Jim Purbrick
jcp@cs.nott.ac.uk

Chris Greenhalgh
cmg@cs.nott.ac.uk

School of Computer Science and
Information Technology,

University of Nottingham

Presence, Vol. 12, No. I, February 2003, 68—84
© 2003 by the Massachusetts Institute of Technology

An Extensible Event-Based
Infrastructure for Networked
Virtual Worlds

Abstract

Many VR platforms emphasize extensibility to support as wide a range of applica-
tions as possible. The current trend is to move this extensibility to lower levels of
the system to support extensibility of infrastructure mechanisms such as networking
protocols. This kind of extensibility allows the runtime of the virtual environment
system to evolve even while the system is running. This paper presents a new vir-
tual environment platform that allows muttiple infrastructure mechanisms to be
added to and coexist within the running system, with different elements of the vir-
tual world using different mechanisms. This allows the virtual environment system
to efficiently support a wider range of applications by, for example, having only cer-
tain virtual objects use conservative consistency and persistence. It can also optimize
the performance of the CVE by tailoring the infrastructure mechanisms according to
the different roles played by different objects in the virtual environment.

1 Introduction

All VR systems that attempt to provide a general-purpose platform for a
variety of applications must support some form of extensibility or reconfigu-
rability to allow developers to customize the platform for each differing appli-
cation. At the very least, the system must provide world authoring facilities
that allow developers to describe the layout of the virtual world. Often systems
also provide facilities for scripting interaction in the virtual world. The VRML
(ISO/IEC, 1997) and X3D (Web3D Consortium, 2002) specifications pro-
vide for both of these mechanisms, whereas WorldUp (Sense8 Corp., 1998)
provides powerful facilities for defining behaviors via a drag-and-drop inter-
face. OpenWorlds (Diefenbach, Mahesh, & Hunt, 1998) goes further by pro-
viding facilities to customize the system by adding new scene graph nodes (for
example, representing input devices such as trackers) or reimplementing exist-
ing nodes (for example, using a new graphics API).

In the case of large-scale networked virtual environments, it is essential that
every aspect of the virtual environment platform is extensible and reconfigu-
rable at runtime. When a virtual environment is used by millions of people si-
multaneously, shutting the system down to provide offline maintenance or
upgrades is as impractical as shutting down the entire Web for maintenance.
Capps, Watsen, and Zyda (1999) argue that “Cleaning must go on as in a
24 /7 burger bar”; that is, high-availability, long-lived shared virtual worlds
will demand mechanisms that allow the whole system to evolve while it is still

68 PRESENCE: VOLUME 12, NUMBER |



Purbrick and Greenhalgh 69

running. Although MUD and MOO (Curtis, 1997)
text-based virtual environment systems provide rich fa-
cilities to extend the content of virtual environment sys-
tems at runtime, they stop short of allowing the infra-
structure of the system itself to be extended or replaced
at runtime.

This level of extensibility and reconfigurability is sig-
nificantly harder to achieve. For arbitrary elements of
the system to be upgraded, extended, or removed at
runtime, information about the dependencies present
between different parts of the system must be main-
tained and considered when making runtime changes to
the system. It must be possible to reason about when
elements of the system can be safely added, replaced, or
removed. To make extension and reconfiguration prac-
tical, the system should provide a framework that allows
developers to reason about the effects of changes with-
out having to consider the details of every other ele-
ment in the system. A number of systems have at-
tempted to provide this level of reconfigurability to a
greater or lesser extent. The NPSNET-V system (Capps
et al., 2000) provides a particular pattern of extensibility
(leveraging Java’s class-loading capabilities) that allows
network protocols, objects classes, and graphical models
to be dynamically added to the running system. The
DEVA (Pettifer, Cook, Marsh, & West, 2000) system
adopts a model of long-lived server environments,
which dynamically load and compose objects from be-
havior fragments, to create flexible and composable ob-
ject and world behaviors. Sony’s Community Place
(Lea, Honda, Matsuda, & Matsuda, 1997) allows the
runtime addition of applications that register with the
Community Place server that then routes messages be-
tween clients and the registered application. At a lower
level, the Bamboo system (Watsen & Zyda, 1998) pro-
vides a dynamic module loading system that spans mul-
tiple languages, and that is intended to support extensi-
ble virtual environment systems of this kind.

In this paper, we describe our own approach to creat-
ing a flexible and extensible infrastructure for networked
virtual environments, based on the distributed event
model employed in MASSIVE-3. In section 2, we
present some background motivations for our own ap-
proach to these issues. Section 3 describes the first ele-

ment of our approach: distributed event filters, the basis
of our flexible infrastructure. Section 4 introduces the
notion of “deep behaviors,” which is the means by
which we manage this flexible infrastructure. Section 5
illustrates this with some example configurations of our
system. Section 6 presents some quantitative results of
this approach. Finally, section 7 gives our conclusions.

2 Background and Motivations

This work grew out of our earlier explorations of
persistence in virtual environments (Purbrick & Green-
halgh, 2001). In that work, we added simple facilities
for persistence and in-world editing to MASSIVE-3 and
arranged for a number of groups of users to explore and
modify a virtual museum over a period of several weeks.
Using the temporal link facilities of MASSIVE-3
(Greenhalgh et al., 2000 and Greenhalgh, Flintham,
Purbrick, & Benford, 2002), we recorded all of this ac-
tivity for subsequent analysis. These recordings contain
all of the virtual world content and all of the updates
that are applied to it, that is, everything that happens in
the virtual world from the system’s perspective.

In this analysis, we examined the different patterns of
use (creation, update, and deletion) of the different
kinds of data in the virtual environment, including us-
ers’ avatars, walls, and other artifacts.

Over the whole experimental log, we found that 38
embodiments, each with two major sub-objects (body
and hand) were updated (that is, changed) a total of
372,765 times. In contrast, 596 non-embodiment ob-
jects were updated a total of 39,665 times. So we found
approximately ten times as many embodiment updates
applied to fewer objects.

Figure 1 shows the distributions of the life spans of
added items classified by geometry. The life spans are
quantized to improve clarity. The graph shows clear
differentiation in the life cycles of the added items. The
Lichtenstein picture clings to the bottom of the graph,
and 80% of these pictures remained at the end of the
experiment compared to the less popular Miro picture,
which tended to be added, evaluated, and deleted
within a few seconds, with only 25% remaining at the



70 PRESENCE: VOLUME 12, NUMBER |

Fraction of Items

——Wall

— 4 — Keith Haring Picture
- - & - - Andy Warhol Picture
— %~ - Miro Picture
—¥— Lichtenstein Picture
—&—Cone

1000
Time (s)

Figure 1. Item life span by geometry.

end of the experiment. Although walls were important
landmarks that provided structure in the world, the
graph shows that approximately 35% were deleted in the
session in which they were created, with many people
repeatedly adding, manipulating, and deleting walls be-
fore they ended up with the desired configuration.

A similar pattern is shown in figure 2, which shows
item update times from creation, classified by geometry,
for added items, quantized to improve clarity. The Miro
pictures were hardly updated at all after the session in
which they were created, as most were deleted, whereas
the cone geometries that were left in the world after the
session in which they were added continued to be ed-
ited in subsequent sessions—with 45% of their updates
occurring in later sessions.

These results show that different types of items had a
rather different characteristic “life cycle.” The data rep-
resenting a user’s avatar was the most volatile and the
least suitable for caching or being made persistent, and
some types of added items were transient whereas others
had longer life spans. Consequently, we sought to ex-
tend the MASSIVE-3 system to allow different items to

100000

10000 1000000

be treated in different ways by the infrastructure. For
example, we wanted to be able to apply different forms
of consistency, persistence, access control, and caching
to different items within the same virtual world. Rather
than repeatedly extending and elaborating a monolithic
runtime system, we chose to significantly reengineer the
system to make it dynamically extensible and tailorable
at the level of individual data items within the shared
virtual world. This design is the subject of this paper.

3 Distributed Event Filters

The starting point for our new system was MAS-
SIVE-3 (Greenhalgh, Purbrick, & Snowdon, 2000),
which uses explicit event objects to represent all pro-
posed changes to the shared virtual world. These are
generated by the system API and routed around the
distributed system in a well-defined way. This approach
was designed to allow future mechanisms to adapt the
system by using reflection to introspect the system (such
as tailoring system performance based on the events be-



Purbrick and Greenhalgh 71

0.6 4

0.5

0.4 4

Fraction of Updates
o
w

0.2 4

0.1+

——Wall

- - i - -Keith Haring Picture

— -& — Andy Warhol Picture

— -~ - Miro Picture

— % — Lichtenstein Picture
@ Cone

Time {s)

1000000

Figure 2. Update times from item creation by geometry.

ing generated or processed). Figure 3 shows the specific
event distribution architecture used in MASSIVE-3. An
application generates events (requests for changes to the
shared virtual world) via an event-generating API.
These events are passed on to a “sending” event pipe
for distribution to the server, and to a “pending” event
pipe for local enactment (actually updating the local
database). Events sent to the server are redistributed to
the other clients of the same locale (portion of a virtual
world).

What we have done in the work described here is to
step back from the specific behavior of MASSIVE-3 to
view it as just one possible configuration of an extensi-
ble set of infrastructural components. MASSIVE-3 en-
forced certain infrastructural behaviors:

e Every event was passed to the sending and pending
event pipes.

e Every event leaving the sending event pipe was sent
to the server.

e Every event received by the server was queued to be
sent to all other clients.

Client Server

Sending EventPipe Event Distributor

\ 4

Event Generating AP1

Client EventPipe

Applications

Event Notification API

Local Database and
'“““““““‘K“'“N’etWo‘rR"' TTTTTTTTT

Figure 3. MASSIVE-3's event distribution architecture.

e Every event leaving the pending event pipe was en-
acted.

Our new approach has only one constraint: every
generated event will be passed to a certain well-known
event pipe. All of the rest of the system’s behavior (that



72 PRESENCE: VOLUME 12, NUMBER |

is, everything that happens to the event in that event
pipe and subsequently) is encapsulated in the “event
filters” that populate this and other event pipes within
the system, and is subject to dynamic customization. We
term this approach distributed event filters (DEF), be-
cause the overall behavior of the system is the result of
the coordinated activities of potentially many event fil-
ters distributed across multiple event pipes in all of the
various clients and servers that compose the system. The
DEF framework provides a number of facilities that ease
the development, configuration, and deployment of in-
dividual event filters and complete infrastructure mecha-
nisms. These facilities are as follows.

e Event pattern matching: the framework takes care
of determining which filters apply to each event to
avoid each filter having to test each event for appli-
cability.

e Event list processing: the event filter interface pro-
vides an easy way for filters to add or remove events
from an event pipe.

e Constraints and requirements: the framework has
support for relative positioning of filters in an event
pipe.

e Identification and versioning: support for identify-
ing general or specific functionality of a filter, its
version, backwards compatibility with earlier ver-
sions of the filter and identity.

e Communication: support for common patterns of
communication between filters.

These facilities are discussed in detail in subsections
3.1 to 3.7. In addition to easing the task of developing
and deploying infrastructure mechanisms, moving these
facilities into a framework can lead to efficiency gains as
shown by the filter list caching and prioritization mech-
anisms discussed in subsections 3.3 and 3.4. These opti-
mizations are possible only because the framework takes
care of the pattern matching required to determine
which filters apply to a given event.

3.1 Event Pattern Matching

The various events that are generated and flow
through the system may be treated in different ways,

that is, have different sets of event filters applied to
them. This is based on a simple pattern-matching mech-
anism that selects the filters to be applied to each event,
typically on the basis of the virtual item to which the
event applies. Therefore, we can create arrangements of
tailored event filters that apply different forms of consis-
tency, persistence, and access control to different items
within the same virtual world.

3.2 Event List Processing

To allow filters to easily delete or synthesize
events, a list is passed to the filter’s processing method
containing the single event to be processed. If the filter
wants to stop the event being processed further, it re-
moves the event from the list and returns the empty list.
If a filter wants to create new events, they can be added
to the returned list, whereas filters needing to change
events can either rewrite the event in the list or remove
it and replace it with a new event. The events returned
to the event pipe are marked as having been processed
by the filter and are then processed by the next applica-
ble filter; thus, this mechanism is suitable for filters such
as interpolators— generating new intermediate events
that must not be interpolated themselves (to avoid infi-
nite loops of events being generated). Filters can also
generate events directly or indirectly through APT calls
(rather than in the returned event list) that are fully pro-
cessed by the event pipe.

3.3 Filter List Caching

To accommodate potential changes to events, the
event pipe, in principle, must reevaluate the list of appli-
cable filters after any filter performs processing. To al-
low flexible filtering and reasonable performance, the
event pipe caches the last used filter list, the next filter
to be applied in the list, and the event parameters used
to construct the list. If the next event to be processed
has matching parameters, the cached filter list can be
used. If most filters are passive and do not change
events, this cache will normally avoid the reevaluation of
applicable filters during the course of a single event’s
processing. The cached filters can also be used between



Purbrick and Greenhalgh 73

events whenever consecutive events share parameters, as
is often the case in collaborative virtual environments
where streams of updates to an object are often gener-
ated. Depending on the relative costs of evaluating
cached filter sets, generating filter sets, and the likeli-
hood of small clusters of event parameters being pro-
cessed, the cache of filter sets can be expanded arbi-
trarily. This is especially useful when an event pipe in a
client application is processing updates to the user’s ava-
tar: a large proportion of the events being processed
may be updates to various parts of the avatar. By main-
taining a cache as large as the number of avatar items,
the event pipe very rarely needs to generate a new filter
set.

3.4 Prioritization

Allowing filters to generate events that must be
fully processed by the event pipe requires a choice to be
made about the semantics of the event pipe: either the
addition of a new event to the pipe causes recursive pro-
cessing of the new event to completion, or the event
pipe could prioritize events that are further along the
pipe, so that, if a called filter generated an event, the
new event would be processed only when the original
event had moved completely through the pipe. The lat-
ter semantics are more appropriate for a number of rea-
sons. Firstly, they minimize the latency caused by event
processing as the pipe will always attempt to process the
event that needs the least processing to move com-
pletely through the pipe. Where event pipes are con-
nected to event buffers (which may be inspected by fil-
ters), the latter semantics also ensure that as many
events as possible are available to filters for inspection. If
a filter generates an event as a result of processing an
initial event, prioritizing the initial event ensures that it
is available for inspection in the buffer before the newly
generated event is processed. Finally, the latter seman-
tics are more efficient as fewer events remain partially
processed at any one time, consuming memory rather
than being completely processed and then deleted. To
implement these semantics, the event pipe must main-
tain a buffer of events being processed, must always pick
the event furthest down the event pipe for further pro-

cessing, and must continue processing until no events
remain in the buffer. Adding an event to an event pipe
causes it to process events until no events remain in its
buffer. Consequently, if an event is added to the event
pipe when the buffer is not empty, the event pipe must
already be processing events, and so the event can sim-
ply be added to the buffer and left to be processed
along with the other events in the buffer.

3.5 Constraints and Requirements

Because the relative positions of filters in an event
pipe are important (often dramatically changing the in-
frastructure semantics and sometimes being the only
difference between two infrastructure mechanisms), rich
support for specifying positions and dependencies
among filters is provided by the framework. The frame-
work permits filters to specify constraints. These de-
scribe which filters, if they exist in the event pipe, must
come before or after the filter. Similarly, filters can spec-
ity requirements. These list filters that must exist in the
event pipe before or after the filter. This system of con-
straints and requirements provides a simple yet powerful
way of determining the relative positions of filters and
the dependencies between them. To set up an event
pipe in a certain configuration, the required filters are
created, constraints and requirements are added to the
filters, and then they are added to the event pipe. The
event pipe then attempts to satisty the constraints and
requirements for each filter. If the constraints can be
satisfied, the filter is added to the pipe; otherwise, the
failure is indicated and corrective action is taken, either
changing the requirements, aborting the initiation of
the infrastructure mechanism, or halting system execu-
tion as appropriate.

Filter requirements are also used to ensure that the
removal of filters from an event pipe does not break any
dependencies. The event pipe attempts to satisty the
requirements of all other filters without the filter or fil-
ters being removed. If all requirements can be satisfied,
the filter can be removed. These semantics for addition
and removal of filters ensure that the event pipe remains

in a valid state at all times.



74 PRESENCE: VOLUME 12, NUMBER |

3.6 Identification and Versioning

To specify constraints and requirements, filters
must be able to reference other filters or types of filters.
In addition, the versioning of filters must be supported
to reason about the compatibility of old and new filters,
to replace old filters, and to determine when old, un-
used filters can be removed from the running system.
To allow for this, the framework supports a hierarchical
naming scheme that allows the general and specific
identity of a filter to be discovered. The name is made
up of the form <Function>.<Version>.<Identity>, in
which function is a sequence of strings describing the
filter’s function in increasingly specific terms and version
is a sequence of strings describing the filter’s version in
increasingly specific terms. Identity is a single integer
that is assigned sequentially to the filters created in an
application, allowing the precise specification of an indi-
vidual filter. Using this scheme, a filter may specify that
it must be positioned before or after a general class of
filters, before or after a specific filter of a certain version,
or before or after a particular filter. Requirements
should be made as general as possible to allow the re-
configuration of the event pipe while maintaining criti-
cal dependencies between filters. The model uses the
Java versioning scheme (Gosling, Joy, & Steele, 1996)
where 1.2 maintains backward compatibility with 1.1,
whereas 2.1 breaks this compatibility. This allows sub-
string matching of constraints to find all compatible
versions. Version 2 of a function filter that supports the
interface of version 1 should be named function.1.1, so
that a filter with a requirement of function.1 will remain
satisfied, whereas, if the new version behaves differently,
it should be named function.2 to signal to the event
pipe that the existing requirement can no longer be sat-
isfied.

3.7 Communication

The same mechanisms that transport events relat-
ing to items in the virtual world can be used for com-
munication between the filters that implement the infra-
structure supporting the virtual world. The
identification and versioning facilities (above) allow

valid potential receiving filters to be found either explic-
itly, through querying event pipes, or implicitly by spec-
iftying constraints, which will assure the relative positions
of multiple filters. Communication between filters can
then be achieved by the sending filter, adding a special-
purpose notification event either to the returned event
list (to communicate with “downstream” filters further
along the event pipe) or to an event pipe (to communi-
cate with “upstream” filters positioned before the send-
ing filter, or to filters in other event pipes). Although
this method of communication is simple, controlling an
infrastructure mechanism often involves disseminating
control information to a number of event filters that are
potentially distributed among a number of processes
that implement the mechanism. To simplify this config-
uration, we instead embed a behavior node in the scene
graph that takes care of adding and removing event fil-
ters from different processes and controlling those filters
when the properties of the behavioral node change. We
call the behavioral nodes that control the infrastructure
elements of the system deep behaviors, which are dis-

cussed in section 4.

3.8 DEF MASSIVE-3

Figure 4 shows a distributed event filter (DEF)
configuration that emulates the previous operation of
MASSIVE-3. The API event pipe is the common start-
ing point for all events. MASSIVE-3’s default infrastruc-
ture activities have been encapsulated as the following

event filters.

o ConstraintsFilter: enforces an explicit ordering on
all events (part of MASSIVE-3’s exploration of con-
sistency mechanisms)

e LocalNowRouting: sends a copy of the event to the
local pending pipe for immediate enactment, and
another copy of the event to the sending pipe for
distribution

o Unicast: sends the event to the server over a TCP
connection

o UpdateSceneGraph: enacts the event on the local

database replica



Purbrick and Greenhalgh 75

Client E Server
From AP SendingPipe i PendingPipe
1
Unicast I——E—'>| UpdateSceneGraph |
AP Pipe '

ConstraintsFilter ‘
PendingPipe

‘ LocalNowRouting

KAT‘ UpdateSceneGraph |

l EventPipeRouting |

SendingPipe

\ 4 To Other Clients

H>

’ Muiticast

Figure 4. Default DEF configuration, emulating MASSIVE-3.

o EventPipeRouting: passes the event to another spec-
ified event pipe

o Multicast: sends the event to all connected clients
(with the optional exception of the originating cli-
ent)

The API pipe is always present in the system, whereas
the other pipes are added dynamically as they are re-
quested by the event filters.

Having reengineered MASSIVE-3’s static infrastruc-
ture as a flexible and extensible infrastructure, we
moved beyond this emulation of MASSIVE-3 to add
other event filters and to experiment with other config-
urations of event filters, some of which are described in
section 5.

4 Deep Behaviors

The previous section has outlined our distributed
event filter (DEF) approach to constructing a flexible
and extensible runtime infrastructure. Flexibility is
achieved by applying different sets of event filters to dif-
ferent virtual world data items, and extensibility is
achieved through the addition of new kinds of event
filters and through the dynamic (re)configuration of
event filters and event pipes within the running system.
However, we still require a way to specity, modity, and
realize the particular arrangements of event filters and
event pipes to be used for particular data items or envi-
ronments.

This leads to the second key element of our new ar-
chitecture, which we term deep behaviors. In virtual envi-
ronments, behaviors are typically pieces of executable
program code that describe the dynamics of (part of)
the virtual world (such as animations or responses to
user interaction). So we use the term deep behavior to
refer to pieces of program code (or the equivalent) that
are used to describe the dynamics of the infrastructure,
that is, the “deep” or low-level behavior of the system.

We have chosen to make these deep behaviors explicit
within the shared world data as annotations that can be
applied to the shared data items that compose the vir-
tual world (for example, as shared scene graph nodes
and annotations). A deep behavior provides a data item
with infrastructure functionality—for example, making
the item persistent, subject to transactions, or subject to
total ordering consistency. It does this by manipulating
the event filters that operate on the item. Where a nor-
mal behavior might manipulate an object’s position to
make it follow terrain, a deep behavior manipulates the
filters that process the events describing the object’s
position (for example, controlling the way that position
changes are propagated through the network).

By making (the declarations of) deep behaviors part
of the shared state of the virtual world, we can exploit
the normal (default) data distribution mechanisms to
distribute deep behaviors around the system as required.
This allows them to affect event filters and event pipes
on multiple machines in a coordinated fashion. We can

also apply deep behaviors to other deep behaviors, such



76 PRESENCE: VOLUME 12, NUMBER |

as to specify the persistence or consistency mechanisms
to be applied to the deep behaviors themselves.

By providing deep behaviors as a layer of abstraction
above the basic event filter infrastructure, we also hope
to make extensibility and configurability more meaning-
ful to users and world builders. For example, a deep
behavior might be selected from a palette such as

g

“trusted persistent,” “important but slow,

7 <«

unimpor-
tant and fast,” and so on. We suggest that deep behav-
iors should specify the “mutability” of virtual items,
which incorporates all aspects of creation and change.
We prefer this approach to that of focusing down on the
component elements of consistency, persistence, access
control, and so on because these are typically inter-
twined.

Figure 5 illustrates the scene graph fragments in
MASSIVE-3 corresponding to a default (nonpersistent)
and a persistent virtual object. Each box represents a
node within the shared scene graph; an Entity node
specifies a 3D transformation, and a Geometry node
specifies a 3D geometry (by filename in this case). From
a programmer’s or world author’s perspective, a deep
behavior is added to a virtual object simply by adding a
DeepBehavior node to the corresponding Entity (which
requires a single line of C++ code, an entry in a world
definition file, or a mouse click in a graphical editor).
When the DeepBehavior node is added to the local
scene graph, it executes the corresponding deep behav-
ior code, which in turn creates and configures event
pipes and filters as appropriate. Similarly, when a Deep-
Behavior node is removed from the scene graph, the
deep behavior code reverses this process.

Because deep behaviors are first class items in the
scene graph, the deep behaviors of deep behaviors
themselves can be specified. These associations allow
a potentially infinite number of levels of meta-
meta-information and a rich syntax for composing com-
plex, parameterized deep behaviors from combinations
of simple behaviors.

For example, if changes to a deep behavior might
have potentially hazardous effects on the continued run-
ning of a virtual environment system, an access control
deep behavior might be used to annotate it. The access
control behavior could restrict access to the deep behav-

Default virtual object Persistent virtual object

Entity Entity
Geometry Geometry

Deep Behaviour
“TrustedPersistent”

Figure 5. Default and persistent virtual objects.

ior item in exactly the same way as it would restrict ac-
cess to any other item. Without changing either deep
behavior, the combination of behaviors provides new
and useful functionality. If the access control mecha-
nism was later replaced with another mechanism, the
meta-annotation could be replaced and the original be-
havior could take advantage of the new access control
facilities without any change.

There are situations in which the annotation of deep
behaviors can lead to infinite regressions. In the preced-
ing example, there initially seems to be no problem in
annotating the access control deep behavior with an-
other access control deep behavior—the second access
control behavior specifies the users able to change the
users able to change the root behavior. However, the
leaf node in this scene graph must be an access control
behavior that cannot be annotated, in order to provide a
fix point.

5 Examples

This section provides five examples of prototyped
deep behaviors, their corresponding event filter net-
works, and descriptions of how they could be used
within virtual environments. Other examples include the
default MASSIVE-3 behavior from section 3, and the
delayed persistence behavior, evaluated in section 6.
Recall that the world designer or programmer would
specity the deep behavior for a particular data item or
set of data items (that is, part of the virtual world’s con-



Purbrick and Greenhalgh 77

tent), and that the result of the specified deep behavior
within the running system would be to establish the
corresponding network of event pipes and event filters
to achieve the desired form of mutability.

5.1 Trusted Persistence

This deep behavior might be used for items whose
persistence (and durability of change) must be assured,
such as item representing major world features (such as
landmarks) or items with financial significance (such as
virtual bank accounts).

This is one of the most important examples of the
DEF and deep behavior framework as it demonstrates
the interdependence of infrastructure mechanisms. The
mechanism comprises a total ordering consistency
mechanism (quite conservative) and server-based persis-
tence. The motivation is to provide server-side persis-
tence for important objects in the virtual world. This
could be achieved in a simple way by inserting a filter
into the server pending pipe that wrote every event pro-
cessed by it to storage. However, in this case, users
would be unaware of when the important items were
actually made persistent: the user would make an update
and immediately see its results. However, only at some
arbitrary time later would their update become durable,
and the user would have no idea when this was. This
simple persistence mechanism would effectively provide
the user with a view of the predicted persistent state of
the item through the immediate update of the local rep-
lica. If a failure occurred before the update was written
to the server store, then the update would be lost and
the prediction would be false. In cases in which the
knowledge of the durable state of the world is more
important than local interaction times (for example,
when updating a virtual bank account), the system must
route updates to the server, which makes them persis-
tent, before returning the updates to the client where
they are applied to the local replica. This mechanism
would ensure consistency between the persistent state
and the client’s view of the world. The client can then
trust the local state of the item as it is no longer a pre-
diction of durability. These semantics are closer to those
of a database than the typically optimistic mechanisms

of virtual environment systems, but they would be use-
ful for some items in some virtual worlds. By providing
this behavior as an option for specific data items, the
gamut of applications that can be implemented by the
virtual environment system is increased.

To implement these semantics, a routing filter is
added to the client application’s API pipe before the
standard routing event filter. (Flexible ordering of event
filters is a key component of the DEF implementation.)
Instead of copying the event to the pending and send-
ing pipes, the filter just adds it to the sending pipe. A
filter is added to the server’s pending pipe that make the
update persistent before applying it to the server replica,
and a second filter is added after this that sends the
event back to the client. This configuration is shown in

figure 6.

5.2 Variants

The “variant” deep behavior demonstrates the
flexibility of the framework by providing facilities not
usually provided by virtual environment systems. Rather
than allowing arbitrary updates to items, updates to
items tagged with the variant behavior create “proxy”
items related to the original item by a syntactic consis-
tency mechanism (Terry, Petersen, Spreizer, & Thei-
mer, 1998). Other clients viewing the item see its origi-
nal state and can themselves create related proxy items
representing their desired changes to the state of the
item. The actual mechanism for creating these subjec-
tive views and relating the proxy to the original item
will depend on the awareness management facilities of
the virtual environment system, but the prototype im-
plementation (Greenhalgh, Purbrick, & Snowdon,
2000) used aspects to create overlay environments for
each variant. The awareness management facilities can
then be manipulated by an administrator to view the
different versions of the item and authorize some or all
of the updates. This behavior is useful in situations in
which user evolution of a virtual world is desirable, but
control over the rate of change, and protection against
virtual vandalism, is required. Instead of updating the

shared state of the item, users create desired versions of



78 PRESENCE: VOLUME 12, NUMBER |

Client }  Server
APl Pipe SendingPipe ! PendingPipe
[ To Stable Storage
| ConstraintsFilter I ’i Unicast |__ : 'I UpdatePersistence >
!
EventPipeRouting : | UpdateSceneGraph |
PendingPipe :
i
| LocalNowRouting | | UpdateSceneGraph ! Unicast
i
! | EventPipeRouting |
i
i
! SendingPipe
i
: , v To Other
| Multicast I_ >
1
t

Figure 6. Trusted persistence DEF configuration.

Server

AP! Pipe SendingPipe

| ConstraintsFilter |

Unicast I—

RewriteTarget

PendingPipe

| LocaINowRoutingAlZAN UpdateSceneGraph |

Figure 7. Variant DEF configuration.

items that must be approved before they become
shared.

To implement variants, the deep behavior first creates
a subjective proxy item and then inserts a rewrite filter
in the client’s API pipe that processes updates to the
original item by rewriting the target of the update to be
the variant item. This causes subsequent updates to the
original item to be applied to the proxy instead. The
filter configuration is shown in figure 7.

5.3 Leases

The lease deep behavior is used to provide a time-
limited guarantee of immutability for items. The main
motivations are to fix parts of the virtual world without

1
[}
I
i PendingPipe
[}
[}

| EventPipeRouting I

SendingPipe To Other Clients

H»

| Multicast

committing to a permanently static state and to allow
reasoning about the validity of the world for discon-
nected operation and intelligent caching of the world’s
state. Like Jini leases (Waldo, 1999), the semantics of
the lease deep behavior are to declare the information
annotated by the lease as valid for at least the duration
of the lease. Whereas Jini leases guarantee the validity of
a service for a time, the lease deep behavior guarantees
the validity of the state of an item. Like Jini leases, the
lease can also be extended. This is useful for defining
parts of a virtual world as static for the foreseeable fu-
ture, where the foreseeable future is the length of the
lease. If at the end of the lease period the item should
remain static, the lease can be renewed and clients can
continue caching and using the item for disconnected



Purbrick and Greenhalgh 79

Server

API Pipe SendingPipe
[ Nult I Unicast
l ConstraintsFilter
PendingPipe
I LocalNowRouting IZ UpdateSceneGraph

Figure 8. Lease DEF configuration.

operation. If during the lease period it is decided that
the item should be changed, then the lease can be al-
lowed to expire and the item changed. These “never say
never” semantics provide a useful middle ground be-
tween declaring an item permanently static as in VRML
(Carey et al., 1997) or always transient as in MASSIVE
(Greenhalgh, Purbrick, & Snowdon, 2000).

These semantics are implemented by a simple NullFil-
ter that removes all updates to an item that is inserted
by the lease deep behavior on creation and removed on
expiry. For most efficiency, the NullFilter is inserted as
close to the source of updates as possible: at the front of
the API pipe as shown in figure 8.

5.4 Triggers

Where leases guarantee the immutability of an
item for a certain period of time, trigger behaviors indi-
cate a scheduled change to the item they annotate and
provide a mechanism for that change. Like leases, trig-
gers have an expiry time and can be renewed. When the
trigger expires, it performs an action by injecting arbi-
trary events into arbitrary event pipes. This mechanism
allows triggers to be as general as possible as they rely
only on the existence of event pipes and events, yet they
can perform any action the system API can perform by
the arbitrary sequencing of events. The motivation for
triggers are the results of the experiments described in
section 3: many items were created, heavily modified,
and then discarded in a short period of time, whereas
items that survived this initial period tended to exist for

PendingPipe

l EventPipeRouting I

SendingPipe \ 4 To Other Clients

H—>

| Multicast

a much longer period of time. By annotating new items
with a trigger expiring after this initial “hot” period of
manipulation and setting the trigger to add a persistence
behavior to the item, the system can be significantly op-
timized: of the many updates made to items after their
creation, only one state need be written to storage for
each item that survives its turbulent youth. More gener-
ally, triggers provide a mechanism for managing the
lifetime of objects by updating, adding, or removing
other deep behaviors applying to an item based on time
or events applied to an item. In this sense, triggers are
mainly used as a meta-deep behavior that coordinates
changes to other behaviors allowing the behavior of ob-
jects to vary dynamically through its life. Triggers are
used to implement the delayed persistence deep behav-
ior discussed in subsection 6.1. Items are initially cre-
ated with a trigger annotation that annotates its parent
with a ServerPersistence deep behavior when the trig-
ger’s timer expires.

5.5 Batch Updates

The batch updates behavior is an example of a
bottom-up deep behavior motivated by the desire to
optimize the operation of the virtual environment sys-
tem by restricting the way in which the environment
can change. When a batch update behavior applies to an
item, any update to that item is delayed to the next
batch period. Effectively, the batch update behavior
quantizes the times at which an item can change. If the
deep behavior framework makes the batch times avail-



80 PRESENCE: VOLUME 12, NUMBER |

able in the virtual world (as in the prototype implemen-
tation), the limits on when changes can occur can be
used to drive caching and disconnected operation. As
the system knows that the item cannot change until the
next batch period, its state can be cached without
checking for cache consistency and can be presented to
the user as valid during periods of disconnection. In
addition, early updates to items buffered until the next
update point can be discarded completely if new up-
dates to the item are delivered before the batch point.
Given a batch period of # seconds, a stream of updates
is effectively rate limited to one update per # seconds.
Where many items share a batch update deep behavior
as described in the discussion on scalability, the effect of
the update behavior is to create large batches of updates
that are applied to large numbers of items in the envi-
ronment simultaneously. Given sufficient behavior shar-
ing and sufficiently long batch periods, the batch update
behavior can be used to facilitate applications that physi-
cally mail out periodic updates on CD. The behavior
ensures that the environment will remain static and so
needs to be downloaded only once; then, when the CD
arrives, updates can be applied en masse without the
need to download them. This model is very attractive to
applications presenting large, rich environments ac-
cessed over low-bandwidth connections. An obvious
potential problem with the batch updates behavior is
that the new state is not immediately seen by the user
performing the update, but this can be solved using the
proxy item techniques mentioned in the previous dis-
cussion on the variant behavior.

6 Validation

To test and validate our new architecture and im-
plementation, we have again made use of the virtual
recordings described in section 2. However, rather than
simply replaying or analyzing the activity as it occurred,
we use the recordings as input to our new prototype
system. In this way, we can explore and measure the
behavior of the system in different configurations
against a repeatable and realistic corpus of virtual world
activity.

6.1 Delayed Persistence

As already noted, our starting point for this work
was our consideration of persistence in collaborative
virtual environments. In the initial experiments, we ob-
served that different kinds of items have different re-
quirements for persistence. We were also able to analyze
some of the temporal characteristics of virtual world
updates in the experiments. For example, we observed
that updates to virtual objects often occur in rapid se-
quences, with much longer gaps between these se-
quences. Each sequence of updates corresponds to a
period of time during which a user is actively holding
and manipulating an object.

This motivated us to consider a deep behavior that
makes changes persistent only after a certain period of
time has elapsed. In the event of a system failure, this
approach would lose very recent updates but would re-
tain updates that had been stable for longer. This deep
behavior is implemented using a DelayedPersistence
event filter in the server’s pending event pipe.

We re-ran the recordings through our new system
with this deep behavior for a range of different time de-
lays to persistence. We measured the amount of data
written to the persistent store (a relational database ac-
cessed via ODBC). The results can be seen in figure 9,
for each kind of virtual item in the experiment.

We see that by not making embodiment items persis-
tent we could immediately reduce the amount of data-
base traffic by approximately 75% (“embodiments” ver-
sus “added items”). This is easily achieved by applying
the persistence deep behavior to only the added items.
We also see that a delay to persistence of 120 sec. (2
min.) more than halves the remaining database traffic,
with only a limited effect on the long-term persistence
of the system.

Note that this delayed persistence can be dynamically
introduced to the running system for any data item simply
by adding the corresponding deep behavior to that item.

6.2 Caching

In the previous sections, we have shown how deep
behaviors can directly modify the runtime infrastructure



Purbrick and Greenhalgh 81

6e+07

5e+07

4e+07

3e+07

Data Written (bytes)

2e+07

1e+07

Embodiments ——
Added ltems ----
Warhol Picture -----
Lichtenstein Picture -
Cone -

Cube ---

Cylinder -----

Statue -~

wall -----

Figure 9. Persistent data traffic versus time to persistence for the delayed persistence deep behavior.

to achieve particular effects for data items. Beyond this,
we can also exploit the presence of deep behaviors as a
more general form of metadata within the shared world
state. For example, suppose that each client of a virtual
world maintains a cache of items within that virtual
world when it was last visited. Without additional infor-
mation, the client would not be able to prioritize the
items to be cached. However, with the addition of deep
behavior, the client could use those deep behaviors to
inform the selection of items for caching. We have sim-
ulated both a least recently used (LRU) cache and a
selective least recently used (SLRU) cache that uses
deep behavior annotations to cache only persistent data
items (which are more likely to persist and typically
more important). Figure 10 shows the cache hit rates
achieved for the virtual objects in the recordings already
described, as a function of the cache size.

Using deep behavior annotations as metadata allows
the cache to give consistently better performance. The
naive LRU cache is also caching nonpersistent items,
such as the users’ avatars, and therefore discarding at

least a fraction of the more useful persistent items when
the cache size is limited.

In addition to providing superior cache performance
for a given cache size, the operation of the selective
cache is also more efficient than the LRU cache. Figure
11 shows the number of times the two approaches re-
placed items for maximum cache sizes ranging from ten
to 1,000 items. With a cache of ten items, the LRU
cache performs 66,892 writes compared to 10,255
writes performed by the selective cache. This large dis-
crepancy is due to the LRU cache being too small to
hold all of the rapidly changing embodiment items in
the environment, and so thrashing as items are replaced.
The selective approach does not suffer from this prob-
lem because it does not cache the un-annotated embod-
iment items. When the cache size reaches 900 items, the
activity of the SLRU cache levels out as it contains all of
the annotated items in the environment and so never
replaces items in the cache.

Figure 12 shows the number of items stored by the
LRU and selective caches for maximum cache sizes of



82 PRESENCE: VOLUME 12, NUMBER |

80 -

60 -

50 -

Cache Hits (%)

30

10 |

PSS |

LRU Cache —
Deep Behavior Cache ----- ]

i P R W SR S i | i L PR S T

10 100

1000

Cache Size (Iltems)

Figure 10. Cache hit rates versus cache size for LRU and selective (deep behavior) caches.

between ten and 5,000 items. For maximum cache sizes
up to 100 items, both approaches utilize the entire al-
lowed storage space, with LRU using the maximum
space up to a maximum cache size of 300 items. With a
cache size of 2,000, the selective cache reaches its maxi-
mum usage of space and contains 842 items compared
to LRU, which contains 1689 items. With the maxi-
mum number of items set to 5,000, LRU uses three
times as much storage space as the selective approach
for a 0.4% advantage in cache hits.

The hints provided by deep behaviors can be used to
drive other heuristics, such as reasoning about the likeli-
hood that cached items are still valid to provide an off-
line view of a virtual world to a disconnected wireless
client.

7 Conclusions

Many researchers are working towards the ideal of
arbitrarily flexible virtual environment systems. A key

problem in engineering “flexibility” into any system is
finding a good balance between flexibility per se, and
the amount of help that the system can actually provide.
Arguably, the most flexible VE system is a C++ (or
similar) compiler, whereas a general-purpose compo-
nent mechanism provides the greatest runtime flexibil-
ity. However, these systems do not provide any VR-
specific assistance to the developer or would-be user.
Once a compiler or component system has been chosen,
a framework still needs to be developed to leverage that
flexibility.

In our approach (motivated by differentiated treat-
ment of items within a single virtual world), we have
chosen to adopt a distributed event filtering framework.
We have demonstrated that this approach can realize a
broad range of approaches to consistency and persis-
tence in networked virtual environments. The distrib-
uted event filter model also has well-defined semantics
for adding and managing event filters, and so serves as a
basis for event filter composition.

In addition to the low-level mechanism for extensibil-



80000

70000 -
60000
50000 A
40000
30000
20000 4

10000

...... LRU Activity
SLRU Activity

0 100 200 300 400 500 600 700 800 900

Figure | 1. Cache activity for LRU and SLRU caches with maximum cache sizes from 10 to 1,000 items.

3000

1000

2500 ’

2000 | !

1500 | ’

1000 :

500 A

0

------ LRU Size
SLRU Size

10 100 1000

Figure 12. Utilized cache size for LRU and SLRU caches with maximum cache sizes of ten to 5,000 items.

10000



84 PRESENCE: VOLUME 12, NUMBER |

ity and runtime modification, we have also found the
need—for users, world builders, and system develop-
ers—to be able to specify and reason about system be-
havior at a higher level. Our solution to this is to pro-
vide deep behaviors. These allow annotations of the data
model (for example, a scene graph) to determine the low-
level extensions and modifications that are made to the
runtime system, dynamically, and on a per-data-item basis.
We argue that this dual approach provides a good bal-
ance of flexibility, extensibility, and manageability. We
have also shown that deep behaviors, viewed as a specific
form of metadata, can be exploited to further optimize

other elements of system behavior such as caching.

Acknowledgments

We gratefully acknowledge funding from UK EPSRC research
grant GR/M09223, “The Nature and Utility of Persistence in

Virtual Environments.”

References

International Standard. ISO/IEC 14772-1: 1997 Virtual Real-
ity Modeling Language (VRML °97).

Capps, M., McGregor, D., Brutzman, D., & Zyda, M.
(2000). NPSNET-V: A new beginning for dynamically ex-
tensible virtual environments. IEEE Computer Graphics and
Applications (Sep./Oct.), 12-15.

Capps, M., Watsen, K., & Zyda, M. (1999). Cyberspace and
mock apple pie: A vision of the future of graphics and VEs.
IEEE Computer Graphics & Applications (Nov./Dec.),
8§-11.

Curtis, P. (2002). LambdaMOO programmer’s manual. [On-
line Available at ftp://ftp.research.att.com/dist/eostrom/
MOO /html/ProgrammersManual_toc.html (verified Oct.
3,2002).

Diefenbach, P. J., Mahesh, P., & Hunt, D. (1998). Building

Open Worlds. Proceedings of the Third Symposium on Vir-
tual Reality Modeling Language. (Feb.) p. 33-38.

Gosling, J., Joy, B., & Steele, G. (1996). The Java language
specification. Boston, MA: Addison-Wesley.

Greenhalgh, C., Flintham, M., Purbrick, J., & Benford, S.
(2002). Applications of temporal links: Recording and re-
playing virtual environments. Proc. IEEE Virtual Reality
2002, 101-108.

Greenhalgh, C., Purbrick, J., & Snowdon, D. (2000). Inside
MASSIVE-3: Flexible support for data consistency and
world structuring. Proc. 3rd International Confervence on
Collaborative Virtual Environments (CVE 2000), 119-127.

Greenhalgh, C., Purbrick, J., Benford, S., Craven, M., Drozd,
A., & Taylor, I. (2000). “Temporal links: Recording and
replaying virtual environments. Proc. 8th ACM Multimedin
Conference (MM 2000), 67-74.

Lea, R., Honda, Y., Matsuda, K., & Matsuda, S. (1997).
Community place: Architecture and performance. Proc. 2nd
Annnal Symposinm on the Virtual Reality Modelling Lan-
guage (VRML *97), 41-50.

Pettifer, S., Cook, J., Marsh, J., & West, A. DEVA3: Architec-
ture for a large scale virtual reality system. Proc. ACM Sym-
posium in Virtual Reality Software and Technology 2000
(VRST 00), 33-40.

Purbrick, J., & Greenhalgh, C. (2001). Collaborative creation
of'a persistent virtual world. Proc Human-Computer Inter-
action — INTERACT °01, 35-42.

Sense8 Corp. (1998). WorldUp users guide. release 4.

Terry, D. B., Petersen, K., Spreizer, M. J., & Theimer, M. M.
(1998). The case for non-transparent replication: Examples
from bayou. Bulletin of the Technical Committee on Data
Engineering, 421), 12-20.

Waldo, J. (1999). The Jini architecture for network-centric
computing. Communications of the ACM, 76-82.

Watsen, K., Zyda, M. (1998). Bamboo—A portable system
for dynamically extensible, networked, real-time, virtual en-
vironments. Proceedings of VRAIS °98, 252-259.

Web3D Consortium. (2002). X3D: The virtual reality model-
ing language — International standard ISO/IEC 14772:
200x. Online. Available at: http:/ /www.web3D.org/
TaskGroups /x3d/specification/ (verified Oct. 3, 2002).


http://www.web3D.org/TaskGroups/x3d/specification/
http://www.web3D.org/TaskGroups/x3d/specification/

