nodels

Brian McDaniel

Outline

Background
Threads vs. events

Blocking vs. non-blocking I/O
Node.js

What is it?

Why JavaScript?
API
Architecture
Ecosystem

"a purely evented, non-blocking[1/O]
infrastructure to script highly concurrent
programs” — Ryan Dahl

Threads vs. Events

Event Driven Programming

Based on an event loop and events.

Usec
Usec

Sing

extensive
extensive

e threadec

y in GUI programming.
y in the browser.
, 1 event at a time.

Golden rule: never block; short events.

Event Driven Programming

Serial Threaded
Task 1 Task 1 Task 2 Task 3 J Task 1
time Task 2
Task 2 .
Task 3
Task 3

time

From Dave Peticolas (http://krondo.com/blog/?p=1209)

Events

time

http://krondo.com/blog/?p=1209
http://krondo.com/blog/?p=1209
http://krondo.com/blog/?p=1209

Threads vs. Events

Threads

Cons
Use more resources
Require locking and resource protection
Error prone; non-determinism

See: The Problem with Threads by Edward Lee, Berkeley
(2006)

Pros
Synchronous control flow within a thread

"Standard” way of achieving concurrency
Maps easily to multiple cores

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.pdf

Threads vs. Events

Events

Cons
Control flow is not as straightforward
Hard to implement (especially in low-level languages)

See: Why Events Are a Bad Idea (for high-concurrency
servers) by Behren et al, Berkeley (2003)

Pros
Resource efficient
Typically single threaded, no parallelism

See: Event-Driven Programming for Robust Software by
Dabek et al, MIT (2002)

http://capriccio.cs.berkeley.edu/pubs/threads-hotos-2003.pdf
http://capriccio.cs.berkeley.edu/pubs/threads-hotos-2003.pdf
http://capriccio.cs.berkeley.edu/pubs/threads-hotos-2003.pdf
http://capriccio.cs.berkeley.edu/pubs/threads-hotos-2003.pdf
http://www.scs.stanford.edu/~dm/home/papers/dabek:event.pdf
http://www.scs.stanford.edu/~dm/home/papers/dabek:event.pdf
http://www.scs.stanford.edu/~dm/home/papers/dabek:event.pdf

Apache vs. nginx

reqs/sec
nginx

10000 apache
saan
BOON
4000
2000
0

500 1000 1500 2000 2500 3000 3500 concurrent

connections

http://blog.webfaction.com/a-little-holiday-present

http://blog.webfaction.com/a-little-holiday-present
http://blog.webfaction.com/a-little-holiday-present
http://blog.webfaction.com/a-little-holiday-present
http://blog.webfaction.com/a-little-holiday-present
http://blog.webfaction.com/a-little-holiday-present
http://blog.webfaction.com/a-little-holiday-present
http://blog.webfaction.com/a-little-holiday-present

Apache vs. nginx

memory in MB
nginx
apache
a0
20
10
0
00 1000 1500 2000 2600 3000 3500 concurrent

connections

http://blog.webfaction.com/a-little-holiday-present

http://blog.webfaction.com/a-little-holiday-present
http://blog.webfaction.com/a-little-holiday-present
http://blog.webfaction.com/a-little-holiday-present
http://blog.webfaction.com/a-little-holiday-present
http://blog.webfaction.com/a-little-holiday-present
http://blog.webfaction.com/a-little-holiday-present
http://blog.webfaction.com/a-little-holiday-present

Blocking vs. Non-blocking 1/O

Blocking vs. Non-blocking 1/O

Blocking Non-Blocking

console.log('Reading file 1'); console.log('Reading file 1.');
var X = FS.readFileSync('filel.txt"); FS.readFile('filel.txt', function (err, data) {
console.log('File 1 done.'); if (lerr) {

console.log('File 1 done');
console.log('Reading file 2°); }
var y = FS.readFileSync('file2.txt"'):|l});

cfnsole.log('File 2 done.'); , ,
console.log('Reading file 2.');

FS.readFile('file2.txt', function (err, data) {
if (lerr) {
console.log('File 2 done');
}
});

Reading file 1 Reading file 1.
File 1 done. Reading file 2.
Reading file 2 File 2 done

File 2 done. File 1 done

Event Driven, Non-Blocking 10

Goal: separation of CPU tasks and 10 tasks.
Never wait on an |O task inside of a CPU task.
Encapsulate CPU tasks inside of events.

Execute event listeners (fire an event) when
datais ready to be processed by CPU.

Event Considerations

var x = 8;
console.log('Reading file 1.');
FS.readFile('filel.txt', function (err, data) {
if (lerr) {
console.log('File 1 done');
}
while (true) {
X+,
}
1)

console.log('Reading file 2.');
FS.readFile('file2.txt', function (err, data) {
if (lerr) {
console.log('File 2 done');

}
while (true) {
X+
}
});

Other NIO Frameworks

Netty

Java
EventMachine

Ruby
Twisted

Python

Outline

Background
Threads vs. events

Blocking vs. non-blocking I/O
Node.js

What is it?

Why JavaScript?
Architecture
API

Ecosystem

"a purely evented, non-blocking[1/O]
infrastructure to script highly concurrent
programs” — Ryan Dahl

In Practical Terms

Node.js is...
a JavaScript interpreter with:

A module system
/O and helper libraries, exposed as modules

1 binary file, statically linked (~8.5MB)

Usage: node <script.js> <args>

Why JavaScript?

Already designed around events
BOM and DOM already have events and timers.
Closures make callbacks easy.
No pre-existing I/O libraries, "untainted”.
GoogleV8
Compiles to machine code.
Designed for speed.

Node.|s Strengths

Large numbers of concurrent connections

ThinkWebSockets, Comet, long-polling
Good at acting as an aggregator of backend
services
Rapid development
Full web stack in JavaScript

Node.js Weaknesses

Not good for CPU intensive tasks.
New, constantly changing.

No killer web framework built on top.
Not battle tested on a top website.

APl Overview

CommonlJS module system

client.js

var mod = require('module name');
mod. foo();

var y = mod.SomeValue

module_name.js

exports.foo = function () {
console.log('foo called');

};

var x = 3: // This 1s local to this module
exports.SomeVariable = 5;

Some Built-In Node.js Modules

fs — File system

net —TCP & UNIX domain sockets
dgram — UDP sockets.

dns — DNS tools (resolving)

http & https — HTTP clients and servers
tls — secure sockets and servers

child_process — spawn, like popen()

Common Abstractions:

EventEmitter

Examples:
server.on(‘connection’, function (socket) {....});
socket.on(‘data’, function (data) {...});

Similar to events in the browser:
element.addEventListener(‘click’, function (event) {...});
EventEmitter

addListener(event, listener);
removelistener(listener);
on(event, listener);
once(event, listener);
emit(event, argz, arg2, ...);

Demo: HTTP server

Dealing with Binary Data

Buffer class

Represents raw memory allocated outside of V8.
Specified in bytes; length is immutable

String encodings:
ascli
utf-8
baseby4
others.. }

"node. js";
new Buffer(str.length);

(var i
buf[i]

@; 1 < str.length ; i++) {
str.charCodeAt(1i);

console.log(buf):

brianmcd@thinklinux:~/node-presentation$ node buffer.js

<Buffer 6e 6f 64 65 2Ze 6Ga 73>

Architecture

libev
Provides the event loop and events.

Provides file descriptor watchers for sockets and
Dipes.

libeio
Provides asynchronous wrappers for file
operations and blocking libraries.

Uses a thread pool to execute blocking
operations.

Architecture

V8

Provides the JavaScript implementation.

Node

Provides module system, underlying /O
operations, and the JavaScript library.

Glues everything together.

Ecosystem

npm —node package manager
Currently hosting 1655 packages.

Easy: npm install packagename@version
Popular packages

Connect and Express

socket.io
JSDOM
database wrappers

Current Node.js Users

Voxer

Real-time iPhone communication app

Plurk
Switched from Netty to Node.js

10x less memory usage
Slightly more CPU usage

Yahoo!

Unspecified use forYahoo! Mail

My Research

Goal: create a server-centric web framework
where the DOM is rendered on the server, and
synced with the client.

Benefits: persistence, collaboration, easier
development

Currently using Node for:
A custom HTTP server (http module + Connect)

Persistent connections (socket.io)
Rendering the DOM (JSDOM)

Chat Server Example

Common Abstractions:

Streams

Readable

event: ‘data’

setEncoding(), pause(), resume(), pipe()
Writeable

write(), end()
Examples

Sockets, HTTP request object, stdin/stdout
FS.createReadStream()/createWriteStream()

