
Brian McDaniel

 Background
 Threads vs. events

 Blocking vs. non-blocking I/O
 Node.js

 What is it?

 Why JavaScript?

 API

 Architecture

 Ecosystem

 “a purely evented, non-blocking [I/O]
infrastructure to script highly concurrent
programs” – Ryan Dahl

 Based on an event loop and events.
 Used extensively in GUI programming.
 Used extensively in the browser.
 Single threaded, 1 event at a time.

Golden rule: never block; short events.

From Dave Peticolas (http://krondo.com/blog/?p=1209)

Serial Threaded Events

http://krondo.com/blog/?p=1209
http://krondo.com/blog/?p=1209
http://krondo.com/blog/?p=1209

 Threads
 Cons

▪ Use more resources

▪ Require locking and resource protection

▪ Error prone; non-determinism

▪ See: The Problem with Threads by Edward Lee, Berkeley
(2006)

 Pros
▪ Synchronous control flow within a thread

▪ “Standard” way of achieving concurrency

▪ Maps easily to multiple cores

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.pdf

 Events
 Cons
▪ Control flow is not as straightforward

▪ Hard to implement (especially in low-level languages)

▪ See: Why Events Are a Bad Idea (for high-concurrency
servers) by Behren et al, Berkeley (2003)

 Pros
▪ Resource efficient

▪ Typically single threaded, no parallelism

▪ See: Event-Driven Programming for Robust Software by
Dabek et al, MIT (2002)

http://capriccio.cs.berkeley.edu/pubs/threads-hotos-2003.pdf
http://capriccio.cs.berkeley.edu/pubs/threads-hotos-2003.pdf
http://capriccio.cs.berkeley.edu/pubs/threads-hotos-2003.pdf
http://capriccio.cs.berkeley.edu/pubs/threads-hotos-2003.pdf
http://www.scs.stanford.edu/~dm/home/papers/dabek:event.pdf
http://www.scs.stanford.edu/~dm/home/papers/dabek:event.pdf
http://www.scs.stanford.edu/~dm/home/papers/dabek:event.pdf

http://blog.webfaction.com/a-little-holiday-present

http://blog.webfaction.com/a-little-holiday-present
http://blog.webfaction.com/a-little-holiday-present
http://blog.webfaction.com/a-little-holiday-present
http://blog.webfaction.com/a-little-holiday-present
http://blog.webfaction.com/a-little-holiday-present
http://blog.webfaction.com/a-little-holiday-present
http://blog.webfaction.com/a-little-holiday-present

http://blog.webfaction.com/a-little-holiday-present

http://blog.webfaction.com/a-little-holiday-present
http://blog.webfaction.com/a-little-holiday-present
http://blog.webfaction.com/a-little-holiday-present
http://blog.webfaction.com/a-little-holiday-present
http://blog.webfaction.com/a-little-holiday-present
http://blog.webfaction.com/a-little-holiday-present
http://blog.webfaction.com/a-little-holiday-present

Blocking Non-Blocking

 Goal: separation of CPU tasks and IO tasks.

 Never wait on an IO task inside of a CPU task.

 Encapsulate CPU tasks inside of events.

 Execute event listeners (fire an event) when
data is ready to be processed by CPU.

 Netty

 Java

 EventMachine

 Ruby

 Twisted

 Python

 Background
 Threads vs. events

 Blocking vs. non-blocking I/O
 Node.js

 What is it?

 Why JavaScript?

 Architecture

 API

 Ecosystem

 “a purely evented, non-blocking [I/O]
infrastructure to script highly concurrent
programs” – Ryan Dahl

 Node.js is…

 a JavaScript interpreter with:

▪ A module system

▪ I/O and helper libraries, exposed as modules

 1 binary file, statically linked (~8.5MB)

Usage: node <script.js> <args>

 Already designed around events

 BOM and DOM already have events and timers.

 Closures make callbacks easy.

 No pre-existing I/O libraries, “untainted”.
 Google V8

 Compiles to machine code.

 Designed for speed.

 Large numbers of concurrent connections

 Think WebSockets, Comet, long-polling

 Good at acting as an aggregator of backend
services

 Rapid development
 Full web stack in JavaScript

 Not good for CPU intensive tasks.
 New, constantly changing.
 No killer web framework built on top.
 Not battle tested on a top website.

 CommonJS module system

 client.js

 module_name.js

 fs – File system
 net – TCP & UNIX domain sockets
 dgram – UDP sockets.
 dns – DNS tools (resolving)
 http & https – HTTP clients and servers
 tls – secure sockets and servers
 child_process – spawn, like popen()

 Examples:
 server.on(‘connection’, function (socket) {….});
 socket.on(‘data’, function (data) {…});
 Similar to events in the browser:

▪ element.addEventListener(‘click’, function (event) {…});
 EventEmitter

 addListener(event, listener);
 removeListener(listener);
 on(event, listener);
 once(event, listener);
 emit(event, arg1, arg2, …);

 Buffer class

 Represents raw memory allocated outside of V8.

 Specified in bytes; length is immutable

 String encodings:

▪ ascii

▪ utf-8

▪ base64

▪ others..

 libev

 Provides the event loop and events.

 Provides file descriptor watchers for sockets and
pipes.

 libeio

 Provides asynchronous wrappers for file
operations and blocking libraries.

 Uses a thread pool to execute blocking
operations.

 V8

 Provides the JavaScript implementation.

 Node

 Provides module system, underlying I/O
operations, and the JavaScript library.

 Glues everything together.

 npm – node package manager

 Currently hosting 1655 packages.

 Easy: npm install packagename@version

 Popular packages

 Connect and Express

 socket.io

 JSDOM

 database wrappers

 Voxer

 Real-time iPhone communication app

 Plurk

 Switched from Netty to Node.js

▪ 10x less memory usage

▪ Slightly more CPU usage

 Yahoo!

 Unspecified use for Yahoo! Mail

 Goal: create a server-centric web framework
where the DOM is rendered on the server, and
synced with the client.

 Benefits: persistence, collaboration, easier
development

 Currently using Node for:
 A custom HTTP server (http module + Connect)

 Persistent connections (socket.io)

 Rendering the DOM (JSDOM)

 Readable

 event: ‘data’

 setEncoding(), pause(), resume(), pipe()

 Writeable

 write(), end()

 Examples

 Sockets, HTTP request object, stdin/stdout

 FS.createReadStream()/createWriteStream()

