
An Introduction to JavaScript

Godmar Back

JavaScript – The Basics

• Standardized as ECMAScript 262
• Combines elements of functional, object-based, and

object-oriented languages
• Dynamically typed
• Typesafe & Garbage collected
• Interpreted
• Weak typing in that both implicit and explicit type

coercions are allowed
• Uses static scoping with run-time dependent bindings
• C-like syntax

Type System

Types

• Number Type

• String Type

• Boolean Type

• Null Type

• Undefined Type

• Object Type

Values

• IEEE FP Numbers

• Unicode Strings

• true, false

• null

• undefined

• objects, arrays, and
functions

Operators

• Mostly like C or Java
• String concatenation via “+”
• Equality (==)

– Performs conversions
– Compares strings char-wise
– undefined == null
– Not transitive

• Identity (===, !==)
• Weird artifacts

– ("0" == false && !"0" == false) is ?
– && and || don’t always return Boolean, but type of last

evaluated argument – type of (a && b) depends on value, not
just type of a!

JavaScript Objects

• Objects are bundles of properties
• Properties can be of any type

– A property that’s a function can be viewed as a method of the
object

• Property can be added by simple assignment
– a.x = 5
– a.m = function () { …. }
– a.o = { p1: “string” }

• Properties can be deleted via ‘delete’ operator
– delete a.x

• Objects can be specified as literals { }
– “JSON” – JavaScript object notation has become an interchange

format

JavaScript Scoping

• Static scopes:
– Properties of Global Object (default scope)
– Function scopes (one per nested function) – form a scope

chain for “var” declarations
• Does not use block { } scoping

– All “var” declared variables with function are visible on
entry (multiple var are silently ignore0

– Variables initialized to ‘undefined’
– As are missing function arguments

• Object literals do not create a new scope
• Object properties are *not* on scope chain

– E.g., ‘x’ does not resolve to ‘this.x’ within object method

JavaScript Functions

• First class objects
• Support closures

– Free variables resolve based on the scope chain in
effect when function was defined

– Example:
• // some context in which ‘d’ is defined
var f = function (a, b) {

var c = 1;
d = a + b + c;

}
Here, ‘d’ is bound as per scope chain in ‘some context’

• Frequently used

What does this program output?

function fiveguys()

{

var a = [];

for (var i = 0; i < 5; i++) {

a.push(function () {

return i;

});

}

return a;

}

f = fiveguys();

for (var i = 0; i < f.length; i++)

println(f[i]());

Leads to frequent errors
when passing closures
to handle future events,
e.g. AJAX responses

The ‘new’ operator

• JavaScript does not support class keyword, or concept
– (though will be added in next revision of language)

• Instead, new is applied to a function
– Creates empty object
– Invokes the function

• (“this” refers to the object during the call)
– Returns a new object
– Function object becomes the “.constructor” property

• Consequence
– any runtime instance of a function can “double” as a

constructor (and thus define a type in the conventional
sense)

Built-in Objects

• Function (type: function)
– new Function("x", "return x * x")(2) -> 4

• Array (type: function)
– [] initializer convenience syntax
– Arrays are sparse, length is (max {index} + 1)

• Number (type: function) – type coercion
• String (type: function) – type coercion
• Boolean (type: function) – type coercion
• Date
• RegExp
• Math

Prototypical Inheritance

• Let function F() { }
• Let F.prototype = { <properties a, b, c> }
• Then o = new F() means
• reading o.a reads F.prototype.a

– but writing o.a does not affect F.prototype
– after write, subsequent reads will read per-object property

• Result: (somewhat) like dynamic classes:
adding/removing properties to prototype object affects
all “instances” created based on the prototype

• Recursively – forms prototype chain
– Can be used to implement traditional inheritance

‘this’

• Binding depends on context
• At top-level, ‘this’ is the global object
• Inside functions, it depends on how the

function is called:
– If called via ‘new’ or using dot operator a.f(), ‘this’

is the current object
– Else ‘this’ is the global object

• This (no pun intended) is frigging confusing
and extremely error prone

What does this program output?

// redundant, just for illustration

prop = undefined;

obj = {

prop : "mine", // a "field"

method: function () { // a "method“

println("this.prop = " + this.prop);

helper();

// a nested function within a method

function helper () {

println("this.prop = " + this.prop);

}

}

}

obj.method();

m = obj.method;

m();

Real-life JavaScript

• JavaScript is embedded in environments
– Most notably: in web pages
– Global object here has additional properties

• E.g., “window” (alias for global object)
• “document”, “alert”, “setTimeout”, etc.

– Allows interaction with the page, viewed as a hierarchical
tree – the “DOM” referred to by “document”

• Lots of “ad-hoc” code, but most new code is structured
• 2 Trends for structuring

– jQuery – style – not OO, but DOM-centered
– OO-style JavaScript

• Use prototypical facilities to superimpose classic OO concepts,
such as packages, inheritance, and mix-ins

jQuery

• The entire library is contained in a single
function called “$”
– returns a “selector” object that represents subset

of elements in DOM and has chainable methods
to operate on them (“for all”)

$(document).ready(function() {
$("a").click(function(event) {

alert("Thanks for visiting!");

});

});

OO-style JavaScript

• Some codes use “manual” inheritance
– Declare functions, name them, add prototype

property, etc. – tedious, but amenable to static
analysis because at least ‘function’ types are declared

• More common:
– Classes are created on the fly using factory methods,

e.g. libx.core.Class.create()

– Example: http://libx.org/libx-
new/src/editions/doc/symbols/src/libx2_base_vector.j
s.html

http://libx.org/libx-new/src/editions/doc/symbols/src/libx2_base_vector.js.html
http://libx.org/libx-new/src/editions/doc/symbols/src/libx2_base_vector.js.html
http://libx.org/libx-new/src/editions/doc/symbols/src/libx2_base_vector.js.html

Sources of Errors

• Sheer confusion about scoping
– Defaulting to global scope means

“for (i = 0; i < 10; i++)” clobbers global i
– ‘this’

• Namespace pollution (like globals in C)
– “Helpful” code that changes prototype chains of all

objects, e.g. “Object.prototype.usefulmethod = “
• Aliases (as in other OO languages)

– Assigning a.x creates a local property, != b.x
– Assigning a.x.y may be the same as b.x.y.

• Closures (see earlier example)

JavaScript Security

• JavaScript executes in Sandbox
– No access to file system, etc.

• JavaScript has full access to the DOM of the current page
– As well as to DOM of pages loaded from the same domain - can

transform it in any way
• Cross-site scripting attack

– Inject JavaScript into page by tricking server to serve it: via
email, or post to form, etc.

• Implication for including third party code
– Saying <script src=“http://somedomain.com” /> requires that

you trust somedomain.com entirely – all or nothing
• No stack inspection

http://somedomain.com/

JavaScript & Concurrency

• JavaScript is single-threaded
– Current event-handler runs to completion

• Consequence:
– JavaScript must not run for “too long”
– JavaScript code must not “block” – e.g., no synchronous

network I/O
• Forces continuation-passing style

– Great potential for concurrency bugs – execution order of
network completion handlers is random

• May even be synchronous if result is cached!
– Plus, for big pages, execution of inlined JS is not uninterrupted

and may interleave with event handlers
– These errors are typically missed during testing

Further Pointers

•
ECMA-262:
http://www.ecma-
international.org/publications/files/ECMA-ST/ECMA-
262.pdf

Flanagan's JavaScript book, Chapters 1-4, available here –
VT internal link:
http://proquest.safaribooksonline.com/?uiCode=vatech&x
mlId=0596101996

Doug Crockford's pages make for easy and concise reading:
http://www.crockford.com/javascript/

http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf
http://proquest.safaribooksonline.com/?uiCode=vatech&xmlId=0596101996
http://proquest.safaribooksonline.com/?uiCode=vatech&xmlId=0596101996
http://www.crockford.com/javascript/

	An Introduction to JavaScript
	JavaScript – The Basics
	Type System
	Operators
	JavaScript Objects
	JavaScript Scoping
	JavaScript Functions
	What does this program output?
	The ‘new’ operator
	Built-in Objects
	Prototypical Inheritance
	‘this’
	What does this program output?
	Real-life JavaScript
	jQuery
	OO-style JavaScript
	Sources of Errors
	JavaScript Security
	JavaScript & Concurrency
	Further Pointers

