. Attackers can
automatically control the GenyMotion emulator via Monkeyrun-
ner scripts [12]. They can generate user actions such as clicking

buttons and typing text, and feed pre-designed GPS sequences
to the emulator (through a command line interface) to simulate
location positioning and device movement. By controlling the
timing of the GPS updates, they can simulate any “movement
speed” of the simulated devices.

Using these tools, attackers can generate fake events (or
alerts) at a given location by setting fake GPS on their virtual
devices. This includes any events supported by Waze, including
accidents, police, hazards, and road closures. We find that a single
emulator can generate any event at arbitrary locations on the map.
We validate this using experiments on a variety of unoccupied
roads, including highways, local and rural roads (50+ locations, 3
repeated tests each). Note that our experiments only involve data in
the Waze system, and do not affect real road vehicles not running
the Waze app. Thus “unoccupied” means no vehicles on the road
with mobile devices actively running the Waze app. After creation,
the fake event stays on the map for about 30 minutes. Any Waze
user can report that an event was “not there.” We find it takes
two consecutive “not theres” (without any “thanks” in between)
to delete the event. Thus an attacker can ensure an event persists
by occasionally “driving” other virtual devices to the region and
“thanking” the original attacker for the event report.

3.3 Congestion and Traffic Routing
A more serious attack targets Waze’s real-time trip routing func-

tion. Since route selection in Waze relies on predicted trip time,
attackers can influence routes by creating “fake” traffic hotspots
at specific locations. This can be done by configuring a group of
virtual vehicles to travel slowly on a chosen road segment.

We use controlled experiments to answer two questions. First,
under what conditions can attackers successfully create traffic
hotspots? Second, how long can an artificial traffic hotspot last?
We select three low-traffic roads in the state of Texas that are
representative of three popular road types based on their speed
limit—Highway (65 mph), Local (45 mph) and Residential (25
mph). To avoid real users, we choose roads in low population
rural areas, and run tests at hours with the lowest traffic volumes
(usually 3-5AM). We constantly scan for real users in or nearby
the experimental region, and reset/terminate experiments if users
come close to an area with ongoing experiments. Across all our
experiments, only 2 tests were terminated due to detected presence
of real users nearby. Finally, we have examined different road
types and hours of the day to ensure they do not introduce bias
into our results.

Creating Traffic Hotspots. Our experiment shows that it
only takes one slow moving car to create a traffic congestion,
when there are no real Waze users around. Waze displays a red
overlay on the road to indicate traffic congestion (Figure 1, right).

Different road types have different congestion thresholds, with
thresholds strongly correlated to the speed limit. The congestion
thresholds for Highway, Local and Residential roads are 40mph,
20mph and 15mph, respectively.

To understand if this is generalizable, we repeat our tests on
other unoccupied roads in different states and countries. We picked
18 roads in five states in the US (CO, MO, NM, UT, MS) and
British Columbia, Canada. In each region, we select three roads
with different speed limits (highway, local and residential). We
find consistent results: a single virtual vehicle can always generate
a traffic hotspot; and the congestion thresholds were consistent
across different roads of the same speed limit.

Outvoting Real Users. Generating traffic hotspot in practical
scenarios faces a challenge from real Waze users who drive at
normal (non-congested) speeds: attacker’s virtual vehicles must
“convince” the server there’s a stream of slow speed traffic on
the road even as real users tell the server otherwise. We need
to understand how Waze aggregated multiple inputs to estimate
traffic speed.

We perform an experiment to infer this aggregation function
used by Waze. We create two groups of virtual vehicles: Ny slow-
driving cars with speed S, and Ny fast-driving cars with speed
S't; and they all pass the target location at the same time. We study
the congestion reported by Waze to infer the aggregation function.
Note that the server-estimated traffic speed is visible on the map
only if we formed a traffic hotspot. We achieve this by setting the
speed tuple (S5, Sf) to (10mph, 30mph) for Highway, (5, 15) for
Local and (5, 10) for Residential.

As shown in Figure 2, when we vary the ratio of slow cars
over fast cars (IV,:INy), the Waze server produces different final
traffic speeds. We observe that Waze does not simply compute
an “average” speed over all the cars. Instead, it uses a weighted
average with higher weight on the majority cars’ speed. We infer
an aggregation function as follows:

Smaz - maz(Ng, Ny) 4+ Squvg - min(Ns, Ny)
N +Nf

Swaze -

where Sqg = Mjﬁ%}w, and S, is the speed of the group

with N4, cars. As shown in Figure 2, our function can predict
Waze’s aggregate traffic speed accurately, for all different types
of roads in our test. For validation purposes, we run another
set of experiments by raising Sy above the hotspot thresholds
(65mph, 30mph and 20mph respectively for the three roads). We
can still form traffic hotspots by using more slow-driving cars
(Ns > Ny), and our function can still predict the traffic speed on
Waze accurately.

Long-Lasting Traffic Congestion. A traffic hotspot will last
for 25-30 minutes if no other cars drive by. Once aggregate speed
normalizes, the congestion event is dismissed within 2-5 minutes.
To create a long-lasting virtual traffic jam, attackers can simply
keep sending slow-driving cars to the congestion area to resist
the input from real users. We validate this using a simple, 50-
minute long experiment where 3 virtual vehicles create a persistent
congestion by driving slowly through an area, and then looping
back every 10 minutes. Meanwhile, 2 other virtual cars emulate
legitimate drivers that pass by at high speed every 10 minutes. We
find the traffic hotspot persists for the entire experiment period.

Impact on End Users. Waze uses real-time traffic data to
optimize routes during trip planning. Waze estimates the end-to-

PR Controlled By
Attacker

HTTPS
—_— -
< Plain Text <
~_

\Waze Client HTTPS Proxy Waze Server

1
1
_________________ s

Fig. 3. Using a HTTPS proxy as man-in-the-middle to intercept traffic
between Waze client and server.

end trip time and recommends the fastest route. Once on the road,
Waze continuously estimates the travel time, and automatically
reroutes if the current route becomes congested. An attacker can
launch physical attacks by placing fake traffic hotspots on the
user’s original route. While congestion alone does not trigger
rerouting, Waze reroutes the user to a detour when the estimated
travel time through the detour is shorter than the current congested
route (see Figure 1).

We also note that Waze data is used by Google Maps, and
therefore can potentially impact their 1+ billion users [13]. Our ex-
periment shows that artificial congestion do not appear on Google
Maps, but fake events generated on Waze are displayed on Google
Maps without verification, including “accidents”, “construction”
and “objects on road”. Finally, event updates are synchronized
on both services, with a 2-minute delay and persist for a similar
period of time (e.g., 30 minutes).

4 SyYBIL ATTACKS
So far, we have shown that attackers using emulators can create

“virtual vehicles” that manipulate the Waze map. An attacker
can generate much higher impact using a large group of virtual
vehicles (or Sybils [4]) under control. In this section, we describe
techniques to produce light-weight virtual vehicles in Waze, and
explore the scalability of the group-based attacks. We refer to large
groups of virtual vehicles as “ghost riders” for two reasons. First,
they are easy to create en masse, and can travel in packs to outvote
real users to generate more complex events, e.g., persistent traffic
congestion. Second, as we show in §5, they can make themselves
invisible to nearby vehicles.

4.1 Creating Sybil Devices
We start by looking at the limits of the large-scale Sybil attacks

on Waze. First, we note user accounts do not pose a challenge to
attackers, since account registration can be fully automated. We
found that a single-threaded Monkeyrunner script could automati-
cally register 1000 new accounts in a day.

The limiting factor is the scalability of vehicle emulation. Even
though emulators like GenyMotion are relatively lightweight,
each instance still takes significant computational resources. For
example, a MacBookPro with 8G of RAM supports only 10
simultaneous emulator instances. For this, we explore a more
scalable approach to client emulation that can increase the number
of supported virtual vehicles by orders of magnitude. Specifically,
we reverse engineer the communication APIs used by the app, and
replace emulators with simple Python scripts that mimic API calls.

Reverse Engineering Waze APIs. The Waze app uses HTTPS
to communicate with the server, so API details cannot be directly
observed by capturing network traffic (TLS/SSL encrypted). How-
ever, an attacker can still intercept HTTPS traffic, by setting up
a proxy [14] between her phone and Waze server as a man-in-
the-middle attack [15], [16]. As shown in Figure 3, an attacker

needs to pre-install the proxy server’s root Certificate Authorities
(CA) to her own phone as a “trusted CA.” This allows the proxy
to present self-signed certificates to the phone claiming to be the
Waze server. The Waze app on the phone will trust the proxy (since
the certificate is signed by a “trusted CA”), and establish HTTPS
connections with the proxy using proxy’s public key. On the proxy
side, the attacker can decrypt the traffic using proxy’s private key,
and then forward traffic from the phone to Waze server through a
separate TLS/SSL channel. The proxy then observes traffic to the
Waze servers and extracts the API calls from plain text traffic.

Hiding API calls using traffic encryption is fundamentally
challenging, because the attacker has control over most of the
components in the communication process, including phone, the
app binary, and the proxy. A known countermeasure is certificate
pinning [17], which embeds a copy of the server certificate within
the app. When the app makes HTTPS requests, it validates the
server-provided certificate with its known copy before establishing
connections. However, dedicated attackers can extract and replace
the embedded certificate by disassembling the app binary or
attaching the app to a debugger [18], [19].

Once we obtain the knowledge of Waze APIs, we can build ex-
tremely lightweight Waze clients using python scripts, allocating
one thread for each client. Within each thread, we login to the app
using a separate account, and maintain a live session by sending
periodic GPS coordinates to the Waze server.

4.2 Potential Defenses against Sybil Devices

While attackers can easily create lightweight Sybil devices, it is
nontrivial for services providers to effectively detect and defend
against them. Below we discuss possible ways to reliably authen-
ticate mobile devices, and highlight the key challenges to do so.

Email Verification. A straight-forward approach is to authen-
ticate a mobile device via an email account. However, attackers
may create fake email accounts automatically or purchase them in
bulks from blackmarkets [20]. This approach has limited effect.

SMS Verification. = Two-factor Authentication can be used to
verify phone numbers. The latest Waze app already requires SMS
verification during account registration. However, attackers can
bypass this using disposable phone numbers or temporal SMS
services [21].

CAPTCHA. Service providers can use CAPTCHAS to test
whether a phone is operated by a human user or a computer script.
This approach has key limitations too. First, solving CAPTCHAs
on smartphones can be distracting and annoying to legitimate
users. Second, attackers can leverage crowdsourced CAPTCHA
farms to solve CAPTCHAS in real time [22].

IMEI Validation. Service providers may also consider vali-
dating the unique identifier of the phone such as IMEI. But the
challenge is there are already public IMEI databases [23] or fake
IMEI generators [24] that can help attackers to spoof the identifier.

Device Fingerprinting. Researchers have proposed to use
motion sensors to fingerprint smartphones [25]. The idea is
that smartphone sensors such as accelerometers and gyroscopes
usually have anomalies in their signals due to manufacturing
imperfections. Such signal anomalies can be used to uniquely
fingerprint the phone. However, a more recent result shows that
fingerprinting accuracy would drop quickly for a large number
of devices (e.g., 100K) [26]. This technique is still not reliable
enough to authenticate mobile devices.

5

IP Verification. Finally, service providers can also check if
the device’s IP is an actual mobile IP (or a suspicious web
proxy). However, attacker can overcome this by routing their
traffic through a cellular data plan.

We find that authenticating individual mobile devices is very
challenging. As long as attackers have full controls on the client
side, they could (easily) forge the data needed for authentication.
In the later section (§6), we will describe our method to detect
groups of Sybil devices.

4.3 Scalability of Ghost Riders

Ghost riders are fully functional Waze clients and they are highly
scalable. Each ghost rider is scripted not only to report GPS to
Waze server, but also report fake events using the API. We run
1000 virtual vehicles on a single Linux Dell Server (Quad Core,
2GB RAM), and find that at steady state, 1000 virtual devices only
introduces a small overhead: 11% of memory usage, 2% of CPU
and 420 Kbps bandwidth. In practice, attackers can easily run tens
of thousands of virtual devices on a commodity server.

Finally, we experimentally confirm the practical efficacy and
scalability of ghost riders. We chose a secluded highway in rural
Texas, and used 1000 virtual vehicles (hosted on a single server
and single IP) to generate a highly congested traffic hotspot. We
perform our experiment in the middle of the night after repeated
scans showed no Waze users within miles of our test area. We
positioned 1000 ghost riders one after another, and drove them
slowly at 15 mph along the highway, looping them back every 15
minutes for an entire hour. The congestion shows up on Waze 5
minutes after our test began, and stayed on the map during the
entire test period. No problems were observed during our test, and
tests to generate fake events (accidents etc.) also succeeded.

5 USER TRACKING ATTACK

Next, we describe a powerful new attack on user privacy, where
virtual vehicles can track Waze users continuously without risking
detection themselves. By exploiting a key social functionality in
Waze, attackers can remotely follow (or stalk) any individual
user in real time. This is possible with single device emulation,
but greatly amplified with the help of large groups of ghost
riders, possibly tracking large user populations simultaneously
and putting user (location) privacy at great risk. We start by
examining the feasibility (and key enablers) of this attack. We
then present a simple but highly effective tracking algorithm that
follows individual users in real time, which we have validated
using real life experiments (with ourselves as the targets).

The only way for Waze users to avoid tracking is to go
“invisible” in Waze. However, doing so forfeits the ability to
generate reports or message other users. Waze also resets the
invisible setting every time the app is opened [27].

5.1 Feasibility of User Tracking

A key feature in Waze allows users to socialize with others on
the road. Each user sees on her screen icons representing the
locations of nearby users, and can chat or message with them
through the app. Leveraging this feature, an attacker can pinpoint
any target who has the Waze app running on her phone. By
constantly “refreshing” the app screen (issuing an update query
to the server), an attacker can query the victim’s GPS location
from Waze in real time. To understand this capability, we perform
detailed measurements on Waze to evaluate the efficiency and
precision of user tracking.

3000

2]
P T — T T
» 24x32 mile:
> 2500 r 12x16 mje?
S 2000 | 6x8 mile]
.g 3x4 mile
5 1500 1
) 1000 PRI g
**
= 500 & B
° o ; } ;
2

0 100 200 300 400

of Queries

Fig. 4. # of queries vs. unique returned users in the area.

Tracking via User Queries. = A Waze client periodically re-
quests updates in her nearby area, by issuing an update query with
its GPS coordinates and a rectangular “search area.” This search
area can be set to any location on the map, and does not depend
on the requester’s own location. The server returns a list of users
located in the area, including userID, nickname, account creation
time, GPS coordinates and the GPS timestamp. Thus an attacker
can find and “follow” a target user by first locating them at any
given location (work, home) and then continuously following them
by issuing update queries centered on the target vehicle location,
all automated by scripts.

Overcoming Downsampling. The user query approach faces
a downsampling challenge, because Waze responds to each query
with an “incomplete” set of users, i.e., up to 20 users per query
regardless of the search area size. This downsampled result is
necessary to prevent flooding the app screen with too many user
icons, but it also limits an attacker’s ability to follow a moving
target. We find that this downsampling can be overcome by simply
repeatedly querying the system until the target is found. We
perform query measurements on four test areas (of different sizes
between 3 x 4 mile? and 24 x 32 mile?) in the downtown area of
Los Angeles (City A, with 10 million residents as of 2015). For
each area, we issue 400 queries within 10 seconds, and examine
the number of unique users returned by all the queries. Results in
Figure 4 show that the number of unique users reported converges
after 150-250 queries for the three small search areas (< 12 x 16
mile?). For the area of size 24 x32 mileZ, more than 400 queries
are required to reach convergence.

Tracking Users over Time. Our analysis found that each
active Waze app updates its GPS coordinates to the server every
2 minutes, regardless of whether the user is mobile or stationary.
Even when running in the background, the Waze app reports GPS
values every 5 minutes. As long as the Waze app is open (even
running in the background), the user’s location is continuously
reported to Waze and potential attackers. Clearly, a more conser-
vative approach to managing location data would be helpful here.

We note that attackers can perform long-term tracking on a
target user (e.g., over months). The attacker needs a persistent
ID associated to the target. The “userID” field in the metadata is
insufficient, because it is a random ‘“‘session” ID assigned upon
user login and is released when the user kills the app. However,
the “account creation time” can serve as a persistent ID, because
a) it remains the same across the user’s different login sessions,
and b) it is precise down to the second, and is sufficiently to
uniquely identify single users in the same geographic area. While
Waze can remove the “account creation time” field from metadata,
a persistent attacker can overcome this by analyzing the victim’s
mobility pattern. For example, the attacker can identify a set of
locations where the victim has visited frequently or stayed during

Wilshire 8ivd 3
“ Los Angeles County Weihst §
seum of Art wish, %

ire B 2

GPS Points
Missed by Attacker "o

ntaMoniea®s

Fig. 5. A graphical view of the tracking result in Los Angeles downtown
(City A). Blue dots are GPS points captured by the attacker and the red
dots are those missed by the attacker.

the past session, mapping to home or workplace. Then the attacker
can assign a ghost rider to constantly monitor those areas, and re-
identify the target once her icon shows up in a monitored location,
e.g., home.

Stealth Mode. = We note that attackers remain invisible to their
targets, because queries on any specific geographic area can be
done by Sybils operating “remotely,” i.e. claiming to be in a dif-
ferent city, state or country. Attackers can enable their “invisible”
option to hide from other nearby users. Finally, disabling these
features still does not make the attacker visible. Waze only updates
each user’s “nearby” screen every 2 minutes (while sending its
own GPS update to the servers). Thus a tracker can “pop into”
the target’s region, query for the target, and then move out of
the target’s observable range, all before the target can update and
detect it.

5.2 Real-time Individual User Tracking
To build a detailed trace of a target user’s movements, an attacker

first bootstraps by identifying the target’s icon on the map. This
can be done by identifying the target’s icon while confirming her
physical presence at a time and location. The attacker centers its
search area on the victim’s location, and issues a large number of
queries (using Sybil accounts) until it captures the next GPS report
from the target. If the target is moving, the attacker moves the
search area along the target’s direction of movement and repeats
the process to get updates.

Experiments. To evaluate its effectiveness, we performed
experiments by tracking one of our own Android smartphones
and one of our virtual devices. Tracking was effective in both
cases, but we experimented more with tracking our virtual device,
since we could have it travel to any location. Using the OSRM
tool [28], we generate detailed GPS traces of two driving trips,
one in downtown area of Los Angeles (City A), and one along
the interstate highway-101 (Highway B). The target device uses a
realistic driving speed based on average traffic speeds estimated by
Google Maps during the experiment. The attacker used 20 virtual
devices to query Waze simultaneously in a rectangular search area
of size 6 x 8 mile?. This should be sufficient to track the GPS
update of a fast-driving car (up to 160 mph). Both experiments
were during morning hours, and we logged both the network traffic
of the target phone and query data retrieved by the attacker. Note
that we did not generate any “events” or otherwise affect the Waze
system in this experiment.

Results. Table 1 lists the results of tracking our virtual device,
and Figure 5 presents a graphical view of the City A result. For
both routes, the attacker can consistently follow the victim to her
destination, though the attacker fails to capture 1-2 GPS points
out of the 18-20 reported. For City A, the tracking delay, i.e., the
time spent to capture the subsequent GPS of the victim, is larger

TABLE 1
Tracking Experiment Results.

Location Route Travel GPS Sent | GPS Captured | Followed to Avg. Track Waze User Density
Length (Mile) | Time (Minute) By Victim by Attacker Destination? | Delay (Second) | (# of Users / mile?)
City A 12.8 35 18 16 Yes 43.79 56.6
Highway B 36.6 40 20 19 Yes 9.24 2.8

(averaging 43s rather than 9s). This is because the downtown
area has a higher Waze user density, and required more rounds
of queries to locate the target.

Our experiments represent two highly challenging (i.e., worst
case) scenarios for the attacker. The high density of Waze users
in City A downtown is makes it challenging to locate a target in
real time with downsampling. On Highway B, the target travels
at a high speed (~60mph), putting a stringent time limit on the
tracking latency, i.e., the attacker must capture the target before he
leaves the search area. The success of both experiments confirms
the effectiveness and practicality of the proposed attack.

6 DEFENSES
In this section, we propose defense mechanisms to significantly
limit the magnitude and impact of these attacks. While individual
devices can inflict limited damage, an attacker’s ability to control
a large number of virtual vehicles at low cost elevates the severity
of the attack in both quantity and quality. Our priority, then, is to
restrict the number of ghost riders available to each attacker, thus
increasing the cost per “vehicle” and reducing potential damage.
The most intuitive approach is perform strong location authen-
tication, so that attackers must use real devices physically located
at the actual locations reported. This would make ghost riders
as expensive to operate as real devices. Unfortunately, existing
methods for location authentication do not extend well to our
context. Some proposals solely rely on trusted infrastructures
(e.g., wireless access points) to verify the physical presence of
devices in close proximity [29], [30]. However, this requires
large scale retrofitting of cellular celltowers or installation of
new hardware, neither of which is practical at large geographic
scales. Others propose to embed tamperproof location hardware
on mobile devices [31], [32], which incurs high cost per user, and
is only effective if enforced across all devices. For our purposes,
we need a scalable approach that works with current hardware,
without incurring costs on mobile users or the map service (Waze).

6.1 Sybil Detection via Proximity Graph

Instead of optimizing per-device location authentication, our pro-
posed defense is a Sybil detection mechanism based on the novel
concept of proximity graph. Specifically, we leverage physical
proximity between real devices to create collocation edges, which
act as secure attestations of shared physical presence. In a prox-
imity graph, nodes are Waze devices (uniquely identified by an
account username and password on the server side). They perform
secure peer-to-peer location authentication with the Waze app
running in the background. An edge is established if the proximity
authentication is successful.

Because Sybil devices are scripted software, they are highly
unlikely to come into physical proximity with real devices. A
Sybil device can only form collocation edges with other Sybil
devices (with coordination by the attacker) or the attacker’s own
physical devices. The resulting graph should have only very few
(or no) edges between virtual devices and real users (other than

the attacker). Leveraging prior work on Sybil detection in social
networks, groups of Sybils can be characterized by the few “attack
edges” connecting them to the rest of the graph, making them
identifiable through community-detection algorithms [33].

We use a very small number of trusted nodes only to bootstrap
trust in the graph. We assume a small number of infrastructure
access points are known to Waze servers, e.g., hotels and public
WiFi networks associated with physical locations stored in IP-
location databases (used for geolocation by Apple and Google).
Any Waze device that communicates with the Waze server under
their IPs (and reports a GPS location consistent with the IP)
automatically creates a new collocation edge to the trusted node.

6.2 Peer-based Proximity Authentication

To build the proximity graph, we first need a reliable method
to verify the physical collocation of mobile devices. We cannot
rely on GPS reports since attackers can forge arbitrary GPS
coordinates, or Bluetooth based device ranging [34] because the
coverage is too short (<10 meters) for vehicles. Instead, we con-
sider a challenge-based proximity authentication method, which
leverages the limited transmission range of WiFi radios.

WiFi Tethering Challenge. = We use the smartphone’s WiFi
radio to implement a proximity challenge between two Waze de-
vices. Because WiFi radios have limited ranges (<250 meters for
802.11n [35])), two Waze devices must be in physical proximity
to complete the challenge. Specifically, we (or the Waze server)
instruct one device to enable WiFi tethering and broadcast beacons
with an SSID provided by the Waze server, i.e., a randomly
generated, time-varying bit string. This bit string cannot be forged
by other users or used to re-identify a particular user. The second
device proves its proximity to the first device by returning the
SSID value heard over the air to the Waze server.

The key concerns of this approach are whether the WiFi link
between two vehicles is stable/strong enough to complete the
challenge, and whether the separation distance is long enough for
our needs. This concern is valid given the high moving speed,
potential signal blockage from vehicles’ metal components, and
the low transmit power of smartphones. We explore these issues
with detailed measurements on real mobile devices.

First, we perform measurements on stationary vehicles to
study the joint effect of blockage and limited mobile transmit
power. We put two Android phones into two cars (with win-
dows and doors closed), one running WiFi tethering to broadcast
beacons and the other scanning for beacons. Figure 6 plots the
WiFi beacon strength at different separation distances. We see
that the above artifacts make the signal strength drop to -100
dBm before the distance reaches 250 meters. In the same figure,
we also plot the probability of successful beacon decoding (thus
challenge completion) across 400 attempts within 2 minutes. It
remains 100% when the two cars are separated by <80 meters,
and drops to zero at 160 meters.

Next, we perform driving experiments on a highway at normal
traffic hours in the presence of other vehicles. The vehicles travel

T - e —————

o 50 Scan Success Rate ! %
E 60 {108
< 9]
5 70 Signal Strength 1 06 §
[o
& -80 - g 1 0.4 ‘%
= - - - o
E 1 A N .k
% -100 L L L L P L Ny 1 0 %)

0O 20 40 60 80 100 120 140 160 180 200

Distance between Two Devices (m)

Fig. 6. WiFi signal strength and scan success rate with respect to car
distance in static scenarios.

at speeds averaging 65 mph. During driving, we are able to vary
the distance between the two cars, and use recorded GPS logs to
calculate the separation distance. Figure 7 shows that while WiFi
signal strength fluctuates during our experiments, the probability
of beacon decoding remains very high at 98% when the separation
is less than 80 meters but drops to <10% once the two cars are
more than 140 meters apart.

Overall, the results suggest the proposed WiFi tethering chal-
lenge is a reliable method for proximity authentication for our
system. In practice, Waze can start the challenge when detecting
the two vehicles are within the effective range, e.g., 80 meters.
Since the WiFi channel scan is fast, e.g., 1-2 seconds to do a full
channel scan in our experiments, this challenge can be accom-
plished quickly with minimum energy cost on mobile devices.

Constructing Proximity Graphs. In a proximity graph, each
node is a Waze device, and an edge indicates the two users come
into physical proximity, e.g., 80 meters, within a predefined time
window. The resulting graph is undirected but weighted based
on the number of times the two users have encountered. Using
weighted graph makes it harder for Sybils to blend into the normal
user region. Intuitively, real users will get more weights on their
edges as they use Waze over time. For attackers, in order to blend
in the graph, they need to build more weighted attack edges to real
users (higher costs).

This approach should not introduce much energy consumption
to users’ phones. First, Waze server does not need to trigger collo-
cation authentication every time two users are in close proximity.
Instead, the proximity graph will be built up over time. A user
only need to authenticate with other users occasionally, since we
can require that device authentication expires after a moderate
time period (e.g., months) to reduce the net impact on wireless
performance and energy usage. Second, since the process is
triggered by the Waze server, Waze can can use WiFi sensing from
devices to find “opportunistic” authentication times that minimize
impact on performance and energy. Waze can also use one tether
to simultaneously authenticate multiple colocated devices within
an area. This further reduces authentication overhead, and avoids
performance issues like wireless interference in areas with high
user density. In practice, there might be users who never turn on
the Wifi permission for Waze. One possible strategy is to lower
these users’ weights in traffic aggregation and temporarily strict
them from querying nearby users, to control the potential damage.
Also, WiFi is just one example we used to explain the technique.
Waze may use similar techniques on Bluetooth or other proximity
based communications when WiFi access is not available.

6.3 Graph-based Sybil Detection
We apply graph-based Sybil detection algorithms to detect Sybils

in Waze proximity graph. Graph-based Sybil detectors [33], [36]—
[42] were originally proposed in social networks. They all rely on

£ - —————————

Joa 50 Scan Success Rate 1 %
Z .60 S 408 «
£ y 2
2 -70 § 106 &
£ 80 f 104 S
n E @
T 90§ ' i 102 g
2 100 L o — 0 0
%]

0 20 40 60 80 100 120 140 160 180 200

Distance between Two Devices (m)

Fig. 7. WiFi signal strength and scan success rate with respect to car
distance in driving scenarios.

the key assumption that Sybils have difficulty to form edges with
real users, which results in a sparse cut between the Sybil and non-
Sybil regions in the social graph. Because of the limited number
of “attack edges” between Sybils and non-Sybils, a random walk
from non-Sybil region has a higher landing probability to land on
a non-Sybil node than a Sybil node.

Although this assumption may not always hold in online social
networks [43], it holds well for the proximity graph. In online
social networks, Sybils may build “attack edges” by befriending
with real users (e.g., using attractive female photos) [43]. However,
in a proximity graph, building an attack edge requires physical
collocations. With the WiFi authentication, it’s difficult to build
attack edges using software simulations alone in a massive, au-
tomated manner (e.g., for tens of thousands of Sybil devices).
In addition, the authentication is done in the background without
human involvement, which further eliminates the chance for Sybils
to trick real users to add edges.

SybilRank. We choose SybilRank as our main algorithm.
Compared to its counterparts [36]-[38], SybilRank achieves a
higher accuracy at a lower computational cost, and has been
successfully deployed in a real-world social network with tens
of millions of users [39]. At the high-level, SybilRank ranks the
nodes based on how likely they are Sybils. The algorithm starts
with multiple trusted nodes in the graph. It iteratively computes
the landing probability for short random walks (originated from
trusted nodes) to land on all other nodes. The landing probability
is normalized by the node’s degree, which acts as the trust score
for ranking. Intuitively, short random walks from trusted nodes are
very unlikely to traverse the few attack edges to reach Sybil nodes,
and thus Sybils’ scores should be lower.

SybilRank is designed to rank Sybils and allows system ad-
ministrators to go through the ranked list to decide which accounts
to suspend. As shown in [39], in practice, the administrators may
set a cut-off value for the trust score and label the tail of the list
as Sybils. For example, administrators can go through the ranked
list from the most suspicious accounts to the least suspicious ones.
They can stop at some point (the cut-off value) when they find the
non-Sybil rate gets too high.

The original SybilRank works on unweighted social graphs.
We modified it to work on our weighted proximity graph: when a
node propagates trust (or performs random walks) to its neighbors,
instead of splitting the trust equally, it distributes proportionally
based on the edge weights. This actually makes it harder for Sybils
to evade SybilRank—they will need to build more high-weight
attack edges to real users to receive trust.

SybilSCAR. In addition, we also consider a more recent
algorithm SybilSCAR [41] for comparison purposes. SybilSCAR
unifies multiple graph-based Sybil detection algorithms into a
single framework and proposes a new set of rules for label prop-

agating. However, SybilSCAR requires a small number of known
Sybils as well as trusted nodes as seeds, and thus is not our first
choice (SybilRank only needs a few trusted nodes). SybilSCAR
iteratively propagates label information (Sybil and non-Sybil)
from nodes to their neighbors. The underlying assumption is the
homophily property of social graphs, i.e., real users are more likely
to connect with real users and Sybils are more likely to connect
with Sybils, which is applicable to our proximity graph.

7 COUNTERMEASURE EVALUATION

We use simulations to evaluate the effectiveness of our proposed
defense. We focus on evaluating the feasibility and cost for attack-
ers to maintain a large number of Sybils after the Sybil detection
is in place. We quantify the cost by the number of attack edges a
Sybil must establish with real users. In practice, this translates into
the effort taken to physically drive around and use physical devices
(with WiFi radios) per Sybil to complete proximity authentication.
In the following, we first describe our simulation setup, and then
present the key findings and their implications on Waze.

7.1 Evaluation Setup
We first discuss how we construct a synthetic proximity graph

for our evaluation, followed by the counter strategies taken by
attackers to evade detection. Finally, we describe the evaluation
metrics for Sybil detection.

Simulating Proximity Graphs. = We use well-known models
on human encountering to create synthetic proximity graphs. This
is because, to the best of our knowledge, there is no public per-
user mobility dataset with sufficient scale and temporal coverage
to support our evaluation. Also, directly crawling large-scale, per-
user mobility trace from Waze can lead to questionable privacy
implications, and thus we exclude this option.

Existing literatures [44]-[48] all suggest that human (and
vehicle) encounter patterns display strong scale-free and “small-
world” properties [49]. Thus we follow the methodology of [44] to
simulate a power-law based encounter process among Waze users.
Given a user population [N, we first assign each user an encounter
probability following a power-law distribution (o« =2 based on the
empirical values [44], [50]). We then simulate user encounter over
time, by adding edges to the graph based on the joint probability
of the two nodes.

For our evaluation, we produce a proximity graph for N =
10000 normal users and use the snapshot when 99.9% of nodes are
connected. Note that as the graph gets denser over time, it is harder
for Sybils to blend into normal user regions. We use this graph to
simulate the lower-bound performance of Sybil detection.?

Note that by following a power-law encountering probability,
our model already considers the effect of new users or inactive
users. In this graph, only a small portion of active users has a high
degree, while most users (including new users) have a low degree
due to a low encountering probability. In practice, Waze can use
their real graphs for this experiment.

Attacker Models. In the presence of Sybil detection, an
attacker will try mixing their Sybils into the proximity graph. We
consider the following strategies:

1) Single-Gateway — An attacker first takes one Sybil ac-
count (as the gateway) to build attack edges to normal

2. Validated by experiments: a denser, 99.99% connected graph can uni-
formly improve Sybil detection accuracy.

9

users. Then the attacker connects the remaining Sybils
to this gateway. In practice, this means the attacker only
needs to take one physical phone to go out and encounter
normal users.

2) Multi-Gateways — An attacker distributes the attack
edges to multiple gateways, and then evenly spreads the
other Sybils across the gateways. This helps the Sybils
to blend in with normal users. The attacker pays an extra
cost in terms of using multiple real devices to build attack
edges.

The attacker also builds edges among its own Sybils to maintain a
legitimate degree distribution, and boost each other’s trust score. In
our simulation, we follow the scale-free distribution to add edges
among Sybils mimicking normal user region (we did not use a
fully connected network between Sybils since it is more easily
detectable).

Evaluation Metrics. To evaluate Sybil detection efficacy,
we use the standard false positive (negative) rate, and the Area
under the Receiver Operating Characteristic curve (AUC) used by
SybilRank [39]. AUC represents the probability that SybilRank
ranks a random Sybil node lower than a random non-Sybil node.
Its value ranges from O to 1, where 1 means the ranking is perfect
(all Sybils are ranked lower than non-Sybils), 0 means the ranking
is always flipped, and 0.5 matches the result of random guessing.
Compared to false positive (negative) rates, AUC is independent
of the cutoff threshold, and thus comparable across experiment
settings.

7.2 Results

Our evaluation primarily focuses on SybilRank, and we briefly
discuss the results of SybilSCAR in the end.

Accuracy of Sybil Detection. = We assume the attacker seeks
to embed 1000 Sybils into the proximity graph. We use either
single- or multi-gateway approaches to build attack edges on the
proximity graph by connecting Sybils to randomly chosen normal
users. We then add edges between Sybil nodes, following the
power-law distribution and producing an average weighted degree
of either 5 or 10 (to emulate different Sybil subgraph density). We
randomly select 10 trusted nodes to bootstrap trust for SybilRank
and run it on the proximity graph. We repeat each experiment 50
times.

Figure 8 shows that the Sybil detection mechanism is highly
effective. For attackers of the single-gateway model, the AUC is
very close to 1 (> 0.983), indicating Waze can identify almost all
Sybils even after the attacker established a large number of attack
edges, e.g., 50000. Meanwhile, the multi-gateway method helps
attackers add “undetected” Sybils, but the number of gateways
required is significant. For example, to maintain 1000 Sybils, i.e.,
by bringing down AUC to 0.5, the attacker needs at least 500 as
gateways. In practice, this means wardriving with 500+ physical
devices to meet real users, which is a significant overhead.

Interestingly, the 1000-gateway result (where every Sybil is a
gateway) shows that, at certain point, adding more attack edges
can actually hurt Sybils. This is potentially due to the fact that
SybilRank uses node degree to normalize trust score. For gateways
that connect to both normal users and other Sybils, the additional
“trust” received by adding more attack edges cannot compensate
the penalty of degree normalization.

10

2 1[e e — — g © 1
S ™ Q—0>""'"ﬁ"~—v?¢j_o =1 = el ey,
O 08 ye L o 08 3 o8 SO
3 . g 8 0 e Ty
& 0.6 4 0.6 o 8 0.6 s — -
g o4 g o4 5)
e y Gateway=1 —+— < : Gateway=1 —+— 2 0.4 Gateway=1
= = =1 —
= Gateway=100 - Gateway=100 - . El Gatt =100

02 - S 021 00 . 2 ateway:
o Gateway=500 o Gateway=500 g 02 - Gateway=500
< 0 Gateway=1000 - < 0 Gateway=1000 z - - Gateway=1000

0 10k 20k 30k 40k 50k 10k 20k 30k 40k 50k o, 10 20 30 40 50

of Total Attack Edges

(a) Sybil inner connection avg. degree = 5

of Total Attack Edges

(b) Sybil inner connection avg. degree = 10

of Trusted Nodes

Fig. 9. SybilRank: Impact of # of trusted nodes
(average degree =10 for Sybil region; 5K attack

Fig. 8. SybilRank: AUC with respect to number of attack edges, where Sybils form power-law edges).
inner connections.
2 ‘ ‘ ‘ 1 : 120k
° 0 Gateway=1000 - -o- - ° Gélteiwayﬂggg -
2 L Gateway=500 -] = L ateway= o 100k -
g 016 Gateway=100 - g 08 Gateway=100 g
S o012} Gateway=1] 2 . GaleWay=1 = 80kt
2 < oo g 3
£ oos| g PO g o
@ 9 e :(_ 40k
@ [8 5
|f 0.04 L‘E ,.‘..--!"""x % 20K
0 o
0 . . .
20k 30k 40k 50k 1000 2000 3000 4000 5000
of Total Attack Edges # of Total Attack Edges # of Sybils

(a) False Positive Rate

(b) False Negative Rate

Fig. 10. SybilRank: Detection error rates with respect to number of attack edges. We set average

degree =10 for Sybils’ power-law inner connections.

For a better look at the detection accuracy, we convert the
AUC in Figure 8(b) to false positives (classifying real users as
Sybils) and false negatives (classifying Sybils as real users). For
simplicity, we set a cutoff value to mark the bottom 10% of the
ranked nodes as Sybils. This cutoff value is only to convert the
error rate. In practice, Waze can optimize this value based on
the trust score or manual examination. As shown in Figure 10,
SybilRank is highly accurate to detect Sybils when the number of
gateways is less than 100. Again, 100 gateways incur high cost in
practice.

Next we quickly examine the impact of trusted nodes to Sybil
detection. Figure 9 shows a small number of trusted node is
enough to run SybilRank. Interestingly, adding more trusted nodes
can slightly hurt Sybil detection, possibly because it gives the
attacker (gateways) a higher chance to receive trust. In practice,
multiple trusted nodes can help SybilRank overcome potential
community structures in proximity graph (e.g., users of the same
city form a cluster). So Waze should place trusted nodes accord-
ingly to cover geographic clusters.

Cost of Sybil Attacks. Next, we infer the rough cost of attack-
ers on implementing successful Sybil attacks. For this we look at
the number of attack edges required to successfully embed a given
number of Sybils. Our experiment assumes the attacker uses 500
gateways and builds power-law distributed inner connections with
average degree=10. Figure 11 shows the number of attack edges
required to achieve a specific AUC under SybilRank as a function
of the target number of Sybils. We see that the attack edge count
increases linearly with the Sybil count. The cost of Sybil attack
is high: to maintain 3000 Sybils, the attacker must make 60,000
attack edges to keep AUC below 0.75, and spread these attack
edges across 500 high-cost gateways.

Smaller Sybil Groups. We briefly examine how effective
our system is in detecting much smaller Sybil groups. We test
Sybil groups with size of 20, 50 and 100 using a single-gateway
approach. We configure 50K attacking edges for Sybils with inner
degree = 10. The resulting AUC of Sybil detection is 0.90, 0.95

Fig. 11. SybilRank: # of attack edges needed
to maintain x Sybil devices with respect to dif-
ferent AUC level.

[T
= —
o L . M
Q
o
x
@
E Gateway=1
; 0.2 G =100 ke
g ' Gateway=500 -
< 0 Gateway=1000
0 10k 20k 30k 40k 50k

of Total Attack Edges

Fig. 12. SybilSCAR: # of attack edges vs. AUC (verage degree = 5 for
Sybil region).

and 0.99 respectively. This confirms our system can effectively
identify small Sybil groups as well.

Handling False Positives. For the few false positives (e.g., new
accounts without an edge yet), Waze can handle them properly
without affecting much of its functionality. For example, Waze
can apply “temporary” restrictions, by lowering their weights in
traffic aggregation, and enforcing strict rate limits for querying
nearby users. Once the new accounts establish some edges after
one trip, Waze then can release the restriction.

SybilSCAR Results. We perform a quick evaluation on
SybilSCAR. We set the average degree of the Sybil region as
5, and feed 10 random trusted nodes and 10 random known Sybils
to bootstrap SybilSCAR. The results are shown in Figure 12.
SybilSCAR performs well under the single-gateway setting (AUC
above 0.9). The AUC still remains above 0.8 under 100 gateways.
The results suggest that our system is not too sensitive to the
choice of the Sybil detection algorithm. Once the proximity graph
is constructed, existing off-the-shelf Sybil detection algorithms
can help to support the system.

8 OUR INTERACTIONS WITH WAZE

After our study, we have taken active steps to inform Google/Waze
team of our results and helped them to mitigate the threat. In this

section, we briefly describe our interactions with Waze team and
their new security measures.

Informing Waze Team Directly. Before the first writeup of
our work in November 2014, we sought to inform the Google
Waze team of our findings. We first used multiple existing Google
contacts on the Security and Android teams to reach out to Waze.
When that failed, we got in touch with Niels Provos, who relayed
information about our project to the Waze team.

As of October 2015, we observed a major change in Waze
app on how the app reports user GPS to the server (and other
users). In the new version, the app only reports user GPS when
the user is actively driving (moving at a moderate/fast rate of
speed). In addition, Waze automatically shuts down if the user
puts it in the background, and has not driven for a while. To
resume GPS reporting, users must manually bring the app to the
foreground. Finally, Waze hides users’ starting and destination
locations of their trips. While online documentation claims that
these optimizations are to reduce energy usage for the app, we
are gratified by the dramatic steps taken to limit user tracking and
improve user privacy. These changes indeed reduce the amount of
GPS data (by nearly a factor of 10x) sent to the server and made
available to potential attackers through the APIs.

Informing Waze through News Media. After the above
updates, attackers could still track users who are actively using
the app. To further raise the awareness of the attack, we pitched
our work to Fusion (a major media outlet). On April 26, 2016,
Fusion covered our story, which went viral within 24 hours with
20+ followup reports from news media all around the world. This
time, Waze immediately issued a response on the next day [51]
and a series of updates to the app. First, Waze disabled the social
feature in older versions (v3.8 or lower). In addition, the new
app uses special encoding on the communication APIs so that
the API parameters are no longer human-readable. However, after
some quick analysis, we found the encoding was implemented
with Google Protocol Buffer. Based on standard format of the
parameter values, we managed to crack the encoding and extracted
the new APIs within a day. We validated that our attack still
worked, and informed Waze of our finding.

Working with Waze. As of May 2016, the product manager of
Waze reached out to us to start a collaboration to improve Waze
security. Since then, Waze started to require a two-factor authen-
tication through SMS before showing any identifiable information
to nearby users. More importantly, we strongly suggested Waze
removing the globally unique identifiers (account creation time)
and usernames. Waze followed our suggestion and now it is very
difficult to persistently track users over multiple trips.

To assess the effectiveness of the SMS-based verification,
we tested to bypass this using temporal SMS services [21].
Our attempt succeeded. Once the account got verified, our Sybil
device can then communicate with Waze server to track users. We
reported our findings and also pointed them to our proximity graph
based defense ($6). It is an on-going effort to further raise the bar
for attackers.

Thus far, our efforts have led to significant improvement to the
security and privacy in Waze. After the back-and-forth interaction,
much less amount of location information is shared about users.
Currently, only active users (who are driving on the road with
Waze app on the foreground) can be tracked. In addition, we
convinced Waze to remove the globally unique identifiers of users,

11

making it very difficult to track users across multiple trips.

9 BROADER IMPLICATIONS
While our experiments and defenses have focused strictly on

Waze, our results are applicable to a wider range of mobile
applications that rely on geolocation for user-contributed con-
tent and metadata. Examples include location based check-in
services (Foursquare, Yelp), mobile navigation systems (Waze,
Moovit), crowdsourced taxi services (Uber, Lyft), mobile dating
apps (Tinder, Bumble), anonymous mobile communities (Yik Yak,
Whisper) and location-based gaming apps (Pokemon Go).

These systems face two common challenges exposing them to
potential attacks. First, our efforts show that it is difficult for app
developers to build a truly secure channel between the app and
the server. There are numerous avenues for an attacker to reverse-
engineer and mimic an app’s API calls, thereby creating “cheap”
virtual devices and launching Sybil attack [4]. Second, there are
no deployed mechanisms to authenticate location data (e.g., GPS
report). Without a secure channel to the server and authenticated
location, these mobile apps are vulnerable to automated attacks
ranging from nuisance (prank calls to Uber) to malicious content
attacks (large-scale rating manipulation on Yelp).

9.1 Attacking other Apps

To validate our point, we run a quick empirical analysis on a
broad class of mobile apps to understand how easy it is to reverse-
engineer their APIs and inject falsified data into the system. We
pick one app from each category including Foursquare, Uber,
Tinder, Yik Yak and Pokemon Go (an incomplete list). We find
that, although all the listed apps use TLS/SSL to encrypt their
network traffic, their APIs can be fully exposed by the method
in §4. For each app, we were able to build a light-weight client
using python script, and feed arbitrary GPS to their key function
calls. For example, with forged GPS, a group of Foursquare clients
can deliver large volumes of check-ins to a given venue without
physically visiting it; On Uber, one can distribute many virtual
devices as sensors, and passively monitor and track all drivers
within a large area (see §5). Similarly for Yik Yak and Tinder, the
virtual devices make it possible to perform wardriving in a given
location area to post and collect anonymous Yik Yak messages
or Tinder profiles. In addition, apps like Tinder also display the
geographical distance to a nearby user (e.g., 1 mile). Attacker can
use multiple virtual devices to measure the distance to the target
user, and “triangulate” that user’s exact location [52]. Finally, for
Pokemon Go, we can use simulated devices to capture pokemons
without physically walking outside like other players do (cheating
in the game).

9.2 New Countermeasures in the Wild

After our initial report was published, we have observed new
countermeasures from these apps. For example, Yik Yak uses
HMAC (keyed-hash message authentication code) to authenticate
their APIs. The app embeds a key in the binary to generate authen-
tication code. Any API calls without the code are not accepted. In
this case, the attacker will need to extract the key from binary to
build a Sybil device. In addition, apps like Twitter and Periscope
have adopted SSL pinning to spot self-signed certificates. Attacker
will need to replace the pinned certificate in order to set up the
HTTPS proxy to inspect API calls. Further research is needed
to empirically understand the usage and effectiveness of different
countermeasures in the wild.

10 RELATED WORK

Security in Location-based Services. Location-based ser-
vices face various threats, ranging from rogue users reporting
fake GPS [2], [53], to malicious parties compromising user
privacy [54]. A related study on Waze [55] demonstrated that
small-scale attacks can create traffic jams or track user icons,
with up to 15 mobile emulators. Our work differs in two key
aspects. First, we show that it’s possible to reverse engineer
its APIs, enabling light-weight Sybil devices (simple scripts) to
replace full-stack emulators. This increase the scale of potential
attacks by orders of magnitude, to thousands of Waze clients per
commodity laptop. The impact of thousands of virtual vehicles
is qualitatively different from 10-15 mobile simulators. Second, as
possible defenses, [55] cites known tools such as phone number/IP
verification, or location authentication with cellular towers, which
have limited applicability (see §6). In contrast, we propose a novel
proximity graph approach to detect and constrain the impact of
virtual devices.

Researchers have proposed to preserve user location privacy
against map services such as Waze and Google. Earlier studies
apply location cloaking by adding noise to the GPS reports [56].
Recent work use zero-knowledge [57] and differential privacy [58]
to preserve the location privacy of individual users. Our work
differs by focusing on the attacks against the map services.

Mobile Location Authentication. Defending against forged
GPS is challenging. One direction is to authenticate user locations
using wireless infrastructures: WiFi APs [29], [30], cellular base
stations [29], [30] and femtocells [59]. Devices must come into
physical proximity to these infrastructures to be authenticated. But
it requires cooperation among a wide range of infrastructures (also
modifications to their software/hardware), which is impractical
for large-scale services like Waze. Our work only uses a small
number of trusted infrastructures to bootstrap, and relies on peer-
based trust propagation to achieve coverage. Other researchers
have proposed ‘“peer-based” methods to authenticate collocated
mobile devices [34], [60], [61]. Different from existing work,
we use peer-based collocation authentication to build proximity
graphs for Sybil detection, instead of directly authenticating a
device’s physical location.

11 CONCLUSION

We describe our efforts to identify and study a range of attacks
on crowdsourced map services. We identify a range of single and
multi-user attacks, and describe techniques to build and control
groups of virtual vehicles (ghost riders) to amplify these attacks.
Our work shows that today’s mapping services are highly vulnera-
ble to software agents controlled by malicious users, and both the
stability of these services and the privacy of millions of users are at
stake. While our study and experiments focus on the Waze system,
we believe the large majority of our results can be generalized to
crowdsourced apps as a group. We propose and validate a suite
of techniques that help services build proximity graphs and use
them to effectively detect Sybil devices. Throughout this work,
we have taken active steps to isolate our experiments and prevent
any negative consequence on real Waze users. We also proactively
informed Waze team of theses attacks, and worked with them to
mitigate the threat.

12

REFERENCES

[1] N. Stefanovitch, A. Alshamsi, M. Cebrian, and I. Rahwan, “Error and
attack tolerance of collective problem solving: The darpa shredder
challenge,” EPJ Data Science, vol. 3, no. 1, pp. 1-27, 2014.

[2] B. Carbunar and R. Potharaju, “You unlocked the mt. everest badge on
foursquare! countering location fraud in geosocial networks,” in Proc. of
MASS, 2012.

[3] Z. Zhang, L. Zhou, X. Zhao, G. Wang, Y. Su, M. Metzger, H. Zheng,
and B. Y. Zhao, “On the validity of geosocial mobility traces,” in Proc.
of HotNets, 2013.

[4] J. R. Douceur, “The Sybil attack,” in Proc. of IPTPS, 2002.

[5] S. Cheng, “Uber’s terrifying “ghost drivers” are freaking out passengers
in china,” Quartz, September 2016.

[6] Y. Wang, “Ghost drivers are just one of uber china’s problems following
didi takeover,” Forbes, September 2016.

[7]1 M. Wehner, “How to cheat at pokémon go and catch any pokemon you
want without leaving your couch,” DailyDot, July 2016.

[8] Cydiageeks, “How to avoid getting banned in pokemon go while location
spoofing,” July 2016.

[91 V. Goel, “Maps that live and breathe with data,” The New York Times,
June 2013.

[10] Google, “Google maps and waze, outsmarting traffic together,” Google
Official Blog, June 2013.

[11] “GenyMotion Emulator,” http://www.genymotion.com.

[12] “Monkeyrunner,” https://developer.android.com/studio/test/
monkeyrunner/index.html.

[13] B. Reed, “Google maps becomes google’s second 1 billion-download
hit,” Yahoo! News, June 2014.

[14] “Charles Proxy,” http://www.charlesproxy.com.

[15] D. Sounthiraraj, J. Sahs, G. Greenwood, Z. Lin, and L. Khan, “Smv-
hunter: Large scale, automated detection of ssl/tls man-in-the-middle
vulnerabilities in android apps,” in Proc. of NDSS, 2014.

[16] C. Brubaker, S. Jana, B. Ray, S. Khurshid, and V. Shmatikov, “Using
frankencerts for automated adversarial testing of certificate validation in
ssl/tls implementations,” in Proc. of IEEE S&P, 2014.

[17] S. Fahl, M. Harbach, H. Perl, M. Koetter, and M. Smith, “Rethinking ssl
development in an appified world,” in Proc. of CCS, 2013.

[18] J. Osborne and A. Diquet, “When security gets in the way: Pentesting
mobile apps that use certificate pinning,” Black Hat, 2012.

[19] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A study of android
application security,” in Proc. of USENIX Security, 2011.

[20] K. Thomas et al., “Framing dependencies introduced by underground
commoditization,” in In Proc. of WEIS, 2015.

[21] K. Thomas, D. Iatskiv, E. Bursztein, T. Pietraszek, C. Grier, and D. Mc-
Coy, “Dialing back abuse on phone verified accounts,” in Proc. of CCS,
2014.

[22] M. Motoyama et al., “Re: Captchas: Understanding captcha-solving
services in an economic context,” in Proc. of USENIX Security, 2010.

[23] “IMEI database,” http://www.imei.info/phonedatabase/.

[24] “IMEI generator,” https://www.getnewidentity.com/imei- generator.php.

[25] A. Das, N. Borisov, and M. Caesar, “Tracking mobile web users through
motion sensors: Attacks and defenses,” in Proc. of NDSS, 2016.

[26] A. Das, N. Borisov, E. Chou, and M. H. Mughees, “Smartphone fin-
gerprinting via motion sensors: Analyzing feasiblity at large-scale and
studing real usage patterns,” CoRR, vol. abs/1605.08763, 2016.

[27] “About Waze: Privacy,” https://support.google.com/waze/answer/
6071193%hl=en.

[28] “Open Source Routing Machine (OSRM),” http://map.project-osrm.org.

[29] W. Luo and U. Hengartner, “Proving your location without giving up
your privacy,” in Proc. of HotMobile, 2010.

[30] S. Saroiu and A. Wolman, “Enabling new mobile applications with
location proofs,” in Proc. of HotMobile, 2009.

[31] C. Marforio et al., “Smartphones as practical and secure location verifi-
cation tokens for payments,” in Proc. of NDSS, 2014.

[32] S. Saroiu and A. Wolman, “I am a sensor, and i approve this message,”
in Proc. of HotMobile, 2010.

[33] B. Viswanath, A. Post, K. P. Gummadi, and A. Mislove, “An analysis of
social network-based sybil defenses,” in Proc. of SIGCOMM, 2010.

[34] Z. Zhu and G. Cao, “Toward privacy preserving and collusion resistance
in a location proof updating system,” IEEE TMC, vol. 12, no. 1, pp.
51-64, 2013.

[35] J. M. Tjensvold, “Comparison of the IEEE 802.11, 802.15.1,802.15.4
and 802.15.6 wireless standards,” http://janmagnet.files.wordpress.com/
2008/07/comparison-ieee-802-standards.pdf, 2007.

[36] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman, “Sybilguard: de-
fending against sybil attacks via social networks,” in Proc. of SIGCOMM,
2006.

[37]

[38]

[39]

[40]

[41]

[42]
[43]

[44]

[45]

[46]

[47]

(48]
[49]
[50]
[51]

[52]

[53]
[54]
[55]

[56]

[57]
[58]
[59]
[60]

[61]

H. Yu, P. B. Gibbons, M. Kaminsky, and F. Xiao, “Sybillimit: A near-
optimal social network defense against sybil attacks,” in Proc. of IEEE
S&P, 2008.

G. Danezis and P. Mittal, “Sybilinfer: Detecting sybil nodes using social
networks,” in Proc of NDSS, 2009.

Q. Cao, M. Sirivianos, X. Yang, and T. Pregueiro, “Aiding the detection
of fake accounts in large scale social online services,” in Proc. of NSDI,
2012.

S. Misra, A. S. M. Tayeen, and W. Xu, “Sybilexposer: An effective
scheme to detect sybil communities in online social networks,” in Proc.
of ICC, 2016.

B. Wang, L. Zhang, and N. Z. Gong, “Sybilscar: Sybil detection in online
social networks via local rule based propagation,” in Proc. of INFOCOM,
2017.

J. Jia, B. Wang, and N. Z. Gong, “Random walk based fake account
detection in online social networks,” in Proc. of DSN, 2017.

Z. Yang, C. Wilson, X. Wang, T. Gao, B. Y. Zhao, and Y. Dai,
“Uncovering social network sybils in the wild,” in Proc. of IMC, 2011.
A. G. Miklas, K. K. Gollu, K. K. W. Chan, S. Saroiu, K. P. Gummadi,
and E. de Lara, “Exploiting social interactions in mobile systems,” in
Proc. of Ubicomp, 2007.

F. Cunha, A. C. Viana, R. A. F. Mini, and A. A. F. Loureiro, “Is it possible
to find social properties in vehicular networks?” in Proc. of ISCC, 2014.
F. Tan, Y. Borghol, and S. Ardon, “Emo: A statistical encounter-based

mobility model for simulating delay tolerant networks,” in Proc. of

WOWMOM, 2008.

T. Hossmann, T. Spyropoulos, and F. Legendre, “Know thy neighbor:
Towards optimal mapping of contacts to social graphs for dtn routing,”
in Proc. of INFOCOM, 2010.

X. Liu, Z. Li, W. Li, S. Lu, X. Wang, and D. Chen, “Exploring social
properties in vehicular ad hoc networks,” in Proc. of Internetware, 2012.
A.-L. Barabasi and R. Albert, “Emergence of scaling in random net-
works,” Science, vol. 286, 1999.

A. Clauset, C. R. Shalizi, and M. E. Newman, “Power-law distributions
in empirical data,” SIAM review, vol. 51, no. 4, pp. 661-703, 2009.
“Waze’s response to our research.” https://blog.waze.com/2016/04/
privacy-and-waze.html.

G. Wang, B. Wang, T. Wang, A. Nika, H. Zheng, and B. Y. Zhao,
“Whispers in the dark: Analysis of an anonymous social network,” in
Proc. of IMC, 2014.

W. He, X. Liu, and M. Ren, “Location cheating: A security challenge to
location-based social network services,” in Proc. of ICDCS, 2011.

de Montjoye et al., “Unique in the crowd: The privacy bounds of human
mobility,” Scientific Reports, vol. 3, 2013.

M. B. Sinai, N. Partush, S. Yadid, and E. Yahav, “Exploiting social
navigation,” Black Hat Asia, vol. CoRR:abs/1410.0151, 2015.

M. Gruteser and D. Grunwald, “Anonymous usage of location-based
services through spatial and temporal cloaking,” in Proc. of MobiSys,
2003.

T. Jeske, “Floating car data from smartphones: What google and waze
know about you and how hackers can control traffic,” Black Hat, 2013.
J. W. S. Brown, O. Ohrimenko, and R. Tamassia, “Haze: Privacy-
preserving real-time traffic statistics,” in Proc. of SIGSPATIAL, 2013.

J. Brassil et al., “Traffic signature-based mobile device location authen-
tication,” IEEE TMC, vol. 13, no. 9, pp. 2156-2169, 2014.

J. Manweiler, R. Scudellari, and L. P. Cox, “Smile: Encounter-based trust
for mobile social services,” in Proc. of CCS, 2009.

A. Narayanan, N. Thiagarajan, M. Lakhani, M. Hamburg, and D. Boneh,
“Location Privacy via Private Proximity Testing,” in Proc. of NDSS,
2011.

Gang Wang is an Assistant Professor in the
Department of Computer Science in Virginia
Tech, VA, USA. He obtained his PhD degree
in Computer Science in 2016 from UC Santa
Barbara, CA, USA. He received his B.E. degree
in Electrical Engineering in 2010 from Tsinghua
University, Beijing, China. He was the recipient
of the Google Faculty Research Award (2018),
Best Practical Paper Award from ACM SIG-
METRICS (2013), and Outstanding Dissertation
Award (2016) and PhD dissertation fellowship

(2015) from UC Santa Barbara. His research interests are Security and
Privacy, Online Social Networks, Mobile Networks and Crowdsourcing.

13

Bolun Wang is a 5th year PhD student in the
Computer Science Department at the University
of California, Santa Barbara. He is now at the
University of Chicago as a visiting scholar. He re-
ceived his B.S. degree in Electrical Engineering
from Tsinghua University in 2009. His research
interests are Security and Privacy of mobile ap-
plications and online systems. He published pa-
pers in ACM TWEB, ACM IMC, MobiSys and
CSCW.

Tianyi Wang is a senior R&D at ByteDance
Inc. Previously he was a research scientist
at Baidu Research. He received his B.S. and
Ph.D. degrees from Department of Electronic
Engineering, Tsinghua University in 2011 and
2016, respectively. His research interests in-
clude data mining, machine learning, NLP and
security, mostly from a data-driven perspective.
He published more than 10 referred papers in
international journals and conferences, including
ACM TWEB, IEEE Communications Magazine,
USENIX Security, ACM IMC, MobiSys and CSCW.

Ana Nika Ana Nika is a Software Engineer at Mi-
crosoft. She received the Ph.D. degree in Com-
puter Science from the University of California,
Santa Barbara in 2017. Before that, she received
a M.Sc. degree in Communication Systems and
Networks and a B.Sc. degree in Computer Sci-
ence from the National and Kapodistrian Uni-
versity of Athens, Greece, in 2011 and 2007
respectively.

Haitao (Heather) Zheng is the Neubauer Pro-
fessor of Computer Science at University of
Chicago. She received her PhD degree from
University of Maryland, College Park in 1999.
After spending six years as researcher in in-
dustry labs (Bell-Labs, USA, and Microsoft Re-
search Asia), she joined the UC Santa Bar-
bara faculty in Fall 2005, and moved to Uni-
versity of Chicago in Summer 2017. At Univer-
sity of Chicago, she co-directs the SANDLab
(http://sandlab.cs.uchicago.edu) with a broad re-
search coverage on wireless networking and systems, mobile comput-
ing, security, and data mining and modeling. Her research has been
featured by a number of media outlets, such as the New York Times,
Boston Globe, LA Times, MIT Technology Review, and Computer World.
She is an |EEE Fellow and has received a number of awards, such as
the MIT Technology Review’s TR-35 Award (Young Innovators Under 35)
and the World Technology Network Fellow Award. She recently served
as the TPC-cochair of MobiCom’15 and DySPAN’11, and is currently
serving on the steering committees of MobiCom.

Ben Y. Zhao is the Neubauer Professor of
Computer Science at University of Chicago. He
completed his PhD from Berkeley (2004) and
his BS from Yale (1997). He is an ACM dis-
tinguished scientist, and recipient of the NSF
CAREER award, MIT Technology Review’s TR-
35 Award (Young Innovators Under 35), Com-
puterWorld Magazine’'s Top 40 Tech Innovators
award, Google Faculty award, and IEEE ITC
Early Career Award. His work has been covered
by media outlets such as Scientific American,
New York Times, Boston Globe, LA Times, MIT Tech Review, and Slash-
dot. He has published more than 150 publications in areas of security
and privacy, networked systems, wireless networks, data-mining and
HCI (H-index 58). He recently served as TPC co-chair for the World
Wide Web Conference (WWW 2016) and ACM Internet Measurement
Conference (IMC 2018).

