
Appears inProceedings of the 2005 USENIX Annual Technical Conference, Anaheim, CA, April 2005.

Group Ratio Round-Robin: O(1) Proportional Share Scheduling
for Uniprocessor and Multiprocessor Systems

Bogdan Caprita, Wong Chun Chan, Jason Nieh, Clifford Stein∗, and Haoqiang Zheng
Department of Computer Science

Columbia University
Email: {bc2008, wc164, nieh, cliff, hzheng}@cs.columbia.edu

Abstract

We present Group Ratio Round-Robin (GR3), the first pro-
portional share scheduler that combines accurate propor-
tional fairness scheduling behavior withO(1) scheduling
overhead on both uniprocessor and multiprocessor systems.
GR3 uses a simple grouping strategy to organize clients
into groups of similar processor allocations which can be
more easily scheduled. Using this strategy,GR3 combines
the benefits of low overhead round-robin execution with a
novel ratio-based scheduling algorithm.GR3 introduces a
novel frontlog mechanism and weight readjustment algo-
rithm to operate effectively on multiprocessors.GR3 pro-
vides fairness within a constant factor of the ideal general-
ized processor sharing model for client weights with a fixed
upper bound and preserves its fairness properties on multi-
processor systems. We have implementedGR3 in Linux
and measured its performance. Our experimental results
show thatGR3 provides much lower scheduling overhead
and much better scheduling accuracy than other schedulers
commonly used in research and practice.

1 Introduction
Proportional share resource management provides a flexible
and useful abstraction for multiplexing processor resources
among a set of clients. Proportional share scheduling has a
clear colloquial meaning: given a set of clients with asso-
ciated weights, a proportional share scheduler should allo-
cate resources to each client in proportion to its respective
weight. However, developing processor scheduling mech-
anisms that combine good proportional fairness scheduling
behavior with low scheduling overhead has been difficult to
achieve in practice. For many proportional share scheduling
mechanisms, the time to select a client for execution grows
with the number of clients. For server systems which may
service large numbers of clients, the scheduling overhead of
algorithms whose complexity grows linearly with the num-
ber of clients can waste more than 20 percent of system re-
sources [3] for large numbers of clients. Furthermore, little

∗also in Department of IEOR

work has been done to provide proportional share schedul-
ing on multiprocessor systems, which are increasingly com-
mon especially in small-scale configurations with two or
four processors. Over the years, a number of scheduling
mechanisms have been proposed, and much progress has
been made. However, previous mechanisms have either su-
perconstant overhead or less-than-ideal fairness properties.

We introduce Group Ratio Round-Robin (GR3), the
first proportional share scheduler that provides constant
fairness bounds on proportional sharing accuracy withO(1)
scheduling overhead for both uniprocessor and small-scale
multiprocessor systems. In designingGR3, we observed
that accurate, low-overhead proportional sharing is easy to
achieve when scheduling a set of clients with equal pro-
cessor allocations, but is harder to do when clients require
very different allocations. Based on this observation,GR3

uses a simple client grouping strategy to organize clients
into groups of similar processor allocations which can be
more easily scheduled. Using this grouping strategy,GR3

combines the benefits of low overhead round-robin execu-
tion with a novel ratio-based scheduling algorithm.

GR3 uses the same basic uniprocessor scheduling al-
gorithm for multiprocessor scheduling by introducing the
notion of a frontlog. On a multiprocessor system, a client
may not be able to be scheduled to run on a processor be-
cause it is currently running on another processor. To pre-
serve its fairness properties,GR3 keeps track of a frontlog
per client to indicate when the client was already running
but could have been scheduled to run on another processor.
It then assigns the client a time quantum that is added to its
allocation on the processor it is running on. The frontlog
ensures that a client receives its proportional share alloca-
tion while also taking advantage of any cache affinity by
continuing to run the client on the same processor.

GR3 provides a simple weight readjustment algo-
rithm that takes advantage of its grouping strategy. On
a multiprocessor system, proportional sharing is not fea-
sible for some client weight assignments, such as having
one client with weight 1 and another with weight 2 on a

1

Appears inProceedings of the 2005 USENIX Annual Technical Conference, Anaheim, CA, April 2005.

two-processor system. By organizing clients with similar
weights into groups,GR3 adjusts for infeasible weight as-
signments without the need to order clients, resulting in
lower scheduling complexity than previous approaches [7].

We have analyzedGR3 and show that with onlyO(1)
overhead,GR3 provides fairness withinO(g2) of the ideal
Generalized Processor Sharing (GPS) model [16], whereg,
the number of groups, grows at worst logarithmically with
the largest client weight. Sinceg is in practice a small con-
stant, GR3 effectively provides constant fairness bounds
with only O(1) overhead. Moreover, we show thatGR3

uniquely preserves its worst-case time complexity and fair-
ness properties for multiprocessor systems.

We have implemented a prototypeGR3 processor
scheduler in Linux, and compared it against uniproces-
sor and multiprocessor schedulers commonly used in prac-
tice and research, including the standard Linux sched-
uler [2], Weighted Fair Queueing (WFQ) [11], Virtual-Time
Round-Robin (VTRR) [17], and Smoothed Round-Robin
(SRR) [9]. We have conducted both simulation studies and
kernel measurements on micro-benchmarks and real ap-
plications. Our results show thatGR3 can provide more
than an order of magnitude better proportional sharing ac-
curacy than these other schedulers, in some cases with more
than an order of magnitude less overhead. These results
demonstrate thatGR3 can in practice deliver better propor-
tional share control with lower scheduling overhead than
these other approaches. Furthermore,GR3 is simple to im-
plement and easy to incorporate into existing scheduling
frameworks in commodity operating systems.

This paper presents the design, analysis, and evalua-
tion of GR3. Section 2 describes the uniprocessor schedul-
ing algorithm. Section 3 describes extensions for multipro-
cessor scheduling, which we refer to asGR3MP . Section 4
analyzes the fairness and complexity ofGR3. Section 5
presents experimental results. Section 6 discusses related
work. Finally, we present some concluding remarks and
directions for future work.

2 GR3 Uniprocessor Scheduling
Uniprocessor scheduling, the process of scheduling a time-
multiplexed resource among a set of clients, has two basic
steps: 1) order the clients in a queue, 2) run the first client in
the queue for itstime quantum, which is the maximum time
interval the client is allowed to run before another schedul-
ing decision is made. We refer to the units of time quanta
as time units (tu) rather than an absolute time measure such
as seconds. A scheduler can therefore achieve proportional
sharing in one of two ways. One way, often called fair
queueing [11, 18, 28, 13, 24, 10] is to adjust the frequency
that a client is selected to run by adjusting the position of
the client in the queue so that it ends up at the front of the
queue more or less often. However, adjusting the client’s
position in the queue typically requires sorting clients based

on some metric of fairness, and has a time complexity that
grows with the number of clients. The other way is to ad-
just the size of a client’s time quantum so that it runs longer
for a given allocation, as is done in weighted round-robin
(WRR). This is fast, providing constant time complexity
scheduling overhead. However, allowing a client to mo-
nopolize the resource for a long period of time results in ex-
tended periods of unfairness to other clients which receive
no service during those times. The unfairness is worse with
skewed weight distributions.

GR3 is a proportional share scheduler that matches
with O(1) time complexity of round-robin scheduling but
provides much better proportional fairness guarantees in
practice. At a high-level, theGR3 scheduling algorithm
can be briefly described in three parts:

1. Client grouping strategy: Clients are separated into
groups of clients with similar weight values. The
group of orderk is assigned all clients with weights
between2k to 2k+1 − 1, wherek ≥ 0.

2. Intergroup scheduling: Groups are ordered in a list
from largest to smallest group weight, where the group
weight of a group is the sum of the weights of all
clients in the group. Groups are selected in a round-
robin manner based on the ratio of their group weights.
If a group has already been selected more than its pro-
portional share of the time, move on to the next group
in the list. Otherwise, skip the remaining groups in
the group list and start selecting groups from the be-
ginning of the group list again. Since the groups with
larger weights are placed first in the list, this allows
them to get more service than the lower-weight groups
at the end of the list.

3. Intragroup scheduling: From the selected group, a
client is selected to run in a round-robin manner that
accounts for its weight and previous execution history.

Using this client grouping strategy,GR3 separates
scheduling in a way that reduces the need to schedule enti-
ties with skewed weight distributions. The client grouping
strategy limits the number of groups that need to be sched-
uled since the number of groups grows at worst logarithmi-
cally with the largest client weight. Even a very large 32-bit
client weight would limit the number of groups to no more
than 32. The client grouping strategy also ensures that all
clients within a group have weight within a factor of two.
As a result, the intragroup scheduler never needs to sched-
ule clients with skewed weight distributions.GR3 groups
are simple lists that do not need to be balanced; they do not
require any use of more complex balanced tree structures.

2.1 GR3 Definitions

We now define the stateGR3 associates with each
client and group, and describe in detail howGR3 uses

2

Appears inProceedings of the 2005 USENIX Annual Technical Conference, Anaheim, CA, April 2005.

Cj Client j. (also called ’task’j)
φC The weight assigned to clientC.
φj Shorthand notation forφCj

.
DC The deficit ofC.
N The number of runnable clients.
g The number of groups.
Gi i’th group in the list ordered by weight.
|G| The number of clients in groupG.
G(C) The group to whichC belongs.
ΦG The group weight ofG:

∑
C∈G φC .

Φi Shorthand notation forΦGi
.

σG The order of groupG.
φG

min Lower bound for client weights inG: 2σG .
wC The work of clientC.
wj Shorthand notation forwCj

.
WG The group work of groupG.
Wi Shorthand notation forWGi

.
ΦT Total weight:

∑N
j=1 φj =

∑g
i=1 Φi.

WT Total work:
∑N

j=1 wj =
∑g

i=1 Wi.

eC Service error of clientC: wC −WT
φC

ΦT

EG Group service error ofG: WG −WT
ΦG

ΦT

eC,G Group-relative service error of clientC with
respect to groupG: wC −WG

φC

ΦG

Table 1:GR3 terminology

that state to schedule clients. Table 1 lists terminology
we use. For each client,GR3 maintains the following
three values: weight, deficit, and run state. Each client re-
ceives a resource allocation that is directly proportionalto
its weight. A client’s deficittracks the number of remaining
time quanta the client has not received from previous allo-
cations. A client’srun stateindicates whether or not it can
be executed. A client isrunnableif it can be executed.

For each group,GR3 maintains the following four
values: group weight, group order, group work, and current
client. Thegroup weightis the sum of the corresponding
weights of the clients in the group run queue. A group with
group orderk contains the clients with weights between2k

to 2k+1 − 1. The group work is the total execution time
clients in the group have received. Thecurrent clientis the
most recently scheduled client in the group’s run queue.

GR3 also maintains the following scheduler state:
time quantum, group list, total weight, and current group.
The group list is a sorted list of all groups containing
runnable clients ordered from largest to smallest group
weight, with ties broken by group order. Thetotal weightis
the sum of the weights of all runnable clients. Thecurrent
groupis the most recently selected group in the group list.

2.2 BasicGR3 Algorithm

We initially only consider runnable clients in our dis-
cussion of the basicGR3 scheduling algorithm. We dis-

cuss dynamic changes in a client’s run state in Section 2.3.
We first focus on theGR3 intergroup scheduling algorithm,
then discuss theGR3 intragroup scheduling algorithm.

TheGR3 intergroup scheduling algorithm uses the
ratio of the group weights of successive groups to deter-
mine which group to select. The next group to schedule
is selected using only the state of successive groups in the
group list. Given a groupGi whose weight isx times larger
than the group weight of the next groupGi+1 in the group
list, GR3 will select groupGi x times for every time that it
selectsGi+1 in the group list to provide proportional share
allocation among groups.

To implement the algorithm,GR3 maintains the to-
tal work done by groupGi in a variableWi. An indexi to
tracks the current group and is initialized to1. The schedul-
ing algorithm then executes the following simple routine:

INTERGROUP-SCHEDULE()

1 C ← INTRAGROUP-SCHEDULE(Gi)
2 Wi ←Wi + 1

3 if i < g and Wi+1
Wi+1+1 > Φi

Φi+1
(1)

4 then i← i + 1
5 else i← 1
6 return C

Let us negate (1) under the form:

Wi + 1

Φi
≤

Wi+1 + 1

Φi+1
(2)

We will call this relation thewell-ordering conditionof two
consecutive groups.GR3 works to maintain this condition
true at all times. The intuition behind (2) is that we would
like the ratio of the work ofGi andGi+1 to match the ratio
of their respective group weights afterGR3 has finished se-
lecting both groups. Recall,Φi ≥ Φi+1. Each time a client
from Gi+1 is run, GR3 would like to have runΦi/Φi+1

worth of clients fromGi. (1) says thatGR3 should not run
a client fromGi and incrementGi’s group work if it will
make it impossible forGi+1 to catch up to its proportional
share allocation by running one of its clients once.

To illustrate how intergroup scheduling works, Fig-
ure 1 shows an example with three clientsC1, C2, and
C3, which have weights of 5, 2, and 1, respectively. The
GR3 grouping strategy would place eachCi in groupGi,
ordering the groups by weight:G1, G2, andG3 have or-
ders 2, 1 and 0 and weights of 5, 2, and 1 respectively.
In this example, each group has only one client so there
is no intragroup scheduling.GR3 would start by selecting
groupG1, running clientC1, and incrementingW1. Based
on (1), W1+1

W2+1 = 2 < Φ1

Φ2
= 2.5, so GR3 would select

G1 again and run clientC1. After runningC1, G1’s work
would be 2 so that the inequality in (1) would hold andGR3

would then move on to the next groupG2 and run clientC2.
Based on (1),W2+1

W3+1 = 2 ≤ Φ2

Φ3
= 2, soGR3 would reset

3

Appears inProceedings of the 2005 USENIX Annual Technical Conference, Anaheim, CA, April 2005.

1C 2C1C 1C 1C 1C 2C 3C

G1
G

G
2

3

2 | 1

1 | 1

5 | 1 5 | 2

2 | 1

1 | 1

5 | 3

1 | 1 1 | 1 1 | 1 1 | 1 1 | 1

2 | 2 2 | 2 2 | 22 | 1 2 | 2 2 | 3

5 | 55 | 45 | 3 5 | 6 5 | 6

1 | 1

t

Figure 1: GR3 intergroup scheduling. At each time step,
the shaded box contains the pairΦG |WG +1 for the group
G before it is selected.

the current group to the largest weight groupG1 and run
client C1. Based on (1),C1 would be run for three time
quanta before selectingG2 again to run clientC2. After
runningC2 the second time,W2 would increase such that
W2+1
W3+1 = 3 > Φ2

Φ3
= 2, so GR3 would then move on to

the last groupG3 and run clientC3. The resulting schedule
would then be:G1, G1, G2, G1, G1, G1, G2, G3. Each
group therefore receives its proportional allocation in ac-
cordance with its respective group weight.

TheGR3 intragroup scheduling algorithm selects a
client from the selected group. All clients within a group
have weights within a factor of two, and all client weights
in a groupG are normalized with respect to the minimum
possible weight,φG

min = 2σG , for any client in the group.
GR3 then effectively traverses through a group’s queue
in round-robin order, allocating each client its normalized
weight worth of time quanta.GR3 keeps track of subuni-
tary fractional time quanta that cannot be used and accumu-
lates them in a deficit value for each client. Hence, each
client is assigned either one or two time quanta, based on
the client’s normalized weight and its previous allocation.

More specifically, theGR3 intragroup scheduler con-
siders the scheduling of clients in rounds. Around is one
pass through a groupG’s run queue of clients from begin-
ning to end. The group run queue does not need to be sorted
in any manner. During each round, theGR3 intragroup al-
gorithm considers the clients in round-robin order and exe-
cutes the following simple routine:

INTRAGROUP-SCHEDULE(G)

1 C ← G[k] � k is the current position in the round
2 if DC < 1
3 then k ← (k + 1) mod|G|
4 C ← G[k]
5 DC ← DC + φC/φG

min

6 DC ← DC − 1
7 return C

For each runnable clientC, the scheduler determines
the maximum number of time quanta that the client can be
selected to run in this round asb φC

φG
min

+DC(r−1)c. DC(r),

the deficit of clientC after roundr, is the time quantum
fraction left over after roundr: DC(r) = φC

φG
min

+ DC(r −

1)−b φC

φG
min

+DC(r−1)c, with DC(0) = φC

φG
min

. Thus, in each

round,C is allotted one time quantum plus any additional
leftover from the previous round, andDC(r) keeps track of
the amount of service thatC missed because of rounding
down its allocation to whole time quanta. We observe that
0 ≤ DC(r) < 1 after any roundr so that any clientC
will be allotted one or two time quanta. Note that if a client
is allotted two time quanta, it first executes for one time
quantum and then executes for the second time quantum
the next time the intergroup scheduler selects its respective
group again (in general, following a timespan when clients
belonging to other groups get to run).

To illustrate how GR3 works with intragroup
scheduling, Figure 2 shows an example with six clients
C1 through C6 with weights 12, 3, 3, 2, 2, and 2, re-
spectively. The six clients will be put in two groupsG1

and G2 with respective group order 1 and 3 as follows:
G1 = {C2, C3, C4, C5, C6} andG2 = {C1}. The weight
of the groups areΦ1 = Φ2 = 12. GR3 intergroup schedul-
ing will consider the groups in this order:G1, G2, G1,
G2, G1, G2, G1, G2, G1, G2, G1, G2. G2 will sched-
ule clientC1 every timeG2 is considered for service since
it has only one client. SinceφG1

min = 2, the normalized
weights of clientsC2, C3, C4, C5, andC6 are 1.5, 1.5, 1,
1, and 1, respectively. In the beginning of round 1 inG1,
each client starts with 0 deficit. As a result, the intragroup
scheduler will run each client inG1 for one time quantum
during round 1. After the first round, the deficit forC2, C3,
C4, C5, andC6 are 0.5, 0.5, 0, 0, and 0. In the beginning of
round 2, each client gets anotherφi/φG1

min allocation, plus
any deficit from the first round. As a result, the intragroup
scheduler will select clientsC2, C3, C4, C5, andC6 to run
in order for 2, 2, 1, 1, and 1 time quanta, respectively, dur-
ing round 2. The resulting schedule would then be:C2, C1,
C3, C1, C4, C1, C5, C1, C6, C1, C2, C1, C2, C1, C3, C1,
C3, C1, C4, C1, C5, C1, C6, C1.

2.3 GR3 Dynamic Considerations

We now discuss howGR3 allows clients to be
dynamically created, terminated, or change run state.
Runnable clients can be selected for execution by the sched-
uler, while clients that are not runnable cannot. With no loss
of generality, we assume that a client is created before it can
become runnable, and a client becomes not runnable before
it is terminated. As a result, client creation and termination
have no effect on theGR3 run queues.

When a clientC with weightφC becomes runnable,
it is inserted into groupG = G(C) such thatφC is between
2σG and2σG+1 − 1. If the group was previously empty, a
new group is created, the client becomes the current client
of the group, andg, the number of groups, is incremented.
If the group was not previously empty,GR3 inserts the
client into the respective group’s run queue right before the
current client; it will be serviced after all of the other clients

4

Appears inProceedings of the 2005 USENIX Annual Technical Conference, Anaheim, CA, April 2005.

G1

0
0
0

0
0

G1

0

0

0

G1

0

0.5
0.5
0

G1

0

0.5
0.5
0
0 0

G1

0.5
0.5
0

0
0
0

0
0.5
0.5

2C 3C1C 1C 4C 1C 5C 1C 6C 1C

0

G1

0

0
0.5
1

2C 1C 2C 1C

0

G1

0

0

0

0

G1

0

0
1
0

0.5

3C 1C 3C 1C 4C 1C 5C 1C 6C 1C

0

G1

0

G1

0
0

G1

0

0
0

0
0

0
0

0

0
0

0

G2
0

G1G2
0

G2
0

G2
0

G2
0

G2
0

G2
0

G2
0

G2
0

G2
0

G2
0

G2
00

0
0
00

0.5

t

0 0 0 0 0 0 0 0 0 0 0 0
0

0
0

0

0
0

0

Figure 2:GR3 intragroup scheduling. At each time step, the shaded box contains the deficit of the client before it is run.

in the group have first been considered for scheduling. The
initial deficit DC will be initialized to 0.

When a newly runnable clientC is inserted into its
respective groupG, the group needs to be moved to its new
position on the ordered group list based on its new group
weight. Let this new position bek. The corresponding
group work and group weight ofG need to be updated and
the client’s deficit needs to be initialized. The group weight
is simply incremented by the client’s weight. We also want
to scale the group work ofG such that the work ratio of
consecutive groups will continue to be proportional to their
weight ratio:

WG =

8

>

<

>

:

j

(Wk+1 + 1) ΦG

Φk+1

k

− 1 if k < g

l

(Wg−1 + 1) ΦG

Φg−1

m

− 1 if k = g

We will motivate these equations when analyzing the fair-
ness of the algorithm in Section 4, but intuitively, we want
to preserve the invariants that result from (2).

When a clientC with weight φC becomes not
runnable, we need to remove it from the group’s run queue.
This requires updating the group’s weight, which poten-
tially includes moving the group in the ordered group list, as
well as adjusting the measure of work received according to
the new processor share of the group. This can be achieved
in several ways.GR3 is optimized to efficiently deal with
the common situation when a blocked client may rapidly
switch back to the runnable state again. This approach is
based on “lazy” removal, which minimizes overhead asso-
ciated with adding and removing a client, while at the same
time preserving the service rights and service order of the
runnable clients. Since a client blocks when it is running,
we know that it will take another full intragroup round be-
fore the client will be considered again. The only action
when a client blocks is to set a flag on the client, marking it
for removal. If the client becomes runnable by the next time
it is selected, we reset the flag and run the client as usual.
Otherwise, we remove the client fromG(C). In the lat-
ter situation, as in the case of client arrivals, the group may
need to be moved to a new position on the ordered group list
based on its new group weight. The corresponding group
weight is updated by subtracting the client’s weight from
the group weight. The corresponding group work is scaled

by the same rules as for client insertion, depending on the
new position of the group and its next neighbor. After per-
forming these removal operations,GR3 resumes schedul-
ing from the largest weight group in the system.

Whenever a clientC blocks during roundr, we set
DC(r) = min(DC(r−1)+φC/φ

G(C)
min −dwe, 1), wherew

is the service that the client received during roundr until it
blocked. This preserves the client’s credit in case it returns
by the next round, while also limiting the deficit to1 so that
a client cannot gain credit by blocking. However, the group
consumes1 tu (its work is incremented) no matter how long
the client runs. Therefore, the client forfeits its extra credit
whenever it is unable to consume its allocation.

If the client fails to return by the next round, we may
remove it. Having kept the weight of the group to the old
value for an extra round has no adverse effects on fairness,
despite the slight increase in service seen by the group dur-
ing the last round. By scaling the work of the group and
rounding up, we determine its future allocation and thus
make sure the group will not have received undue service.
We also immediately resume the scheduler from the first
(largest) group in the readjusted group list, so that any mi-
nor discrepancies caused by rounding may be smoothed out
by a first pass through the group list.

3 GR3 Multiprocessor Extensions (GR3MP)
We now present extensions toGR3 for scheduling aP -way
multiprocessor system from a single, centralized queue.
This simple scheme, which we refer to asGR3MP , pre-
serves the good fairness and time complexity properties of
GR3 in small-scale multiprocessor systems, which are in-
creasingly common today, even in the form of multi-core
processors. We first describe the basicGR3MP schedul-
ing algorithm, then discuss dynamic considerations. Table
2 lists terminology we use. To deal with the problem of in-
feasible client weights, we then show howGR3MP uses its
grouping strategy in a novel weight readjustment algorithm.

3.1 BasicGR3MP Algorithm

GR3MP uses the sameGR3 data structure, namely
an ordered list of groups, each containing clients whose
weights are within a factor of two from each other. When a

5

Appears inProceedings of the 2005 USENIX Annual Technical Conference, Anaheim, CA, April 2005.

P Number of processors.
℘k Processork.
C(℘) Client running on processor℘.
FC Frontlog for clientC.

Table 2:GR3MP terminology

processor needs to be scheduled,GR3MP selects the client
that would run next underGR3, essentially scheduling mul-
tiple processors from its central run queue asGR3 sched-
ules a single processor. However, there is one obstacle to
simply applying a uniprocessor algorithm on a multipro-
cessor system. Each client can only run on one processor
at any given time. As a result,GR3MP cannot select a
client to run that is already running on another processor
even if GR3 would schedule that client in the uniproces-
sor case. For example, ifGR3 would schedule the same
client consecutively,GR3MP cannot schedule that client
consecutively on another processor if it is still running.

To handle this situation while maintaining fairness,
GR3MP introduces the notion of afrontlog . The front-
log FC for some clientC running on a processor℘k (C =
C(℘k)) is defined as the number of time quanta forC accu-
mulated asC gets selected byGR3 and cannot run because
it is already running on℘k. The frontlogFC is then queued
up on℘k.

Given a client that would be scheduled byGR3 but
is already running on another processor,GR3MP uses the
frontlog to assign the client a time quantum now but de-
fer the client’s use of it until later. Whenever a proces-
sor finishes running a client for a time quantum,GR3MP
checks whether the client has a non-zero frontlog, and, if
so, continues running the client for another time quantum
and decrements its frontlog by one, without consulting the
central queue. The frontlog mechanism not only ensures
that a client receives its proportional share allocation, it also
takes advantage of any cache affinity by continuing to run
the client on the same processor.

When a processor finishes running a client for a time
quantum and its frontlog is zero, we call the processoridle.
GR3MP schedules a client to run on the idle processor
by performing aGR3 scheduling decision on the central
queue. If the selected client is already running on some
other processor, we increase its frontlog and repeat theGR3

scheduling, each time incrementing the frontlog of the se-
lected client, until we find a client that is not currently run-
ning. We assign this client to the idle processor for one time
quantum. This description assumes that there are leastP+1
clients in the system. Otherwise, scheduling is easy: an idle
processor will either run the client it just ran, or idles un-
til more clients arrive. In effect, each client will simply be
assigned its own processor. Whenever a processor needs to
perform a scheduling decision, it thus executes the follow-
ing routine:

1C 1C 1C 1C 1C 1C

FC1
=0 FC1

=0

t

2C 2C 3C 2C 2C 3C t

1C 2C 1C 1C C32C1C 2C 1C 1C C32C

FC1
=1 FC1

=1
p

1

p
2

Figure 3: GR3 multiprocessor scheduling. The two pro-
cessors schedule either from the central queue, or use the
frontlog mechanism when the task is already running.

MP-SCHEDULE(℘k)

1 C ← C(℘k) � Client just run
2 if C = NIL

3 then if N < P
4 then return NIL � Idle
5 else ifFC > 0
6 then FC ← FC − 1
7 return C
8 C ← INTERGROUP-SCHEDULE()
9 while ∃℘ s.t.C = C(℘)

10 do FC ← FC + 1
11 C ← INTERGROUP-SCHEDULE()
12 return C

To illustrateGR3MP scheduling, Figure 3 shows an
example on a dual-processor system with three clientsC1,
C2, andC3 of weights 3, 2, and 1, respectively.C1 and
C2 will then be part of the order 1 group (assumeC2 is
beforeC1 in the round-robin queue of this group), whereas
C3 is part of the order 0 group. TheGR3 schedule isC2,
C1, C2, C1, C1, C3. ℘1 will then selectC2 to run, and℘2

selectsC1. When℘1 finishes, according toGR3, it will
selectC2 once more, whereas℘2 selectsC1 again. When
℘1 again selects the nextGR3 client, which isC1, it finds
that it is already running on℘2 and thus we setFC1

= 1
and select the next client, which isC3, to run on℘1. When
℘2 finishes runningC1 for its second time quantum, it finds
FC1

= 1, setsFC1
= 0 and continues runningC1 without

any scheduling decision on theGR3 queue.

3.2 GR3MP Dynamic Considerations

GR3MP basically does the same thing as theGR3

algorithm under dynamic considerations. However, the
frontlogs used inGR3MP need to be accounted for ap-
propriately. If some processors have long frontlogs for their
currently running clients, newly arriving clients may not be
run by those processors until their frontlogs are processed,
resulting in bad responsiveness for the new clients. Al-
though in between any two client arrivals or departures,
some processors must have no frontlog, the set of such

6

Appears inProceedings of the 2005 USENIX Annual Technical Conference, Anaheim, CA, April 2005.

processors can be as small as a single processor. In this
case, newly arrived clients will end up competing with other
clients already in the run queue only for those few proces-
sors, until the frontlog on the other processors is exhausted.

GR3MP provides fair and responsive allocations by
creating frontlogs for newly arriving clients. Each new
client is assigned a frontlog equal to a fraction of the to-
tal current frontlog in the system based on its proportional
share. Each processor now maintains a queue of frontlog
clients and a new client with a frontlog is immediately as-
signed to one of the processor frontlog queues. Rather than
running its currently running client until it completes its
frontlog, each processor now round robins among clients
in its frontlog queue. Given that frontlogs are small in prac-
tice, round-robin scheduling is used for frontlog clients for
its simplicity and fairness.GR3MP balances the frontlog
load on the processors by placing new frontlog clients on
the processor with the smallest frontlog summed across all
its frontlog clients.

More precisely, whenever a clientC arrives, and
it belongs in groupG(C), GR3MP performs the same
group operations as in the single processorGR3 algorithm.
GR3MP finds the processor℘k with the smallest front-
log, then creates a frontlog for clientC on ℘k of length
FC = FT

φC

ΦT
, whereFT is the total frontlog on all the

processors. LetC′ = C(℘k). Then, assuming no further
clients arrive,℘k will round-robin betweenC andC′ and
runC for FC andC′ for FC′ time quanta.

When a client becomes not runnable,GR3MP uses
the same lazy removal mechanism used inGR3. If it is
removed from the run queue and has a frontlog,GR3MP
simply discards it since each client is assigned a frontlog
based on the current state of the system when it becomes
runnable again.

3.3 GR3MP Weight Readjustment

Since no client can run on more than one processor
at a time, no client can consume more than a1/P fraction
of the processing in a multiprocessor system. A clientC
with weight φC greater thanΦT /P is consideredinfeasi-
ble since it cannot receive its proportional share allocation
φC/ΦT without using more than one processor simultane-
ously. GR3MP should then give the client its maximum
possible service, and simply assign such a client its own
processor to run on. However, since the scheduler uses
client weights to determine which client to run, an infea-
sible client’s weight must be adjusted so that it is feasi-
ble to ensure that the scheduling algorithm runs correctly
to preserve fairness (assuming there are at leastP clients).
GR3MP potentially needs to perform weight readjustment
whenever a client is inserted or removed from the run queue
to make sure that all weights are feasible.

To understand the problem of weight readjustment,
consider the sequence of all clients, ordered by weight:

S1,N = C1, C2, . . . , CN with φ1 ≥ φ2 ≥ . . . ≥ φN .
We call the subsequenceSk,N = Ck, Ck+1, . . . , .CN Q-
feasible, if φk ≤

1
Q

∑N
j=k φj .

Lemma 1. The client mix in the system isfeasibleif and
only if S1,N is P -feasible.

Proof. If φ1 > ΦT

P , C1 is infeasible, so the mix is infea-
sible. Conversely, ifφ1 ≤

ΦT

P , then for any clientCl,
φl ≤ φ1 ≤

ΦT

P , implying all clients are feasible. The mix

is then feasible⇐⇒ φ1 ≤
ΦT

P = 1
P

∑N
j=1 φj , or, equiva-

lently,S1,N is P -feasible.

Lemma 2. Sk,N is Q-feasible⇒ Sk+1,N is (Q − 1)-
feasible.

Proof. φk ≤ 1
Q

∑N
j=k φj ⇐⇒ Qφk ≤ φk +

∑N
j=k+1 φj ⇐⇒ φk ≤

1
Q−1

∑N
j=k+1 φj . Sinceφk+1 ≤

φk, the lemma follows.

The feasibility problem is then to identify the least
k (denoted thefeasibility threshold, f) such thatSk,N is
(P − k + 1)-feasible. Iff = 1, then the client mix is feasi-
ble. Otherwise, theinfeasible setS1,f−1 = C1, . . . , Cf−1

contains the infeasible clients, whose weight needs to be
scaled down to1/P of the resulting total weight. The car-
dinality f − 1 of the infeasible set is less thanP . However,
the sorted sequenceS1,N is expensive to maintain, such that
traversing it and identifying the feasibility threshold isnot
an efficient solution.

GR3MP leverages its grouping strategy to perform
fast weight readjustment.GR3MP starts with the unmod-
ified client weights, finds the setI of infeasible clients, and
adjust their weights to be feasible. To constructI, the al-
gorithm traverses the list of groups in decreasing order of
their group orderσG, until it finds a group not all of whose
clients are infeasible. We denote by|I| the cardinality ofI
and byΦI the sum of weights of the clients inI,

∑
C∈I φC .

TheGR3MP weight readjustment algorithm is as follows:

WEIGHT-READJUSTMENT()

1 RESTORE-ORIGINAL -WEIGHTS

2 I ← ∅
3 G← greatest order group
4 while |G| < P − |I| and 2σG > ΦT −ΦI−ΦG

P−|I|−|G|

5 do I ← I ∪G
6 G← next(G) � by group order
7 if |G| < 2(P − |I|)
8 then I ← I ∪ INFEASIBLE(G, P − |I|, ΦT − ΦI)

9 Φf
T ← ΦT − ΦI

10 ΦT ←
P

P−|I|Φ
f
T

11 for eachC ∈ I

12 do φC ←
ΦT

P

7

Appears inProceedings of the 2005 USENIX Annual Technical Conference, Anaheim, CA, April 2005.

The correctness of the algorithm is based on Lemma
2. Let some groupG span the subsequenceSi,j of the se-
quence of ordered clientsS1,N . Then2σG+1 − 1 ≥ φi ≥
. . . ≥ φj ≥ 2σG and it is easy to show:

• 2σG > ΦT −ΦI−ΦG

P−|I|−|G| ⇒ j < f (all clients inS1,j are
infeasible).

• 2σG ≤ ΦT −ΦI−ΦG

P−|I|−|G| ⇒ j+1 ≥ f (all clients inSj+1,N

are feasible).

Once we reach line 7, we knowSj+1,N is (P − j)-feasible,
andi ≤ f ≤ j + 1. If |G| ≥ 2(P − |I|), GR3MP can
stop searching for infeasible clients since all clientsC ∈ G
are feasible, andf = i (equivalently,Si,N is (P − |I|)-
feasible): φC < 2σG+1 ≤ 2 1

|G|ΦG ≤ 1
P−|I|ΦG ≤

1
P−|I|(ΦT − ΦI). Otherwise, if|G| < 2(P − |I|), then

i < f ≤ j + 1 andGR3MP needs to search throughG
to determine which clients are infeasible (equivalently, find
f). Since the number of clients inG is small, we can sort
all clients inG by weight. Then, starting from the largest
weight client inG, find the first feasible client. A simple
algorithm is then the following:

INFEASIBLE(G, Q, Φ)

1 I ← ∅
2 for eachC ∈ G in sorted order
3 do if φC > 1

Q−|I|(Φ− ΦI)

4 then I ← I ∪ {C}
5 else returnI
6 return I

GR3MP can alternatively use a more complicated
but lower time complexity divide-and-conquer algorithm to
find the infeasible clients inG. In this case,GR3MP par-
titionsG around its median̄C into GS , the set ofG clients
that have weight less thanφC̄ andGB, the set ofG clients
that have weight larger thanφC̄ . By Lemma 2, ifC̄ is fea-
sible,GS ∪ {C̄} is feasible, and we recurse onGB. Other-
wise, all clients inGB ∪{C̄} are infeasible, and we recurse
on GS to find all infeasible clients. The algorithm finishes
when the set we need to recurse on is empty:

INFEASIBLE(G, Q, Φ)

1 if G = ∅
2 then return ∅
3 C̄ ← MEDIAN(G)
4 (GS , GB)← PARTITION(G, φC̄)

5 if φC̄ >
Φ−ΦGB

Q−|GB |

6 then return GB ∪ {C̄}∪
INFEASIBLE(GS , Q− |GB| − 1, Φ− ΦGB

− φC̄)
7 else return INFEASIBLE(GB , Q, Φ)

Once all infeasible clients have been identified,
WEIGHT-READJUSTMENT() determines the sum of the

weights of all feasible clients,Φf
T = ΦT − ΦI . We can

now compute the new total weight in the system asΦT =
P

P−|I|Φ
f
T , namely the solution to the equationΦf

T + |I| xP =

x. Once we have the adjustedΦT , we change all the weights
for the infeasible clients inI to ΦT

P . Lemma 6 in Section 4.2
shows the readjustment algorithm runs in timeO(P) and is
thus asymptotically optimal, since there can beΘ(P) infea-
sible clients.

4 GR3 Fairness and Complexity
We analyze the fairness and complexity ofGR3 and
GR3MP . To analyze fairness, we use a more formal notion
of proportional fairness defined asservice error, a measure
widely used [1, 7, 9, 17, 18, 19, 25, 27] in the analysis of
scheduling algorithms. To simplify the analysis, we will
assume that clients are always runnable and derive fairness
bounds for such a case. Subsequently, we address the im-
pact of arrivals and departures.

We use a strict measure of service error (equivalent
in this context to theNormalized Worst-case Fair Index[1])
relative to Generalized Processor Sharing (GPS) [16], an
idealized model that achievesperfect fairness: wC =
WT

φC

ΦT
, an ideal state in which each clientC always re-

ceives service exactly proportional to its weight. Although
all real-world schedulers must time-multiplex resources in
time units of finite size and thus cannot maintain perfect
fairness, some algorithms stay closer to perfect fairness than
others and therefore have less service error. We quantify
how close an algorithm gets to perfect fairness using the
client service time error, which is the difference between
the service received by clientC and its share of the total
work done by the processor:eC = wC −WT

φC

ΦT
. A pos-

itive service time error indicates that a client has received
more than its ideal share over a time interval; a negative
error indicates that it has received less. To be precise, the
erroreC measures how much time a clientC has received
beyond its ideal allocation. A proportional share scheduler
should minimize the absolute value of the allocation error
of all clients with minimal scheduling overhead.

We provide bounds on the service error ofGR3 and
GR3MP . To do this, we define two other measures of ser-
vice error. Thegroup service time erroris a similar mea-
sure for groups that quantifies the fairness of allocating the
processor among groups:EG = WG−WT

ΦG

ΦT
. Thegroup-

relative service time errorrepresents the service time error
of client C if there were only a single groupG = G(C)
in the scheduler and is a measure of the service error of a
client with respect to the work done on behalf of its group:
eC,G = wC −WG

φC

ΦG
. We first show bounds on the group

service error of the intergroup scheduling algorithm. We
then show bounds on the group-relative service error of the
intragroup scheduling algorithm. We combine these results
to obtain the overall client service error bounds. We also
discuss the scheduling overhead ofGR3 andGR3MP in

8

Appears inProceedings of the 2005 USENIX Annual Technical Conference, Anaheim, CA, April 2005.

terms of their time complexity. We show that both algo-
rithms can make scheduling decisions inO(1) time with
O(1) service error given a constant number of groups. Due
to space constraints, most of the proofs are omitted. Further
proof details are available in [5].

4.1 Analysis ofGR3

Intergroup Fairness For the case when the weight ratios
of consecutive groups in the group list are integers, we get
the following:

Lemma 3. If Φj

Φj+1
∈ N, 1 ≤ j < g, then−1 < EGk

≤

(g − k) Φk

ΦT
for any groupGk.

Proof sketch:If the group currently scheduled isGk,
then the work to weight ratio of all groupsGj , j < k, is
the same. Forj > k, Wj+1

Φj+1
≤ Wj

Φj
≤ Wj+1+1

Φj+1
− 1

Φj
as a

consequence of the well-ordering condition (2). After some
rearrangements, we can sum over allj and boundWk, and
thusEGk

above and below. The additive1Φj
will cause the

g − 1 upper bound.
In the general case, we get similar, but slightly weaker

bounds.

Lemma 4. For any groupGk, − (g−k)(g−k−1)
2

Φk

ΦT
− 1 <

EGk
< g − 1.

The proof for this case (omitted) follows reasoning similar
to that of the previous lemma, but with several additional
complications.

It is clear that the lower bound is minimized when
settingk = 1. Thus, we have

Corollary 1. − (g−1)(g−2)
2

ΦG

ΦT
− 1 < EG < g − 1 for any

groupG.

Intragroup Fairness Within a group, all weights are
within a factor of two and the group-relative error is bound
by a small constant. The only slightly subtle point is to deal
with fractional rounds.

Lemma 5. −3 < eC,G < 4 for any clientC ∈ G.

Overall Fairness of GR3 Based on the identityeC =
eC,G + φC

ΦG
EG which holds for any groupG and any client

C ∈ G, we can combine the inter- and intragroup analyses
to bound the overall fairness ofGR3.

Theorem 1. − (g−1)(g−2)
2

φC

ΦT
− 4 < eC < g + 3 for any

clientC.

The negative error ofGR3 is thus bounded byO(g2) and
the positive error byO(g). Recall,g, the number of groups,
does not depend on the number of clients in the system.

Dynamic Fairness ofGR3 We can consider a client ar-
rival or removal as an operation where a group is first re-
moved from the group list and added in a different place
with a different weight. We argue that fairness is pre-
served by these operations: when groupGk is removed,
then Gk−1, Gk, andGk+1 were well-ordered as defined
in (2), so after the removal,Gk−1 andGk+1, now neigh-
bors, will be well-ordered by transitivity. When a group,
call it Gi+(1/2), is inserted betweenGi andGi+1, it can be
proven that the work readjustment formula in Section 2.3
ensuresGi+(1/2) andGi+1 are well-ordered. In the case of
Gi andGi+(1/2), we can show that we can achieve well-
ordering by runningGi+(1/2) at most one extra time. Thus,
modulo this readjustment, the intragroup algorithm’s fair-
ness bounds are preserved. An important property of our
algorithm that follows is that the pairwise ratios of work
of clients not part of the readjusted group will be unaf-
fected. Since the intragroup algorithm has constant fairness
bounds, the disruption for the work received by clients in-
side the adjusted group is onlyO(1).

Time Complexity GR3 manages to bound its service er-
ror by O(g2) while maintaining a strictO(1) scheduling
overhead. The intergroup scheduler either selects the next
group in the list, or reverts to the first one, which takes con-
stant time. The intragroup scheduler is even simpler, as it
just picks the next client to run from the unordered round
robin list of the group. Adding and removing a client is
worst-caseO(g) when a group needs to be relocated in the
ordered list of groups. This could of course be done in
O(log g) time (using binary search, for example), but the
small value ofg in practice does not justify a more compli-
cated algorithm.

The space complexityof GR3 is O(g) + O(N) =
O(N). The only additional data structure beyond the un-
ordered lists of clients is an ordered list of lengthg to orga-
nize the groups.

4.2 Analysis ofGR3MP

Overall Fairness of GR3MP Given feasible client
weights after weight readjustment, the service error for
GR3MP is bounded below by theGR3 error, and above
by a bound which improves with more processors.

Theorem 2. − (g−1)(g−2)
2

φC

ΦT
− 4 < eC < 2g + 10 +

(g−1)(g−2)
2P for any clientC.

Time Complexity of GR3MP The frontlogs create an
additional complication when analyzing the time complex-
ity of GR3MP . When an idle processor looks for its next
client, it runs the simpleO(1) GR3 algorithm to find a
client C. If C is not running on any other processor, we
are done, but otherwise we place it on the frontlog and then
we must rerun theGR3 algorithm until we find a client

9

Appears inProceedings of the 2005 USENIX Annual Technical Conference, Anaheim, CA, April 2005.

that is not running on any other processor. Since for each
such client, we increase its allocation on the processor it
runs, the amortized time complexity remainsO(1). The up-
per bound on the time that any single scheduling decision
takes is given by the maximum length of any scheduling
sequence ofGR3 consisting of only some fixed subset of
P − 1 clients.

Theorem 3. The time complexity per scheduling decision
in GR3MP is bounded above by(g−k)(g−k+1)

2 + (k +
1)(g − k + 1)P + 1 where1 ≤ k ≤ g.

Thus, the length of any schedule consisting of at most
P − 1 clients isO(g2P). Even when a processor has front-
logs for several clients queued up on it, it will schedule in
O(1) time, since it performs round-robin among the front-
logged clients. Client arrivals and departures takeO(g)
time because of the need to readjust group weights in the
saved list of groups. Moreover, if we also need to use
the weight readjustment algorithm, we incur an additional
O(P) overhead on client arrivals and departures.

Lemma 6. The complexity of the weight readjustment al-
gorithm isO(P).

Proof. Restoring the original weights will worst case touch
a number of groups equal to the number of previously in-
feasible clients, which isO(P). Identifying the infeasible
clients involves iterating over at mostP groups in decreas-
ing sequence based on group order, as described in Sec-
tion 3.3. For the last group considered, we only attempt
to partition it into feasible and infeasible clients of its size
is less than2P . Since partitioning of a set can be done in
linear time, and we recurse on a subset half the size, this
operation isO(P) as well.

For smallP , the O(P log(P)) sorting approach to
determine infeasible clients in the last group considered is
simpler and in practice performs better than theO(P) re-
cursive partitioning. Finally, altering the active group struc-
ture to reflect the new weights is aO(P + g) operation, as
two groups may need to be re-inserted in the ordered list of
groups.

5 Measurements and Results
We have implementedGR3 uniprocessor and multiproces-
sor schedulers in the Linux operating system and measured
their performance. We present some experimental data
quantitatively comparingGR3 performance against other
popular scheduling approaches from both industrial prac-
tice and research. We have conducted both extensive sim-
ulation studies and detailed measurements of real kernel
scheduler performance on real applications.

Section 5.1 presents simulation results comparing
the proportional sharing accuracy ofGR3 and GR3MP
against WRR, WFQ [18], SFQ [13], VTRR [17], and

SRR [9]. The simulator enabled us to isolate the impact
of the scheduling algorithms themselves and examine the
scheduling behavior of these different algorithms across
hundreds of thousands of different combinations of clients
with different weight values.

Section 5.2 presents detailed measurements of real
kernel scheduler performance by comparing our prototype
GR3 Linux implementation against the standard Linux
scheduler, a WFQ scheduler, and a VTRR scheduler. The
experiments we have done quantify the scheduling over-
head and proportional share allocation accuracy of these
schedulers in a real operating system environment under a
number of different workloads.

All our kernel scheduler measurements were per-
formed on an IBM Netfinity 4500 system with one or two
933 MHz Intel Pentium III CPUs, 512 MB RAM, and 9
GB hard drive. The system was installed with the Debian
GNU/Linux distribution version 3.0 and all schedulers were
implemented using Linux kernel version 2.4.19. The mea-
surements were done by using a minimally intrusive trac-
ing facility that writes timestamped event identifiers into
a memory log and takes advantage of the high-resolution
clock cycle counter available with the Intel CPU, providing
measurement resolution at the granularity of a few nanosec-
onds. Getting a timestamp simply involved reading the
hardware cycle counter register. We measured the times-
tamp overhead to be roughly 35 ns per event.

The kernel scheduler measurements were performed
on a fully functional system. All experiments were per-
formed with all system functions running and the system
connected to the network. At the same time, an effort was
made to eliminate variations in the test environment to make
the experiments repeatable.

5.1 Simulation Studies

We built a scheduling simulator that measures the
service time error, described in Section 4, of a scheduler
on a set of clients. The simulator takes four inputs, the
scheduling algorithm, the number of clientsN , the total
sum of weightsΦT , and the number of client-weight combi-
nations. The simulator randomly assigns weights to clients
and scales the weights to ensure that they add up toΦT .
It then schedules the clients using the specified algorithm
as a real scheduler would, assuming no client blocks, and
tracks the resulting service time error. The simulator runs
the scheduler until the resulting schedule repeats, then com-
putes the maximum (most positive) and minimum (most
negative) service time error across the nonrepeating portion
of the schedule for the given set of clients and weight as-
signments. This process is repeated for the specified num-
ber of client-weight combinations. We then compute the
maximum service time error and minimum service time er-
ror for the specified number of client-weight combinations
to obtain a “worst-case” error range.

10

Appears inProceedings of the 2005 USENIX Annual Technical Conference, Anaheim, CA, April 2005.

 2000 4000 6000 8000
Number of clients

 65000
 130000

 195000
 260000

Sum of weights

-10000
 0

 10000
 20000

Service Error

Figure 4: WRR error

 2000 4000 6000 8000
Number of clients

 65000
 130000

 195000
 260000

Sum of weights

 0
 200
 400
 600
 800

Service Error

Figure 5: WFQ error

 2000 4000 6000 8000
Number of clients

 65000
 130000

 195000
 260000

Sum of weights

-800
-600
-400
-200

 0

Service Error

Figure 6: SFQ error

 2000 4000 6000 8000
Number of clients

 65000
 130000

 195000
 260000

Sum of weights

-3000
 0

 3000
 6000
 9000

Service Error

Figure 7: VTRR error

 2000 4000 6000 8000
Number of clients

 65000
 130000

 195000
 260000

Sum of weights

-400
-200

 0
 200
 400

Service Error

Figure 8: SRR error

 2000 4000 6000 8000
Number of clients

 65000
 130000

 195000
 260000

Sum of weights

-2

 0

 2

Service Error

Figure 9: GR3 error

 2000 4000 6000 8000
Number of clients

 65000
 130000

 195000
 260000

Sum of weights

-2

 0

 2

Service Error

Figure 10:GR3MP error

 2000 4000 6000 8000
Number of clients

 65000
 130000

 195000
 260000

Sum of weights

 0
 2
 4
 6
 8

 10

Scheduling Decisions per Task Selection

Figure 11: GR3MP over-
head

To measure proportional fairness accuracy, we ran
simulations for each scheduling algorithm on 45 different
combinations ofN and ΦT (32 up to 8192 clients and
16384 up to 262144 total weight, respectively). Since the
proportional sharing accuracy of a scheduler is often most
clearly illustrated with skewed weight distributions, one
of the clients was given a weight equal to 10 percent of
ΦT . All of the other clients were then randomly assigned
weights to sum to the remaining 90 percent ofΦT . For each
pair (N, ΦT), we ran 2500 client-weight combinations and
determined the resulting worst-case error range.

The worst-case service time error ranges for WRR,
WFQ, SFQ, VTRR, SRR, andGR3 with these skewed
weight distributions are in Figures 4 to 9. Due to space
constraints, WF2Q error is not shown since the results sim-
ply verify its known mathematical error bounds of−1 and
1 tu. Each figure consists of a graph of the error range for
the respective scheduling algorithm. Each graph shows two
surfaces representing the maximum and minimum service
time error as a function ofN andΦT for the same range
of values ofN and ΦT . Figure 4 shows WRR’s service
time error is between−12067 tu and23593 tu. Figure 5
shows WFQ’s service time error is between−1 tu and819
tu, which is much less than WRR. Figure 6 shows SFQ’s
service time error is between−819 tu and1 tu, which is
almost a mirror image of WFQ. Figure 7 shows VTRR’s
service error is between−2129 tu and10079 tu. Figure 8
shows SRR’s service error is between−369 tu and369 tu.

In comparison, Figure 9 shows the service time er-
ror for GR3 only ranges from−2.5 to 3.0 tu. GR3 has
a smaller error range than all of the other schedulers mea-
sured except WF2Q. GR3 has both a smaller negative and
smaller positive service time error than WRR, VTRR, and
SRR. WhileGR3 has a much smaller positive service er-
ror than WFQ, WFQ does have a smaller negative service

time error since it is bounded below at−1. Similarly,GR3

has a much smaller negative service error than SFQ, though
SFQ’s positive error is less since it is bounded above at1.
Considering the total service error range of each scheduler,
GR3 provides well over two orders of magnitude better pro-
portional sharing accuracy than WRR, WFQ, SFQ, VTRR,
and SRR. Unlike the other schedulers, these results show
thatGR3 combines the benefits of low service time errors
with its ability to schedule inO(1) time.

Note that as the weight skew becomes more accentu-
ated, the service error can grow dramatically. Thus, increas-
ing the skew from 10 to 50 percent results in more than
a fivefold increase in the error magnitude for SRR, WFQ,
and SFQ, and also significantly worse errors for WRR and
VTRR. In contrast, the error ofGR3 is still bounded by
small constants:−2.3 and4.6.

We also measured the service error ofGR3MP using
this simulator configured for an 8 processor system, where
the weight distribution was the same as for the uniprocessor
simulations above. Note that the client given 0.1 of the total
weight was feasible, since0.1 < 1

8 = 0.125. Figure 10
showsGR3MP ’s service error is between−2.5 tu and2.8
tu, slightly better than for the uniprocessor case, a benefit
of being able to run multiple clients in parallel. Figure 11
shows the maximum number of scheduling decisions that
an idle processor needs to perform until it finds a client that
is not running. This did not exceed seven, indicating that
the number of decisions needed in practice is well below
the worst-case bounds shown in Theorem 3.

5.2 Linux Kernel Measurements

To evaluate the scheduling overhead ofGR3, we
compare it against the standard Linux 2.4 scheduler, a WFQ
scheduler, and a VTRR scheduler. Since WF2Q has the-

11

Appears inProceedings of the 2005 USENIX Annual Technical Conference, Anaheim, CA, April 2005.

 0.1

 1

 10

 100

 0 50 100 150 200 250 300 350 400

A
ve

ra
ge

 s
ch

ed
ul

in
g

co
st

 (
us

)

Number of clients

GR3
VTRR
WFQ [O(log N)]
WFQ [O(N)]
Linux
GR3 MP
Linux MP

Figure 12: Average scheduling overhead

oretically the same time complexity as WFQ (but with
larger constants, because of the complexity of its steps), we
present WFQ as a lower bound for the overhead of WF2Q.
We present results from several experiments that quantify
how scheduling overhead varies as the number of clients
increases. For the first experiment, we measure scheduling
overhead for running a set of clients, each of which exe-
cuted a simple micro-benchmark which performed a few
operations in a while loop. A control program was used to
fork a specified number of clients. Once all clients were
runnable, we measured the execution time of each schedul-
ing operation that occurred during a fixed time duration of
30 seconds. The measurements required two timestamps
for each scheduling decision, so measurement error of 70 ns
are possible due to measurement overhead. We performed
these experiments on the standard Linux scheduler, WFQ,
VTRR, andGR3 for 1 to 400 clients.

Figure 12 shows the average execution time required
by each scheduler to select a client to execute. Results for
GR3, VTRR, WFQ, and Linux were obtained on uniproces-
sor system, and results forGR3MP and LinuxMP were ob-
tained running on a dual-processor system. Dual-processor
results for WFQ and VTRR are not shown since MP-ready
implementations of them were not available.

For this experiment, the particular implementation
details of the WFQ scheduler affect the overhead, so
we include results from two different implementations of
WFQ. In the first, labeled “WFQ [O(N)]”, the run queue
is implemented as a simple linked list which must be
searched on every scheduling decision. The second, labeled
“WFQ [O(log N)]”, uses a heap-based priority queue with
O(log N) insertion time. To maintain the heap-based pri-
ority queue, we used a fixed-length array. If the number
of clients ever exceeds the length of the array, a costly ar-
ray reallocation must be performed. Our initial array size
was large enough to contain more than 400 clients, so this
additional cost is not reflected in our measurements.

As shown in Figure 12, the increase in scheduling
overhead as the number of clients increases varies a great
deal between different schedulers.GR3 has the smallest
scheduling overhead. It requires roughly 300 ns to select a
client to execute and the scheduling overhead is essentially
constant for all numbers of clients. While VTRR schedul-
ing overhead is also constant,GR3 has less overhead be-
cause its computations are simpler to perform than the vir-
tual time calculations required by VTRR. In contrast, the
overhead for Linux and forO(N) WFQ scheduling grows
linearly with the number of clients. Both of these sched-
ulers impose more than 200 times more overhead thanGR3

when scheduling a mix of 400 clients.O(log N) WFQ has
much smaller overhead than Linux orO(N) WFQ, but it
still imposes significantly more overhead thanGR3, with 8
times more overhead thanGR3 when scheduling a mix of
400 clients. Figure 12 also shows thatGR3MP provides
the sameO(1) scheduling overhead on a multiprocessor,
although the absolute time to schedule is somewhat higher
due to additional costs associated with scheduling in mul-
tiprocessor systems. The results show thatGR3MP pro-
vides substantially lower overhead than the standard Linux
scheduler, which suffers from complexity that grows lin-
early with the number of clients. Because of the impor-
tance of constant scheduling overhead in server systems,
Linux has switched to Ingo Molnar’sO(1) scheduler in the
Linux 2.6 kernel. As a comparison, we also repeated this
microbenchmark experiment with that scheduler and found
thatGR3 still runs over 30 percent faster.

As another experiment, we measured the scheduling
overhead of the various schedulers forhackbench [21],
a Linux benchmark used for measuring scheduler perfor-
mance with large numbers of processes entering and leav-
ing the run queue at all times. It creates groups of readers
and writers, each group having 20 reader tasks and 20 writer
tasks, and each writer writes 100 small messages to each of
the other 20 readers. This is a total of 2000 messages sent
per writer, per group, or 40000 messages per group. We
ran a modified version of hackbench to give each reader
and each writer a random weight between 1 and 40. We
performed these tests on the same set of schedulers for 1
group up to 100 groups. Using 100 groups results in up to
8000 processes running. Because hackbench frequently in-
serts and removes clients from the run queue, the cost of
client insertion and removal is a more significant factor for
this benchmark. The results show that the simple dynamic
group adjustments described in Section 2.3 have low over-
head, sinceO(g) can be considered constant in practice.

Figure 13 shows the average scheduling overhead for
each scheduler. The average overhead is the sum of the
times spent on all scheduling events, selecting clients to run
and inserting and removing clients from the run queue, di-
vided by the number of times the scheduler selected a client
to run. The overhead in Figure 13 is higher than the av-

12

Appears inProceedings of the 2005 USENIX Annual Technical Conference, Anaheim, CA, April 2005.

 0.1

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
(u

s)

Number of Groups

GR3
VTRR
WFQ [O(log N)]
WFQ [O(N)]
LINUX
GR3 MP
Linux MP

Figure 13: Hackbench weighted scheduling overhead

erage cost per schedule in Figure 12 for all the schedulers
measured since Figure 13 includes a significant component
of time due to client insertion and removal from the run
queue.GR3 still has by far the smallest scheduling over-
head among all the schedulers measured. The overhead
for GR3 remains constant while the overhead forO(log N)
WFQ,O(N) WFQ, VTRR, and Linux grows with the num-
ber of clients. Client insertion, removal, and selection torun
in GR3 are independent of the number of clients. The cost
for GR3 is 3 times higher than before, with client selection
to run, insertion, and removal each taking approximately
300 to 400 ns. For VTRR, although selecting a client to run
is also independent of the number of clients, insertion over-
head grows with the number of clients, resulting in much
higher VTRR overhead for this benchmark.

To demonstrateGR3’s efficient proportional sharing
of resources on real applications, we briefly describe three
simple experiments running web server workloads using
the same set of schedulers:GR3 and GR3MP , Linux
2.4 uniprocessor and multiprocessor schedulers, WFQ, and
VTRR. The web server workload emulates a number of
virtual web servers running on a single system. Each
virtual server runs the guitar music search engine used
at guitarnotes.com, a popular musician resource web site
with over 800,000 monthly users. The search engine is a
perl script executed from an Apache mod-perl module that
searches for guitar music by title or author and returns a
list of results. The web server workload configured each
server to pre-fork 100 processes, each running consecutive
searches simultaneously.

We ran multiple virtual servers with each one hav-
ing different weights for its processes. In the first experi-
ment, we used six virtual servers, with one server having
all its processes assigned weight 10 while all other servers
had processes assigned weight 1. In the second experiment,
we used five virtual servers and processes assigned to each
server had respective weights of 1, 2, 3, 4, and 5. In the

third experiment, we ran five virtual servers which assigned
a random weight between 1 and 10 to each process. For the
Linux scheduler, weights were assigned by selectingnice
values appropriately. Figures 14 to 19 present the results
from the first experiment with one server with weight 10
processes and all other servers with weight 1 processes. The
total load on the system for this experiment consisted of
600 processes running simultaneously. For illustration pur-
poses, only one process from each server is shown in the
figures. Conclusions drawn from the other experiments are
the same; those results are omitted due to space constraints.

GR3 andGR3MP provided the best overall propor-
tional fairness for these experiments while Linux provided
the worst overall proportional fairness. Figures 14 to 17
show the amount of processor time allocated to each client
over time for the Linux scheduler, WFQ, VTRR, andGR3.
All of the schedulers exceptGR3 and GR3MP have a
pronounced “staircase” effect for the search engine process
with weight 10, indicating that CPU resources are provided
in irregular bursts over a short time interval. For the ap-
plications which need to provide interactive responsiveness
to web users, this can result in extra delays in system re-
sponse time. It can be inferred from the smoother curves
of Figure 17 thatGR3 andGR3MP provide fair resource
allocation at a finer granularity than the other schedulers.

6 Related Work
Round robin is one of the oldest, simplest and most widely
used proportional share scheduling algorithms. Weighted
round-robin (WRR) supports non-uniform client weights by
running all clients with the same frequency but adjusting the
size of their time quanta in proportion to their respective
weights. Deficit round-robin (DRR) [22] was developed to
support non-uniform service allocations in packet schedul-
ing. These algorithms have lowO(1) complexity but poor
short-term fairness, with service errors that can be on the
order of the largest client weight in the system.GR3 uses a
novel variant of DRR for intragroup scheduling withO(1)
complexity, but also providesO(1) service error by using
its grouping mechanism to limit the effective range of client
weights considered by the intragroup scheduler.

Fair-share schedulers [12, 14, 15] provide propor-
tional sharing among users in a way compatible with a
UNIX-style time-sharing framework based on multi-level
feedback with a set of priority queues. These schedulers
typically had lowO(1) complexity, but were often ad-hoc
and could not provide any proportional fairness guaran-
tees. Empirical measurements show that these approaches
only provide reasonable proportional fairness over rela-
tively large time intervals [12].

Lottery scheduling [26] gives each client a number of
tickets proportional to its weight, then randomly selects a
ticket. Lottery scheduling takesO(log N) time and relies
on the law of large numbers for providing proportional fair-

13

Appears inProceedings of the 2005 USENIX Annual Technical Conference, Anaheim, CA, April 2005.

 0

 0.5

 1

 1.5

 2

 0 50 100 150 200 250 300

C
P

U
 A

llo
ca

tio
n

(s
)

Time (s)

Weight 10
Weight 1
Weight 1
Weight 1
Weight 1
Weight 1

Figure 14: Linux uniprocessor

 0

 0.5

 1

 1.5

 2

 0 50 100 150 200 250 300

C
P

U
 A

llo
ca

tio
n

(s
)

Time (s)

Weight 10
Weight 1
Weight 1
Weight 1
Weight 1
Weight 1

Figure 15: WFQ uniprocessor

 0

 0.5

 1

 1.5

 2

 0 50 100 150 200 250 300

C
P

U
 A

llo
ca

tio
n

(s
)

Time (s)

Weight 10
Weight 1
Weight 1
Weight 1
Weight 1
Weight 1

Figure 16: VTRR uniprocessor

 0

 0.5

 1

 1.5

 2

 0 50 100 150 200 250 300

C
P

U
 A

llo
ca

tio
n

(s
)

Time (s)

Weight 10
Weight 1
Weight 1
Weight 1
Weight 1
Weight 1

Figure 17:GR3 uniprocessor

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 50 100 150 200 250 300

C
P

U
 A

llo
ca

tio
n

(s
)

Time (s)

Weight 10
Weight 1
Weight 1
Weight 1
Weight 1
Weight 1

Figure 18: Linux multiprocessor

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 50 100 150 200 250 300

C
P

U
 A

llo
ca

tio
n

(s
)

Time (s)

Weight 10
Weight 1
Weight 1
Weight 1
Weight 1
Weight 1

Figure 19:GR3MP multiprocessor

ness. Thus, its allocation errors can be very large, typically
much worse than WRR for clients with smaller weights.

Weighted Fair Queueing (WFQ) [11, 18], was first de-
veloped for network packet scheduling, and later applied to
uniprocessor scheduling [26]. It assigns each client a virtual
time and schedules the client with the earliest virtual time.
Other fair queueing variants such as Virtual-clock [28],
SFQ [13], SPFQ [24], and Time-shift FQ [10] have also
been proposed. These approaches all haveO(log N) time
complexity, whereN is the number of clients, because the
clients must be ordered by virtual time. It has been shown
that WFQ guarantees that the service time error for any
client never falls below−1 [18]. However, WFQ can allow
a client to get far ahead of its ideal allocation and accumu-
late a large positive service time error ofO(N), especially
with skewed weight distributions.

Several fair queueing approaches have been proposed
for reducing thisO(N) service time error. A hierar-
chical scheduling approach [26] reduces service time er-
ror to O(log N). Worst-Case Weighted Fair Queueing
(WF2Q) [1] introduced eligible virtual times and can guar-
antee both a lower and upper bound on error of−1 and
+1, respectively for network packet scheduling. It has also
been applied to uniprocessor scheduling as Eligible Vir-
tual Deadline First (EEVDF) [25]. These algorithms pro-
vide stronger proportional fairness guarantees than other
approaches, but are more difficult to implement and still re-
quire at leastO(log N) time.

Motivated by the need for faster schedulers with good
fairness guarantees, one of the authors developed Virtual-
Time Round-Robin (VTRR) [17]. VTRR first introduced
the simple idea of going round-robin through clients but

skipping some of them at different frequencies without
having to reorder clients on each schedule. This is done
by combining round-robin scheduling with a virtual time
mechanism.GR3’s intergroup scheduler builds on VTRR
but uses weight ratios instead of virtual times to provide bet-
ter fairness. Smoothed Round Robin (SRR) [9] uses a dif-
ferent mechanism for skipping clients using a Weight Ma-
trix and Weight Spread Sequence (WSS) to run clients by
simulating a binary counter. VTRR and SRR provide pro-
portional sharing withO(1) time complexity for selecting a
client to run, though inserting and removing clients from the
run queue incur higher overhead:O(log N) for VTRR and
O(k) for SRR , wherek = log φmax andφmax is the max-
imum client weight allowed. However, unlikeGR3, both
algorithms can suffer from large service time errors espe-
cially for skewed weight distributions. For example, we can
show that the service error of SRR is worst-caseO(kN).

Grouping clients to reduce scheduling complexity has
been used by [20], [8] and [23]. These fair queueing ap-
proaches group clients into buckets based on client virtual
timestamps. With the exception of [23], which uses expo-
nential grouping, the fairness of these virtual time bin sort-
ing schemes depends on the granularity of the buckets and
is adversely affected by skewed client weight distributions.
On the other hand,GR3 groups based on client weights,
which are relatively static, and uses groups as schedulable
entities in a two-level scheduling hierarchy.

The grouping strategy used inGR3 was first intro-
duced by two of the authors for uniprocessor scheduling [6]
and generalized by three of the authors to network packet
scheduling [4]. A similar grouping strategy was indepen-
dently developed in Stratified Round Robin (StRR) [19] for

14

Appears inProceedings of the 2005 USENIX Annual Technical Conference, Anaheim, CA, April 2005.

network packet scheduling. StRR distributes all clients with
weights between2−k and 2−(k−1) into classFk (F here
not to be confused with our frontlog). StRR splits time into
scheduling slots and then makes sure to assign all the clients
in classFk one slot every scheduling interval, using a credit
and deficit scheme within a class. This is also similar to
GR3, with the key difference that a client can run for up
to two consecutive time units, while inGR3, a client is
allowed to run only once every time its group is selected
regardless of its deficit.

StRR has weaker fairness guarantees and higher
scheduling complexity thanGR3. StRR assigns each client
weight as a fraction of the total processing capacity of the
system. This results in weaker fairness guarantees when the
sum of these fractions is not close to the limit of1. For ex-
ample, if we haveN = 2k + 1 clients, one of weight0.5
and the rest of weight2−(k+2) (total weight =0.75), StRR
will run the clients in such a way that after2k+1 slots, the
error of the large client is−N

3 , such that this client will then
run uniterruptedly forN tu to regain its due service. Client
weights could be scaled to reduce this error, but with addi-
tional O(N) complexity. StRR requiresO(g) worst-case
time to determine the next class that should be selected,
whereg is the number of groups. Hardware support can
hide this complexity assuming a small, predefined maxi-
mum number of groups [19], but running an StRR processor
scheduler in software still requiresO(g) complexity.

GR3 also differs from StRR and other deficit round-
robin variants in its distribution of deficit. In DRR, SRR,
and StRR, the variation in the deficit of all the clients af-
fects the fairness in the system. To illustrate this, consider
N + 1 clients, all having the same weight except the first
one, whose weight isN times larger. If the deficit of all
the clients except the first one is close to1, the error of the
first client will be aboutN2 = O(N). Therefore, the deficit
mechanism as employed in round-robin schemes doesn’t al-
low for better thanO(N) error. In contrast,GR3 ensures
that a group consumes all the work assigned to it, so that
the deficit is a tool used only in distributing work within a
certain group, and not within the system. Thus, groups ef-
fectively isolate the impact of unfortunate distributionsof
deficit in the scheduler. This allows for the error bounds in
GR3 to depend only on the number of groups instead of the
much larger number of clients.

A rigorous analysis on network packet scheduling
[27] suggests thatO(N) delay bounds are unavoidable with
packet scheduling algorithms of less thanO(log N) time
complexity.GR3’s O(g2) error bound andO(1) time com-
plexity are consistent with this analysis, since delay and ser-
vice error are not equivalent concepts. Thus, if adapted to
packet scheduling,GR3 would worst-case incurO(N) de-
lay while preserving anO(g2) service error.

Previous work in proportional share scheduling has
focused on scheduling a single resource and little work has

been done in proportional share multiprocessor scheduling.
WRR and fair-share multiprocessor schedulers have been
developed, but have the fairness problems inherent in those
approaches. The only multiprocessor fair queueing algo-
rithm that has been proposed is Surplus Fair Scheduling
(SFS) [7]. SFS also adapts a uniprocessor algorithm, SFQ,
to multiple processors using a centralized run queue. No
theoretical fairness bounds are provided. If a selected client
is already running on another processor, it is removed from
the run queue. This operation may introduce unfairness if
used in low overhead, round-robin variant algorithms. In
contrast,GR3MP provides strong fairness bounds with
lower scheduling overhead.

SFS introduced the notion offeasibleclients along
with a O(P)-time weight readjustment algorithm, which
requires however that the clients be sorted by their original
weight. By using its grouping strategy,GR3MP performs
the same weight readjustment inO(P) time without the
need to order clients, thus avoiding SFS’sO(log N) over-
head per maintenance operation. The optimality of SFS’s
and our weight readjustment algorithms rests in preserva-
tion of ordering of clients by weight and of weight pro-
portions among feasible clients, and not in minimal overall
weight change, as [7] claims.

7 Conclusions and Future Work
We have designed, implemented, and evaluated Group Ra-
tio Round-Robin scheduling in the Linux operating system.
We prove thatGR3 is the first and onlyO(1) uniprocessor
and multiprocessor scheduling algorithm that guarantees a
service error bound of less thanO(N) compared to an ide-
alized processor sharing model, whereN is the number of
runnable clients. In spite of its low complexity,GR3 offers
better fairness than theO(N) service error bounds of most
fair queuing algorithms that needO(log N) time for their
operation. GR3 achieves these benefits due to its group-
ing strategy, ratio-based intergroup scheduling, and highly
efficient intragroup round robin scheme with good fairness
bounds.GR3 introduces a novel frontlog mechanism and
and weight readjustment algorithm to schedule small-scale
multiprocessor systems while preserving its good bounds
on fairness and time complexity.

Our experiences withGR3 show that it is simple to
implement and easy to integrate into existing commodity
operating systems. We have measured the performance
of GR3 using both simulations and kernel measurements
of real system performance using a prototype Linux im-
plementation. Our simulation results show thatGR3 can
provide more than two orders of magnitude better pro-
portional fairness behavior than other popular proportional
share scheduling algorithms, including WRR, WFQ, SFQ,
VTRR, and SRR. Our experimental results using ourGR3

Linux implementation further demonstrate thatGR3 pro-
vides accurate proportional fairness behavior on real ap-

15

Appears inProceedings of the 2005 USENIX Annual Technical Conference, Anaheim, CA, April 2005.

plications with much lower scheduling overhead than other
Linux schedulers, especially for larger workloads.

While small-scale multiprocessors are the most
widely available multiprocessor configurations today, the
use of large-scale multiprocessor systems is growing given
the benefits of server consolidation. Developing accurate,
low-overhead proportional share schedulers that scale effec-
tively to manage these large-scale multiprocessor systems
remains an important area of future work.

Acknowledgements
Chris Vaill developed the scheduling simulator and helped
implement the kernel instrumentation used for our experi-
ments. This work was supported in part by NSF grants EIA-
0071954 and DMI-9970063, an NSF CAREER Award, and
an IBM SUR Award.

References

[1] J. C. R. Bennett and H. Zhang.WF2Q: Worst-Case Fair
Weighted Fair Queueing. InProceedings of IEEE INFO-
COM ’96, pages 120–128, San Francisco, CA, Mar. 1996.

[2] D. Bovet and M. Cesati.Understanding the Linux Kernel.
O’Reilly, Sebastopol, CA, second edition, 2002.

[3] R. Bryant and B. Hartner. Java Technology, Threads, and
Scheduling in Linux. IBM developerWorks Library Paper.
IBM Linux Technology Center, Jan. 2000.

[4] B. Caprita, W. C. Chan, and J. Nieh. Group Round-Robin:
Improving the Fairness and Complexity of Packet Schedul-
ing. Technical Report CUCS-018-03, Columbia University,
June 2003.

[5] W. C. Chan. Group Ratio Round-Robin: An O(1) Propor-
tional Share Scheduler. Master’s thesis, Columbia Univer-
sity, June 2004.

[6] W. C. Chan and J. Nieh. Group Ratio Round-Robin:
An O(1) Proportional Share Scheduler. Technical Report
CUCS-012-03, Columbia University, Apr. 2003.

[7] A. Chandra, M. Adler, P. Goyal, and P. J. Shenoy. Surplus
Fair Scheduling: A Proportional-Share CPU Scheduling Al-
gorithm for Symmetric Multiprocessors. InProceedings of
the 4th Symposium on Operating System Design & Imple-
mentation, pages 45–58, San Diego, CA, Oct. 2000.

[8] S. Y. Cheung and C. S. Pencea.BSFQ: Bin-Sort Fair
Queueing. InProceedings of IEEE INFOCOM ’02, pages
1640–1649, New York, NY, June 2002.

[9] G. Chuanxiong. SRR: An O(1) Time Complexity Packet
Scheduler for Flows in Multi-Service Packet Networks. In
Proceedings of ACM SIGCOMM ’01, pages 211–222, San
Diego, CA, Aug. 2001.

[10] J. Cobb, M. Gouda, and A. El-Nahas. Time-Shift Schedul-
ing – Fair Scheduling of Flows in High-Speed Networks.
IEEE/ACM Transactions on Networking, pages 274–285,
June 1998.

[11] A. Demers, S. Keshav, and S. Shenker. Analysis and Sim-
ulation of a Fair Queueing Algorithm. InProceedings of
ACM SIGCOMM ’89, pages 1–12, Austin, TX, Sept. 1989.

[12] R. Essick. An Event-Based Fair Share Scheduler. InPro-
ceedings of the Winter 1990 USENIX Conference, pages
147–162, Berkeley, CA, Jan. 1990. USENIX.

[13] P. Goyal, H. Vin, and H. Cheng. Start-Time Fair Queue-
ing: A Scheduling Algorithm for Integrated Services Packet
Switching Networks.IEEE/ACM Transactions on Network-
ing, pages 690–704, Oct. 1997.

[14] G. Henry. The Fair Share Scheduler.AT&T Bell Laborato-
ries Technical Journal, 63(8):1845–1857, Oct. 1984.

[15] J. Kay and P. Lauder. A Fair Share Scheduler.Commun.
ACM, 31(1):44–55, 1988.

[16] L. Kleinrock. Computer Applications, volume II ofQueue-
ing Systems. John Wiley & Sons, New York, NY, 1976.

[17] J. Nieh, C. Vaill, and H. Zhong. Virtual-Time Round-Robin:
An O(1) Proportional Share Scheduler. InProceedings of
the 2001 USENIX Annual Technical Conference, pages 245–
259, Berkeley, CA, June 2001. USENIX.

[18] A. Parekh and R. Gallager. A Generalized Processor Shar-
ing Approach to Flow Control in Integrated Services Net-
works: The Single-Node Case.IEEE/ACM Transactions on
Networking, 1(3):344–357, June 1993.

[19] S. Ramabhadran and J. Pasquale. Stratified Round Robin:a
Low Complexity Packet Scheduler with Bandwidth Fairness
and Bounded Delay. InProceedings of ACM SIGCOMM
’03, pages 239–250, Karlsruhe, Germany, Aug. 2003.

[20] J. Rexford, A. G. Greenberg, and F. Bonomi. Hardware-
Efficient Fair Queueing Architectures for High-Speed Net-
works. InProceedings of IEEE INFOCOM ’96, pages 638–
646, Mar. 1996.

[21] R. Russell. Hackbench: A New Multiqueue Sched-
uler Benchmark.http://www.lkml.org/archive/
2001/12/11/19/index.html, Dec. 2001. Message to
Linux Kernel Mailing List.

[22] M. Shreedhar and G. Varghese. Efficient Fair Queueing
using Deficit Round Robin. InProceedings of ACM SIG-
COMM ’95, pages 231–242, Sept. 1995.

[23] D. Stephens, J. Bennett, and H. Zhang. Implementing
Scheduling Algorithms in High Speed Networks.IEEE
JSAC Special Issue on High Performance Switches/Routers,
Sept. 1999.

[24] D. Stiliadis and A. Varma. Efficient Fair Queueing Algo-
rithms for Packet-Switched Network.IEEE/ACM Transac-
tions on Networking, pages 175–185, Apr. 1998.

[25] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. Baruah, J. Gehrke,
and G. Plaxton. A Proportional Share Resource Allocation
Algorithm for Real-Time, Time-Shared Systems. InPro-
ceedings of the 17th IEEE Real-Time Systems Symposium,
pages 288 – 289, Dec. 1996.

[26] C. Waldspurger. Lottery and Stride Scheduling: Flexi-
ble Proportional-Share Resource Management. PhD thesis,
Dept. of EECS, MIT, Sept. 1995.

[27] J. Xu and R. J. Lipton. On Fundamental Tradeoffs between
Delay Bounds and Computational Complexity in Packet
Scheduling Algorithms. InProceedings of ACM SIGCOMM
’02, pages 279–292, Aug. 2002.

[28] L. Zhang. Virtualclock: a New Traffic Control Algorithm
for Packet-Switched Networks.ACM Transactions on Com-
puter Systems, 9(2):101–124, May 1991.

16

