
Brian McDaniel

 Background
 Threads vs. events

 Blocking vs. non-blocking I/O
 Node.js

 What is it?

 Why JavaScript?

 API

 Architecture

 Ecosystem

 “a purely evented, non-blocking [I/O]
infrastructure to script highly concurrent
programs” – Ryan Dahl

 Based on an event loop and events.
 Used extensively in GUI programming.
 Used extensively in the browser.
 Single threaded, 1 event at a time.

Golden rule: never block; short events.

From Dave Peticolas (http://krondo.com/blog/?p=1209)

Serial Threaded Events

http://krondo.com/blog/?p=1209
http://krondo.com/blog/?p=1209
http://krondo.com/blog/?p=1209

 Threads
 Cons

▪ Use more resources

▪ Require locking and resource protection

▪ Error prone; non-determinism

▪ See: The Problem with Threads by Edward Lee, Berkeley
(2006)

 Pros
▪ Synchronous control flow within a thread

▪ “Standard” way of achieving concurrency

▪ Maps easily to multiple cores

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.pdf

 Events
 Cons
▪ Control flow is not as straightforward

▪ Hard to implement (especially in low-level languages)

▪ See: Why Events Are a Bad Idea (for high-concurrency
servers) by Behren et al, Berkeley (2003)

 Pros
▪ Resource efficient

▪ Typically single threaded, no parallelism

▪ See: Event-Driven Programming for Robust Software by
Dabek et al, MIT (2002)

http://capriccio.cs.berkeley.edu/pubs/threads-hotos-2003.pdf
http://capriccio.cs.berkeley.edu/pubs/threads-hotos-2003.pdf
http://capriccio.cs.berkeley.edu/pubs/threads-hotos-2003.pdf
http://capriccio.cs.berkeley.edu/pubs/threads-hotos-2003.pdf
http://www.scs.stanford.edu/~dm/home/papers/dabek:event.pdf
http://www.scs.stanford.edu/~dm/home/papers/dabek:event.pdf
http://www.scs.stanford.edu/~dm/home/papers/dabek:event.pdf

http://blog.webfaction.com/a-little-holiday-present

http://blog.webfaction.com/a-little-holiday-present
http://blog.webfaction.com/a-little-holiday-present
http://blog.webfaction.com/a-little-holiday-present
http://blog.webfaction.com/a-little-holiday-present
http://blog.webfaction.com/a-little-holiday-present
http://blog.webfaction.com/a-little-holiday-present
http://blog.webfaction.com/a-little-holiday-present

http://blog.webfaction.com/a-little-holiday-present

http://blog.webfaction.com/a-little-holiday-present
http://blog.webfaction.com/a-little-holiday-present
http://blog.webfaction.com/a-little-holiday-present
http://blog.webfaction.com/a-little-holiday-present
http://blog.webfaction.com/a-little-holiday-present
http://blog.webfaction.com/a-little-holiday-present
http://blog.webfaction.com/a-little-holiday-present

Blocking Non-Blocking

 Goal: separation of CPU tasks and IO tasks.

 Never wait on an IO task inside of a CPU task.

 Encapsulate CPU tasks inside of events.

 Execute event listeners (fire an event) when
data is ready to be processed by CPU.

 Netty

 Java

 EventMachine

 Ruby

 Twisted

 Python

 Background
 Threads vs. events

 Blocking vs. non-blocking I/O
 Node.js

 What is it?

 Why JavaScript?

 Architecture

 API

 Ecosystem

 “a purely evented, non-blocking [I/O]
infrastructure to script highly concurrent
programs” – Ryan Dahl

 Node.js is…

 a JavaScript interpreter with:

▪ A module system

▪ I/O and helper libraries, exposed as modules

 1 binary file, statically linked (~8.5MB)

Usage: node <script.js> <args>

 Already designed around events

 BOM and DOM already have events and timers.

 Closures make callbacks easy.

 No pre-existing I/O libraries, “untainted”.
 Google V8

 Compiles to machine code.

 Designed for speed.

 Large numbers of concurrent connections

 Think WebSockets, Comet, long-polling

 Good at acting as an aggregator of backend
services

 Rapid development
 Full web stack in JavaScript

 Not good for CPU intensive tasks.
 New, constantly changing.
 No killer web framework built on top.
 Not battle tested on a top website.

 CommonJS module system

 client.js

 module_name.js

 fs – File system
 net – TCP & UNIX domain sockets
 dgram – UDP sockets.
 dns – DNS tools (resolving)
 http & https – HTTP clients and servers
 tls – secure sockets and servers
 child_process – spawn, like popen()

 Examples:
 server.on(‘connection’, function (socket) {….});
 socket.on(‘data’, function (data) {…});
 Similar to events in the browser:

▪ element.addEventListener(‘click’, function (event) {…});
 EventEmitter

 addListener(event, listener);
 removeListener(listener);
 on(event, listener);
 once(event, listener);
 emit(event, arg1, arg2, …);

 Buffer class

 Represents raw memory allocated outside of V8.

 Specified in bytes; length is immutable

 String encodings:

▪ ascii

▪ utf-8

▪ base64

▪ others..

 libev

 Provides the event loop and events.

 Provides file descriptor watchers for sockets and
pipes.

 libeio

 Provides asynchronous wrappers for file
operations and blocking libraries.

 Uses a thread pool to execute blocking
operations.

 V8

 Provides the JavaScript implementation.

 Node

 Provides module system, underlying I/O
operations, and the JavaScript library.

 Glues everything together.

 npm – node package manager

 Currently hosting 1655 packages.

 Easy: npm install packagename@version

 Popular packages

 Connect and Express

 socket.io

 JSDOM

 database wrappers

 Voxer

 Real-time iPhone communication app

 Plurk

 Switched from Netty to Node.js

▪ 10x less memory usage

▪ Slightly more CPU usage

 Yahoo!

 Unspecified use for Yahoo! Mail

 Goal: create a server-centric web framework
where the DOM is rendered on the server, and
synced with the client.

 Benefits: persistence, collaboration, easier
development

 Currently using Node for:
 A custom HTTP server (http module + Connect)

 Persistent connections (socket.io)

 Rendering the DOM (JSDOM)

 Readable

 event: ‘data’

 setEncoding(), pause(), resume(), pipe()

 Writeable

 write(), end()

 Examples

 Sockets, HTTP request object, stdin/stdout

 FS.createReadStream()/createWriteStream()

