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ABSTRACT
Convenience, reliability, and effectiveness of automatic mem-
ory management have long been established in modern sys-
tems and programming languages such as Java. The timeli-
ness requirements of real-time systems, however, impose spe-
cific demands on the operational parameters of the garbage
collector. The memory requirements of real-time tasks must
be accommodated with a predictable impact on the time-
line, and under the purview of the scheduler.

Utility Accrual is a method of dynamic overload schedul-
ing that is designed to respond to CPU overload conditions
by producing a schedule that heuristically maximize a pre-
defined metric of utility. There also exists in such systems
the possibility of memory overload situations in which the
cumulative memory demand exceeds the amount of memory
available.

This paper presents a utility accrual algorithm for unipro-
cessor CPU and garbage collection scheduling that addresses
memory overload conditions. By tightly linking CPU and
memory allocation, the scheduler can now appropriately re-
spond to overload along both dimensions. This scheduler
is the first of its kind to enable the use of automatic mem-
ory management in a utility accrual system. Experimental
results using actual Java application profiles indicate the
viability of this model.

1. INTRODUCTION
Some real-time systems must function in environments with
a high degree of uncertainty. No significant a priori knowl-
edge of the system’s operating conditions can be assumed.
Scheduling of real-time tasks must therefore be accordingly
adjusted to the unfolding of the environment’s dynamic,
context-dependent parameters. CPU load is one such pa-
rameter which varies as a function of the number and de-
mands of real-time tasks present in the system.
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Utility Accrual (UA) scheduling is one method of adapting
to CPU overload conditions while maintaining predictable
temporal behavior. Such schedulers are designed to produce
deterministic real-time guarantees during underload, e.g.,
meeting all deadlines up to 100% CPU load. As the load
increases beyond 100%, however, these dynamic schedulers
will select only a time-feasible subset of the contending tasks
based on the attributes of each task. We have previously
demonstrated [6] the viability of implementing complex UA
schedulers under real-time Java.

Absent system-level awareness, memory is often treated as
a monolithic resource by the memory manager where allo-
cation requests are indiscriminately serviced. Similar to the
CPU, the aggregate demand on system memory can dynam-
ically exceed availability and lead to memory overload condi-
tions. A memory manager, tightly coupled to the scheduler,
would be able to make better decisions given its widened
view of the system. Conversely, the awareness of the sys-
tem’s memory status likewise enables the scheduler to enact
more sophisticated admission policies, consider memory con-
straints at scheduling points, and appropriately budget for
the memory operations time requirements. Given the inher-
ent execution overhead of the garbage collector (GC) and its
potentially disruptive activation, it is necessary for real-time
schedulers to monitor and manage the GC as accurately as
possible.

This paper presents CADUS (Collector Aware Dynamic Util-
ity accrual Scheduler), a scalable scheduling algorithm in-
tended to produce predictable, graceful, performance degra-
dation during CPU and/or memory overload conditions. The
paper makes the following contributions:

The CADUS algorithm — During CPU overload the al-
gorithm chooses only the most ”desirable” tasks for execu-
tion; it adjusts its admission policy during memory overload;
and, it calculates and budgets for garbage collection over-
head while scheduling the collector appropriately.

The TPUD task ordering — Three-dimensional Poten-
tial Utility Density (TPUD) is a performance metric to pro-
duce a ranking of tasks based on their CPU time and mem-
ory requirements combined with their potential utility to the
system as a whole. Furthermore, this metric can be tuned
to introduce a bias towards CPU or memory based on the
task’s cycle demands and allocation patterns.



The PRD task ordering — The Potential Reclamation
Density (PRD) is a metric to evaluate a task’s capacity for
memory reclamation.

Workload Evaluation — We profiled and traced actual
Java programs and evaluated the scheduler’s behavior against
those.

2. BACKGROUND
2.1 Utility Accrual Scheduling
We assume a dynamic system in which tasks can arrive at
any time. Each task is associated with an expected utility,
which represents an application-specific quality of service
metric. This metric is expressed by a Time/Utility Function
(TUF) which maps a task’s completion time [10, 9] to a
utility gain value. Two example TUFs are shown in Figure 1.
The gray blocks in the figure represents the execution time
of the task starting at ts and completing execution at tc,
and can be anywhere between the task arrival time ta and
the task deadline td.

Figure 1 (a) illustrates a step-TUF corresponding to a hard
deadline where a task yields full utility prior to the deadline
and zero afterwards. While deadline-based systems have a
wide range of applications, gradually declined TUF such as
the one shown in Figure 1 (b) are also used.

Scheduling disciplines such as Earliest Deadline First (EDF)
can provide optimal sequencing of tasks up to 100% proces-
sor utilization. Beyond 100% load, however, UA schedulers
must select a sequence of tasks from a “feasible” subset of
all contending tasks J = {j1, . . . , jn}, based on the expected
utility gained from completing these tasks. The objective of
the scheduler is to maximize system-wide accrued utility:

Uσ =
P|σ|

i=1 ui(tc). An optimal schedule, σoptimal, is a se-
quence of tasks that yields maximal utility.

Because finding an optimal schedule is NP-hard [5], dy-
namic, on-line, real-time UA schedulers must adopt heuris-
tic approaches with limited time complexity. CADUS ac-
complishes this by using a hybrid greedy/combinatorial ap-
proach.

2.2 Memory Management and Garbage Col-
lection Model

In previous work [1], we have demonstrated that it is feasible
to implement multiple logical heaps within a single Java
runtime system. In such a system, each task is provided

Figure 1: Examples of Time/Utility Functions
(TUFs)

Figure 2: Logical Task Heap Model

with its own logical heap that represents a portion of the
physical heap. We have shown that each task’s heap can
be separately garbage collected if there are no cross-heap
references between tasks. We have developed a scheme for
managing or avoiding such cross-heap references. After a
task instance terminates, its objects must be returned to the
physical heap. If there are multiple instances of a periodic
task, each instance starts with a blank slate. Our system
uses a central heap for permanent, shared objects. In this
paper, we assume a system with the above properties. An
example of a physical heap with logical heaps for 3 tasks A,
B, and C is shown in Figure 2.

Allocation requests are fulfilled from the shared physical
heap. A garbage collector is responsible for reclaiming un-
used memory. In systems without real-time requirements, a
collection is triggered when an allocation request by a muta-
tor fails and more memory is needed to satisfy the request.
For real-time systems, however, such reactively triggered GC
is often unsuitable as the mutator could run out of memory
at an unpredictable time and be forced to yield the processor
to the collector for an unknown period [11].

Solving this problem is the subject of real-time garbage col-
lection algorithms [3, 7, 2]. These approaches address two
questions: how to build an allocator and collector such that
the time required by the operations necessary to perform al-
location and collection is “bounded by a small constant” [3].
Second, and equally important, is the question of garbage
collection scheduling: deciding when to collect and for how
long. Known scheduling strategies can be divided in work-
based and time-based approaches. Work-based approaches
schedule collection work based on the amount of memory a
mutator has allocated, while time-based approaches sched-
ule collection work based on the amount of time the mutator
has progressed.

CADUS presents a scheduling strategy for garbage collec-
tion in which the expected utility of a task, in relation to
its time and memory allocation requirements, determines
when the task—and any necessary collection work—should
be scheduled. As such, this paper does not present a new
real-time garbage collection algorithm, but rather a strategy



of how to integrate the scheduling of garbage collection in
the context of a utility accrual framework. We believe that
CADUS’s scheduling strategy could be used with different
collection mechanisms, provided the following requirements
on the collector are fulfilled.

We require (1) that the collector is precise, such that a full
GC cycle could reclaim all garbage. We require (2) that
time bounds are known for the collector’s operation, and
that these time bounds can be computed from the memory
allocation profile of a task as follows

GCtime,i <= fm(mlive,i) + fs(malloc,i −mlive,i)

fm accounts for the cost involved in root scanning and trac-
ing the reachability graph, as well as possible context switch
cost to and from the collector. We assume that the num-
ber of roots is small and has no significant impact on total
GC time. fs accounts for the time spent reclaiming ob-
jects, which is determined by the amount of garbage g =
malloc,i −mlive,i; this time is assumed to include the time
needed to reinitialize the memory for subsequent use. See
Section 4.1 for how we determine realistic fm and fs for our
experiments.

We require (3) that the collector be preemptible: should a
new task arrive while a collection is in progress, the CADUS
must have the option of preempting an ongoing collection. It
is acceptable that the collector does not return any memory
in this case; we assume negligible preemption delay.

We believe that variants of Baker’s real-time treadmill col-
lector [3], such as the collector used in the SPIN OS [14],
could be used in our model; for a detailed discussion of the
implementation trade-offs regarding collector overhead and
mutator utilization we refer to [2].

2.3 Allocation Profiles
We obtain the memory allocation profile of a task by tracing
the task’s memory consumption. The cumulative memory
allocation of a task is a monotonically increasing function
during the task’s life time. Two examples are shown in Fig-
ure 3. The JPEG decompression task uses com.sun.image.-
codec.jpeg.JPEGImageDecoder.decodeAsBufferedImage to
decode an image, while the Matrix decomposition task con-
structs matrices of varying but known sizes and performs
three decompositions using routines from the JAMA matrix
library. In this paper, we assume an input-independent al-
location profile, as is the case for the two examples shown.
Note that the JPEG-Decoder’s profile is independent of the
size of the images being decoded, except for a scaling fac-
tor. In general, worst-case allocation requirement analysis
would be required, analogous to worst-case execution time
analysis to determine a task’s CPU cost. Static techniques
to determine allocation amounts, such as those described by
Mann et al [17], may be applicable as well.

3. THE CADUS ALGORITHM
The CADUS algorithm is an on-line, preemptive, dynamic,
heuristic, soft real-time, utility accrual scheduling algorithm.
It is invoked at the following scheduling points: task arrival,
task departure, resource request, and resource release.

During CPU and/or memory overload conditions—CADUS’s

intended operating environment—the algorithm constructs
a schedule with the objective of maximizing utility. Only
a subset of tasks can satisfy their timing constraints during
overload. This feasible subset of all tasks is chosen based on
a metric that reflects their relative worth. One commonly
used metric is Potential Utility Density (PUD), defined as
the utility yield ui of a task at completion time, divided by
its remaining execution time ti. This is analogous to the
notion of “return on investment”: cycle for cycle, a higher
PUD task is more beneficial than a lower PUD task.

We extend PUD along a third dimension by defining Three-
dimensional Potential Utility Density (TPUD), as the ra-
tio of utility yield over combined remaining execution time
ti and remaining maximum allocation memory requirement
mi, where mi includes the amount of memory currently kept
alive by that task plus all objects it would allocate if let run
to completion. TPUD is thus defined as

TPUD(ui, ti, mi) =
ui

f(ti, mi)

where f(ti, mi) represents the relative cost contributions of
time and memory. Different choices of f allow for different
assignments of relative weights to CPU and memory band-
width. We use a linear function f(ti, mi) = mi + kti where
k represents the allocation rate in bytes/cycles of a repre-
sentative task in the system.

The rationale for this choice is that two tasks with equal util-
ity and typical allocation rates should be able to trade time
for memory and vice versa and obtain the same TPUD. How-
ever, tasks with higher allocation rates should have to give
up more memory to achieve the same TPUD for a smaller
increase in execution time.

When creating a feasible schedule, CADUS may have to
include garbage collections or shed load to obtain sufficient
memory to satisfy the memory requirements of the tasks
that become part of the schedule. For this purpose, we define
PRD, or Potential Reclamation Density, of a preempted task
i as follows:

PRD(i) =

(
malloc,i−mlive,i

GCtime,i
if task i is collected

malloc,i

fs(malloc,i)
if task i is killed

This function reflects the choices CADUS has to obtain more
memory: it can either garbage collect an existing task i with
a yield equal to the amount of garbage that task’s logical
heap contains, or it can terminate the task, yielding all its
memory. In the first case, the time required is the time
to complete a GC cycle for the chosen task; in the second
case, it is the time required to sweep and reinitialize all its
memory. Intuitively, the maximum PRD task provides the
highest potential rate of memory return for the least amount
of work — the biggest memory bang for the cycles spent.
The PRD performance metric establishes a mechanism to
distinguish tasks based on how quickly, and to what extent,
they could replenish memory.

3.1 Algorithm Description
A high-level outline of CADUS is provided in Algorithm 3.1.
CADUS maintains two task queues at all times: the ready
queue and the ineligible queue. The ineligible queue is com-
posed of tasks that are no longer allowed access to the CPU:
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Figure 3: Allocation Profile of a JPEGDecompression Task (left) and Matrix Decomposition (right). The
y-axis is in bytes and the x-axis is in cycles.

(1) Tasks that completed execution and voluntarily released
the CPU but whose memory has not been collected; (2) Ter-
minated tasks; and (3) Time-infeasible tasks. Time infeasi-
bility is defined as a task’s inability to potentially gain pos-
itive utility at completion even if granted system resources
now. At invocation, CADUS purges from the ready queue
(i.e., moves to the ineligible queue) all tasks that have be-
come time-infeasible.

CADUS needs to construct a schedule that is a subset of
the ready queue and is feasible with respect to time, re-
source, and memory constraints. A schedule σ includes a
sequence of tasks to be run, interspersed with task termina-
tion actions and garbage collections. A key observation is
that unlike such scheduling algorithms as DASA, CADUS
cannot decide on the subset of the tasks that will be part
of the feasible schedule independent of the order in which
they are scheduled, because the schedule order determines
the available memory and the amount of GC work that must
be performed between tasks. For this reason, CADUS at-
tempts to construct feasible schedules by successively con-
sidering subsets of tasks with increasing deadline order (or,
in the case of non-step TUFs, in optimal completion order)
and checking them for feasibility at each step.

For each subset under consideration, CADUS checks for
time, resource, and memory feasibility. If the subset is found
to be feasible, then the task with the next farther deadline
is tentatively included and an attempt is made to make the
combined set feasible. If the combined set is feasible and
yields a higher utility than the previous tentative set, the
task is included into the set. If the combined set is not feasi-
ble, tasks are dropped from the set, starting with the lowest
TPUD task, until a feasible set has been found. (Once a
feasible set has been found, as an optional optimization, we
try to flesh out the set by re-including previously skipped
tasks if possible.)

For a given subset, feasibility is checked in three steps. First,
time feasibility is checked: a schedule is time-feasible by a
given deadline if its combined time requirement is less than
the time remaining to that deadline, and all tasks would

yield a positive utility if granted the CPU in deadline order.
We use the time feasibility check to quickly reject sched-
ules that include too many tasks even before resource and
memory constraints are taken into account.

Second, resource feasibility is checked. We obtain a ten-
tative schedule by topologically sorting the resource depen-
dency graph, breaking ties by deadline order. If the resource
dependency graph contains cycles, a deadlock condition is
flagged. If any task in the set under consideration is de-
pendent on a task outside the set (say if the outside task
holds a resource on which an in-subset task is blocked), a
tentative ”kill action” is added to the schedule before the
dependent task. The resulting topological sorted schedule
is checked for time feasibility. If the schedule is time and
resource feasible, we check for its memory feasibility.

A task is considered memory feasible if its remaining allo-
cation requirements can be assured for the remainder of the
task’s execution time. CADUS will not context switch into
a task unless it can provide sufficient memory for it up-front.
Here, the objective is to “snowplow” the road ahead of the
task so that once activated, the task can be assured of no
delays due to a reactively triggered collection. A memory
feasible schedule is one composed of memory feasible tasks.

Should the tentative schedule be found memory infeasible,
CADUS identifies the slack (if any) in the schedule, and
attempts to interpose enough collection work in the sched-
ule to make it memory feasible. The algorithm considers
tasks in the tentative schedule in ascending deadline order.
The slack between now and the task’s start time is calcu-
lated such that once activated, the task will complete at its
deadline. CADUS knows, from a task’s memory allocation
profile, the amount of memory required by the task to finish
execution. The slack just calculated tells CADUS how much
time it has to free the needed memory. CADUS must now
determine if this is possible.

A “reclamation plan” is devised to determine the possibility
of sufficient GC action in the slack ahead of the task. To
construct this plan, we consider a set of memory donors for



Algorithm 1: CADUS

Input: J : Unordered set of all jobs (tasks) in the system

Output: σfinal: Task sequence (schedule) to be dispatched
in order

/*Notation: Sets and subsets are represented
as J and S. Ordered sets (sequences and
subsequences) are represented as σ’s. */

begin
Stentative ←− ∅
σPRD ←− J Sorted in descending PRD order

foreach j ∈ J do
Purge j if time-infeasible: J ←− J − {j}

1 /*Topological sort to determine resource
dependencies, breaking ties by deadline */

σtopsort ←− topSort(Scand)

σDL ←− J Sorted in ascending deadline order
σTPUD ←− J Sorted in descending TPUD order

/*Consider tasks in deadline order: */

2 foreach j ∈ σDL do
Scand ←− Stentative ∪ {j}
σcand ←− makeTimeAndMemoryFeasible(Scand)
if σcand 6= ∅ then

/*Tentative schedule does not
exceed system capacity yet */

Stentative ←− Scand

σtentative ←− σcand

continue;

/*System capacity exceeded, sacrifice
lowest-TPUD task and re-evaluate */

σtpud ←− Scand Sorted in ascending TPUD order
Sdropped ←− ∅

3 while j ∈ σtpud and σcand = ∅ do
Scand ←− Scand − {j}
Sdropped ←− Sdropped ∪ {j}

4 σcand ←− makeTimeAndMemoryFeasible(Scand)

/*Optional optimization -- see if previously
dropped tasks can now be accommodated */

σDTPUD ←− Sdropped Sorted in descending TPUD
order
foreach (j ∈ σDTPUD) do

σtmp =makeTimeAndMemoryFeasible(Scand∪ j)
if σtmp 6= ∅ then

Scand ←− Scand ∪ j
σcand ←− σtmp

/*Accept new schedule only if it
yields higher utility: */

if utility(Scand) > utility(Stentative) then
Stentative ←− Scand

σtentative ←− σcand

σfinal ←− σtentative

end

Algorithm 2: makeTimeAndMemoryFeasible

Input: Scand: Set of possible candidates for inclusion in
final schedule

Output: σ: Ordered sequence of time and memory feasi-
ble tasks in Scand interdispersed with reclama-
tion and kill actions; ∅ otherwise

begin
σfeasible ←− ∅
potMemDonors←− ∅
if notTimeFeasible(Scand) then

return ∅
/*Retrieve topological order of cand set
⊕ denotes sequence concatenation: */

σtent ←− ⊕{∀i : i ∈ σtopsort ∧ i ∈ Scand}
Sblockers ←− {j : j holds resource(s) needed by Scand}
foreach j ∈ Sblockers do

σfeasible ←− σfeasible ⊕ {kill(j)}
/*Memory can be reclaimed from 3 possible
sources:
1 - All memory held by an ineligible task;
2 - Kill any task, reclaim all its memory,
or;
3 - Harvest the garbage generated by any
task;
*/

potMemDonors←− { gc(t) : ∀t ∈ ineligibleQueue}
potMemDonors←− ∪ { kill(t) : ∀t ∈ readyQueue}
potMemDonors←− ∪ { gc(t) : ∀t ∈ readyQueue}
/*Subtract tasks we care about: */

potMemDonors←− potMemDonors− {kill(t) :
∀t ∈ Scand}
/*Descending PRD order lookup in σPRD: */

σdonors ←− orderByPRD(potMemDonors)

5 foreach j ∈ σtent do
memNeeded←− j.deficit
memDonors←− ∅

6 while j ∈ σdonors ∧memDonors.memY ield <
memNeeded do

7 if memDonors.reclamationT ime +
j.reclamationT ime > slack then

continue;

else
memDonors←− memDonors ∪ {j}
potMemDonors←−
potMemDonors− {j}

if memDonors.memY ield < memNeeded then
/*Cannot make the schedule memory
feasible */

return ∅
σfeasible ←− σfeasible ⊕ memDonors⊕ j

return σfeasible

end



inclusion in the schedule. Potential memory donors include
tasks that have already run to completion, but whose mem-
ory has not been reclaimed, and tasks that are currently
preempted and that have a positive memory yield if they
were garbage collected now. PRD values are calculated for
each donor: for preempted tasks, the PRD corresponding to
reclaiming the garbage generated by the task is computed
as well as the PRD corresponding to the termination of the
task to reclaim all memory held by it. For ineligible, but
uncollected tasks the PRD is computed based on reclaiming
their memory. Tasks are then ordered by descending PRD
values.

The reclamation plan is composed of GC work, in the slack
period, on behalf of tasks in the PRD sequence to free suffi-
cient memory if possible. In other words, CADUS attempts
to fill the slack with just enough GC work (based on PRD
order) to meet the requirements of the task ahead. If the
choice based on highest PRD would make the following task
miss its deadline, it is skipped and the next-lower PRD
choice is examined to see if it would yield enough mem-
ory while keeping the next task time feasible. If a task is
found to be memory feasible at its position in the schedule,
it is added to the set of memory donors such that subse-
quent tasks have the option of reclaiming its memory to
satisfy their memory requirements. Algorithm 3.1 outlines
the construction of the reclamation plan.

The resulting schedule is time, resource, and memory feasi-
ble. Execution continues with the first item in the schedule,
which could be starting a new task, starting a collection on
behalf of a preempted or terminated task, or killing a task
in order to obtain a resource it holds or to reap its memory.

CADUS dispatches tasks in deadline order during under-
load conditions. As such, it reduces to EDF [15] for CPU
utilizations of up to 100%, and therefore provides the same
optimality. Furthermore, given its pro-active GC scheme,
CADUS can provide the assurance that once a task is acti-
vated, it will not block on GC. Accuracy of the task’s allo-
cation profile, however, bears directly on the strength of the
“GC safety” assurance provided.

3.2 Algorithm Complexity
CADUS has a computational complexity of O(rn3) where
n is the number of tasks, and r is the number of resources
in the system. Initially, several sorting operations are per-
formed in sequence, each costing O(n log n). Subsequently,
at the top level, the algorithm iterates over all tasks in dead-
line order (Alg. 3.1, (step 1) at a cost of O(n). The inner
while loop (step 2) in which tasks are dropped until a time-
and-memory-feasible schedule is found can execute at most
n times. In practice, however, it would rarely execute n
times: the worst case of n would occur only if all tasks in
the candidate set would need to be dropped in order to ac-
commodate the task just encountered.

The makeTimeAndMemoryFeasible method (step 3) is thus
invoked at most O(n2) times. Step 4 of makeTimeAndMemory-
Feasible dominates this method, and involves rn opera-
tions. The for loop in step 5 executes at most n times if con-
dition 7 is always false, because σtent and potMemDonors
are both bounded by n. This condition checks whether a

task that has a nominally higher PRD should be skipped in
the reclamation plan because its garbage collection would
take too long. We can place an upper bound on the number
of checks we perform (not shown in the algorithm); after that
bound is reached, we drop the offending high-PRD task from
potMemDonors. By including this precautionary measure
to handle this however unlikely case, the overall worst-case
complexity of CADUS is therefore O(rn3).

On average, we expect a complexity of O(rn2), assuming
that only a limited number of tasks needs to be dropped
to find a feasible schedule, which should be the case unless
the algorithm is operating under extreme overload. We are
currently working on a version of the algorithm in which
the new version of σtent in loop 2 would be computed by
merging the previous σtent with the next task j, which will
reduce the complexity further.

4. RESULTS
We built a simulator to evaluate the effectiveness of CADUS
both against synthetic as well as real workloads.

4.1 Tracing Real Workloads
We tested CADUS against traces obtained from real work-
loads. We used Sun’s JDK 1.5.02 running on a Linux 3GHz
Pentium 4 machine with 1GB of memory. To obtain an
estimate of a task’s mutator cost, we used the Pentium cy-
cle counter and measured the time spent in the section of
interest. Prior to starting the measurements, we ran the
task several times to allow the Hotspot JVM to select the
methods involved for just-in-time compilation. We sized the
JVM’s heap such that no garbage collection occurred during
the run.

To obtain the memory traces of a task, we wrote a JVMTI
agent. This agent interposes on all allocations a task per-
forms, including requests from the VM and requests stem-
ming from native (JNI) code. At each allocation, it performs
a complete traversal of all reachable objects and counts and
records their size. In addition, we record the size of the
objects allocated and create an object size profile of each
task.

To obtain realistic assumptions regarding how long a garbage
collection would take, we timed the duration of full collec-
tions for a workload where we varied the size of the live
memory in steps, and triggered full collections at each step
(the JVM uses a generational collector which does not tra-
verse the entire live memory during minor collections.) We
recorded the output of verbosegc and fit a quadratic equa-
tion to this curve with a correlation coefficient r2 > 0.999.
We determined the minimum cost for a collection with zero
live memory by observing the duration of a minor GC cycle
with an empty Eden space. This cost (about 118µs) repre-
sents the assumed minimum amount a collection would take
if a task holds no live memory.

To obtain realistic assumptions regarding sweep cost, we as-
sumed that during a sweep an object must be unlinked from
a linked list and its content be zeroed. The relative over-
head of both operations depends on the size of the object.
We therefore measured the sweep cost for objects of differ-
ent sizes. To determine the overall sweep cost of a task, we



Benchmark Cost in
Mcycles

Max Live
(KB)

MaxAlloc
(KB)

Sweep
(Mcycles)

Allocations Rate
bytes/cycle

Grep (small) 8.2 4.73 308.1 1.43 2397 0.0387
Grep (large) 83.7 36.48 7477.9 49.18 20079 0.0914
Matrix (small) 12.1 2.11 61.6 0.30 1798 0.0052
Matrix (medium) 34.4 2.38 128.6 0.63 3625 0.0038
Matrix (large) 73.7 2.71 198.1 0.96 5370 0.0028
JPEG (mini) 11.4 215.28 217.1 1.20 103 0.0195
JPEG (800) 174.5 1945.91 1947.8 8.55 103 0.0114
JPEG (1024) 274.3 3142.91 3144.8 13.64 103 0.0117
JPEG (1280) 464.4 5190.91 5192.8 22.34 103 0.0114

Table 1: Workload Characterization of Different Java Tasks

multiplied the size listed in the object size profile with their
frequency and the measured sweep cost for objects of that
particular size.

We implemented three benchmarks: a JPEG decoder task,
a Grep task that performs a regular expression match over
a given string, and a Matrix task that computes the eigen-
value, LU, and QR-decompositions for a number of “magic
square” matrices. Table 1 shows the results. Note that the
sweep costs are significant, in particular for tasks with high
allocation rates. For instance, Grep (large) finishes in 83.7
Mcycles without garbage collection, but it would take 49.18
Mcycles to unlink and zero out the 7477.9 KB of garbage it
generates. Current RAM technology provides a peak band-
width between 2 and 6 GB/s, which means that sweep times
will likely remain significant.

4.2 Simulation
We developed a discrete-event based simulation framework
that combines process-based and event-based simulation.
Events include task arrivals; task themselves are simulated
using a multi-threaded, process-based approach that directly
reflects a task’s execution. A discrete event engine man-
ages the threads implementing the tasks in the system and
calls into the scheduler whenever a scheduling event occurs.
Schedulers must react to scheduling events; they also must
provide a dispatcher function that tells the simulator which
task to schedule next. Our simulator also supports modeling
resources and keeps track of the resource dependency graph
for use by the scheduler.

We implemented CADUS as well as DASA [5], LBESA [16],
and GUS [13] in our framework. Figure 4 shows the behav-
ior of CADUS compared to these schedulers in the memory
underload case. It can be seen that CADUS handles var-
ious CPU loads similar or better to the others; this is not
surprising since CADUS explores more of the search space
than those algorithms.

The true distinction comes from the fact that these sched-
ulers are not memory aware; therefore, we had to make de-
cisions as to how they would react in the presence of limited
memory. We allowed for reactive GC to simulate involun-
tary GC pauses. In addition, memory-unaware schedulers
will always sweep a task’s memory immediately after it com-
pletes.

We are currently working on analyzing the behavior of CADUS
for varying memory loads. For now, we give two scenarios
to illustrate the usefulness of collection-aware scheduling.
In scenario 1, two tasks arrive at time 0 with a period of
24.5Mc: an instance of JPEG(mini) with a utility 30, and
an instance of Matrix(small) with a utility of 20. Including
sweep costs, the offered load from this task set is greater
than 1 - however, it is still possible to finish both tasks at
least in some of the periods by scheduling JPEG(mini) first,
then running Matrix(small) and postponing its sweep cost
until the deadline. Eventually, the sweeping will have to
be done, but being aware of how much memory is available
at any given point in time can be used to achieve higher
overall utility by postponing sweeping when possible. This
behavior is shown in Figure 5. A memory-unaware scheduler
such a DASA, will be forced to sweep right after executing
JPEG(mini), pushing Matrix(small) past its deadline during
every single period - even though at least in some periods it
would be possible to just run it in the provided heap of size
400,000bytes.

A second example is shown in Figure 6. In this scenario,
a heapsize of 320K is used. A JPEG(mini) task with low
utility arrives at time 0, both schedulers decide to sched-
ule this task at that time. At time 8Mc, an instance of
Grep(small) arrives with a deadline of 18Mc with a very
high utility. CADUS recognizes that in order to fulfill this
task’s memory requirements, it must kill the JPEG(mini)
instance which by that time has already allocated the buffer
used to hold the decoded image, hence has almost reached
it maximum live size. CADUS kills and sweeps JPEG(mini)
at time 8Mc, allowing Grep(small) to run to completion in
its deadline. Our memory-unaware version of DASA, on the
other hand, also realizes that JPEG(mini) should be pre-
empted in favor of Grep(small) at time 8Mc, but it does not
know that there is not enough memory for Grep(small) to
finish. Instead, Grep(small) will fill up the heap, and repeat-
edly trigger a reactive GC. Once these collections have freed
up enough memory, Grep(small)’s deadline has expired and
the task is purged. To make matters worse, JPEG(mini) is
by that point also already past that deadline, yielding an
overall utility of 0 for the memory-unaware case.

5. RELATED WORK
Henriksson [8] first studied explicit time-based scheduling of
garbage collection. His GC is decoupled from the applica-
tion and brought under the control of the scheduler. High-
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Figure 4: The left figure shows Offered Load vs Accrued Utility with no memory overload – 300 is the highest
utility obtainable if the CPU is fully utilized and all started tasks run to completion. The right figures shows
the Comparative Accrued Utility Ratio – in underload situations all schedulers accrue a utility equal to the
offered load.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0  1e+07  2e+07  3e+07  4e+07  5e+07  6e+07

B
yt

es

CPU Cycles

Max. Allocation
Live

 0

 50000

 100000

 150000

 200000

 250000

 0  1e+07  2e+07  3e+07  4e+07  5e+07  6e+07

B
yt

es

CPU Cycles

Max. Allocation
Live

Figure 5: CADUS (shown left) is able to complete 3 instances of JPEG(mini) and two instances of Ma-
trix(small). DASA (shown right), on the other hand sweeps promptly after each task and never runs any
Matrix(small) instance because it has become time-infeasible by the time the sweep is completed.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0  5e+06  1e+07  1.5e+07  2e+07

B
yt

es

CPU Cycles

Max. Allocation
Live

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0  5e+06  1e+07  1.5e+07  2e+07

B
yt

es

CPU Cycles

Max. Allocation
Live

Figure 6: CADUS (shown left) preempts and kills JPEG(mini) at 8Mc and runs the higher utility task
Grep(small). DASA (shown right) preempts, but does not kill JPEG(mini) at 8Mc and thus triggers repeated
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priority periodic processes are ensured of memory availabil-
ity by scheduling enough collection work to immediately fol-
low the process. Low priority processes are relegated to the
background and serviced by reactively triggered GC whose
execution is interleaved with the mutator(s). As this sys-
tem enters overload, execution of lower priority tasks is
suppressed in favor of providing CPU bandwidth for the
high-priority task and its corresponding GC. By compari-
son, CADUS does not require that GC always follow recur-
ring high priority tasks - the scheduler has flexibility to react
to different and dynamic task mixes. Robertz [19] extends
Henriksson’s approach by time-scheduling the GC based on
a period/deadline computed from the worst case allocation
requirements of the mutator.

Joint scheduling of the GC alongside hard real-time pro-
cesses is explored by Kim [12]. A sporadic server approach
is utilized to provide sufficient GC bandwidth to service the
memory requirements of the co-scheduled periodic mutators.
Bacon [2] describes an efficient collector with very low over-
head and real-time properties. Implicitly triggered incre-
mental GC is used by Siebert [20] and Nilsen [18]. The in-
cremental real-time GC amortizes its work throughout the
execution of the task and reclaims sufficient memory ahead
of time. The interleaved GC execution overhead is taken
into account for load calculations. Nilsen’s collector is adap-
tively tuned to keep up with a dynamic workload. These
time-triggered and allocation-triggered GC scheduling ap-
proaches aim to ensure sustained memory availability for
all tasks during underload conditions and do not take the
specific utility of tasks into account.

Real-time Java [4] proposes the use of scoped and immortal
memory regions to avoid garbage collection. These scopes
are comparable to CADUS’s logical heaps, although Sun’s
proposal does not address the question of how to link the
availability of scoped memory to the system’s scheduler.

6. CONCLUSIONS
We have designed, prototyped, and evaluated the first garbage
collection-aware scheduler for utility accrual systems. Initial
results indicate such awareness can be crucial in certain sit-
uations. We believe that the inclusion of GC scheduling into
the overall scheduling framework is necessary to make au-
tomatic memory management more acceptable for real-time
systems.
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