
White-Box	Testing	of	Big	Data	Analytics	
with	Complex	User-Defined	Functions	

Muhammad	Ali	Gulzar 1 Shaghayegh Mardani 1 Madan	Musuvathi2
Miryung Kim1

1University	of	California,	Los	Angeles
2Mircrosoft	Research

1

2

Software	Development	Cycle	of	Big	Data	Analytics

Inadequate	Testing	of	Big	Data	Analytics

1 Develop	locally

2 Test	locally	with	Sample	Data

3
Execute	the	job	on	the	cloud	hoping	that	it	would
work

4
Sever	hours	later,	the	job	cashes	or	produces	
wrong	output

5 Go	to	Step		 2

Repeat

3

Motivating	Example
Find	the	total	number	of	trips	made	from	UCLA	using	a	public	transport,	a	
personal	vehicle,	or	on	foot.

Trips	Dataset	(20GB)

#,					ORIG,					DEST,			DIST,		TIME
1,			90034,			90024,					10,				1
2,			90001,			90024,					16,			1.4
….

Zip,					Location
90034,				“UCLA”
90024,				“Westwood”
…

Locations	Dataset	(100MB)

Big	Data	Application	in	Apache	Spark
val trips = sc.textFile(“trips”)

.map { s => val c = s.split(","); (c(1), c(3).toInt / c(4).toInt)}
val locations = sc.textFile(”zipcode”)

.map { s => val c= s.split(","); (c(0), c(1))}

.filter { s => s._2.equals(“UCLA") }
val result= trips.join(locations).map { s =>

if (s._2._1 > 40) ("car", 1)
else if (s._2._1 > 15) ("public", 1)
else ("onfoot", 1)}

.reduceByKey(_ + _)

val trips = sc.textFile(“trips”)
.map { s => val c = s.split(","); (c(1), c(3).toInt / c(4).toInt)}

val locations = sc.textFile(”zipcode”)
.map { s => val c= s.split(","); (c(0), c(1))}
.filter { s => s._2.equals(“UCLA") }

val result= trips.join(locations).map { s =>
if (s._2._1 > 40) ("car", 1)

else if (s._2._1 > 15) ("public", 1)
else ("onfoot", 1)}

.reduceByKey(_ + _) 4

Characteristics	of	Big	Data	Analytics		

Relational	skeleton

Custom	logic	as	user-defined	functions

String	operations	are	common

Fluid	interchange	between	types

How	do	we	test	a	big	data	application	effectively	and	efficiently?

5

Option	1:	Sample	Input	Data

• random	sampling,	

• top	n	sampling

• top	k%	sample,	etc.

Limitations:

• The	sample	may	only	exercise	a	limited	set	of
program	paths (low	code	coverage).

• The	sample	may	not	include	the	inputs	leading	to	a	
program	crash.

• A	large	sample	may	have	higher	coverage	but	
increase	local	testing	time.

6

Option	2:	Traditional	Test	Generation	for	Java

• Big	Data	Analytics	programs	compile	to	Java	bytecode

• But	this	includes	the	entire	system	(700	KLOC	for	Apache	Spark)

• Symbolic	execution	without	abstraction	is	infeasible and	would	not	scale

7

Our	Approach:	White-Box	Testing

sc.textFile("hdfs")
.map(s=> s.toInt)
.filter(w => w > 0))
.reducebyKey(_+_)

Input:	Big	Data	Analytics	Application

BigTest
PC Input

X>0 X=“1”

X≤0 X=“0”

Output:	Test	Input	Data

1. Decompose	relational	skeleton	and	UDFs

2. Logical	specifications	for	relational	operators

3. Symbolic	execution	of	UDFs

4. Generate	inputs	by	joint	path	constraints	

8

Modelling	Dataflow	Operators

Step	1	
Decomposition

Step	3:	
Symbolic	
Execution

Step	2:	
Logical	Specs	

Step	4:	Test	
Generation

Trips Zipcode

Map
Map

Join:	⨝

Map

ReduceByKey

Filter

9

Modelling	Dataflow	Operators

Trips Zipcode

Map
Map

Join:	⨝

Map

ReduceByKey

Filter
True False

Non-
Matching	
Keys

Non-
Matching	
Keys

• Handle	terminating and non-
terminating	cases	of	dataflow	
operators

• E.g.	Join can	introduce	3	cases	

• 2	cases	in	which	keys	from	
right	and	left	do	not	match

• 1	case	in	which	right	and	left	
keys	match

Step	1
Decomposition

Step	3:	
Symbolic	
Execution

Step	2:	
Logical	Specs	

Step	4:	Test	
Generation

10

Modelling	User-defined	Functions

Trips Zipcode

Map
Map

Join:	⨝

Map

ReduceByKey

Filter
True False

Non-
Matching	
Keys

Non-
Matching	
Keys

Decomposition UDF	SE Logical	
Specs	

Test	
generation

s.split(“,”).length > 2

V>40

=>

“car”

15<V≤40 V<15

=>

“public”

=>

“walk”

Step	1
Decomposition

Step	3:	
Symbolic	
Execution

Step	2:	
Logical	Specs	

Step	4:	Test	
Generation

• Handle	strings,	collections,	
and	tuples	

11

Join	Dataflow	and	UDF	(JDU)	Path

Trips Zipcode

Map:	𝑓map1

Map:	𝑓map2

Filter:	𝑓filter

Join:	⨝

Map:	𝑓map3

ReduceByKey:	𝑓Agg

~𝑓filter(K2 ,	V2)

T1

T4

FalseTrue

𝑓filter(K2,	V2)	⋀ K1 =	K2

(K1 ,	V1)
(K2 ,	V2)

(K1 ,	(V1,	V2))

(S	,1)

(S	,N)

𝑓filter(K2,	V2)	⋀
K1 ∉ Zipcode

K1 ∉ Zipcode K2 ∉ Trips

𝑓filter(K2,	V2)	⋀
K2 ∉ Trips

T2 T3

T Z

Z.split(“,”)[1]=“Palms” ⋀
Z.split(“,”).length >1 ⋀

T.split(“,”)[1] =
Z.split(“,”)[0] ⋀

T.split(“,”).length >1 ⋀ …

Step	1
Decomposition

Step	3:	
Symbolic	
Execution

Step	2:	
Logical	Specs	

Step	4:	Test	
Generation

12

Test	Input	Generation	

Z.split(“,”)[1]=“Palms” ⋀
Z.split(“,”).length >1 ⋀

T.split(“,”)[1] =
Z.split(“,”)[0] ⋀

T.split(“,”).length >1 ⋀ …

(assert (= T (str.++ (str.++ line20 ",") line21)))
(assert (= Z

(str.++ (str.++ " " ",")
(str.++ (str.++ line11 ",")
(str.++ (str.++ " " ",") (str.++ (str.++ line13 ",")
line14))))))

(assert
(and (not (= (str.to.int line14) 0))
(and (isinteger line14) (and (isinteger line13)
(and (= "Palms" line21) (and (= x11 line20)
(and (<= s21 15)
(and (<= s21 40) (and (= s21 x621) (and (= s1 x61) (=

s22 x622)))))))))))))))
(assert

(and (= x11 line11)
(and (= x12 (/ (str.to.int line13) (str.to.int line14))) (and

(= x61 x11)
(and (= x621 x12) (and (= x622 x42) (and (= x71 "walk") (= x72

1))))))))))))

Trips Location

_, "\x00", _, "0", "1" "\x00", "Palms"

Generated	Test	Data

Step	1
Decomposition

Step	3:	
Symbolic	
Execution

Step	2:	
Logical	Specs	

Step	4:	Test	
Generation

13

Evaluation

RQ1: How	much	test	coverage	improvement	can	BigTest achieve?	

RQ2: How	many	faults	can	BigTest detect?
• We	built	the	first	benchmark	of	faulty	dataflow	programs	based	on				

our	survey	of	such	programs	on	Q/A	forums	e.g. StackOverflow .

RQ3: How	much	test	data	reduction	does	BigTest provide	and	how	long	does	
BigTest take	to	generate	test	data?

14

Experimental	Setting	

• We	use	seven	subject	programs	from	earlier	works	

• All	subject	applications	have	complex	string,	complex	arithmetic,	Tuple	
type	for	key-value	pairs,	and	collections	with	custom	logic.	

Subject	Program Dataflow Operators #	of	
Operators

JDU	Paths	
K=2

#	of	
UDFs

Income	Aggregate	 map,	filter,	reduce	 3 6	 4

Movie	Ratings	 map,	filter,	reduceByKey 4 5 4

Airport	Layover	 map,	filter,	reduceByKey 3 14 4

Commute	Type	 map,	fitler,	join,	reduceByKey 6 11 5

PigMix-L2 map,	join	 5 4 6

Grade	Analysis flatmap,	filter,	reduceByKey,	map	 5 30 3

Word	Count	 flatmap,	map,	reduceByKey 3 4 3

15

Study	of	Big	Data	Analytics	Faults

• No	existing	benchmark	of	faulty	applications	

• We	study	the	characteristics	of	real-world	big	data	analytics	bugs	posted	
on	StackOverflow and	Apache	Spark	Mailing	Lists.

Community

Survey	Statistics
Keywords	Searched Apache	Spark	exceptions,	

task	errors,	failures,	wrong	
outputs

Posts	Studied Top	50

Posts	with	Coding	
Errors

23

Common	Fault	Types 7

Total	Faulty Programs 31

Fault	Types Example
Incorrect	String	Offset str.substring(1,0)

Incorrect	Column	Selection str.split(“,”)[1]

Wrong Delimiters str.split(“\t”)[1]

Incorrect	Branch	Condition If(age>10 && age<9)

Wrong	Join Type LeftOuterJoin

Key-Value	Swap (Value, Key)

Others Division by zero

16

Real	World	Fault	Injection

• Identified	7	common	code	fault	types

• Manually	inserted	these	faults	into	benchmarks

• Leads	to	a	total	of	31	faulty	big	data	applications.

val trips = sc.textFile(“trips”)
.map { s =>

val c = s.split(",");
(c(1), c(3).toInt / c(4).toInt)

}
val loc = sc.textFile(”zipcode”)
. . . .

val trips = sc.textFile(“trips”)
.map { s =>

val c = s.split(",");
- (c(1), c(2).toInt / c(4).toInt)
}
val loc = sc.textFile(”zipcode”)
. . . .

c(5).

After	injecting	fault	based	on	fault	type ”Incorrect	Column	Selection”,	the	
program	extracts	the	column	at	index	5	instead	of	4.

Original	Program	 Faulty	Program	

Sedge	[ASE	’13]	generates	examples	for	dataflow	programs	but	it	handles	a	
UDF	as	uninterpreted function	and	does	not	model	its	internals.

17

RQ1:	Code	Coverage

RQ1 RQ2 RQ3

100 100 100 100 100 100 100

17

40

14 18
25

13
25

67
60

29

55

75 77

100

0

20

40

60

80

100

Income	
Aggregate	

Movie	Ratings	 Airport	
Layover	

CommuteType	 PigMix	L2 Grade	Analysis Word	Count	

JDU	Path	Coverage	on	Subject	Programs

BigTest Sedge Entire	Dataset

JD
U
	P
at
h	
Co

ve
ra
ge
	

N
or
m
al
ize

d	

18

RQ1:	Code	Coverage

RQ1 RQ2 RQ3

JD
U
	P
at
h	
Co

ve
ra
ge
	

N
or
m
al
ize

d	

BigTest improves	JDU	path	coverage	by	78%	against	Sedge	and	34%	against	
the	entire	dataset.

100 100 100 100 100 100 100

17

40

14 18
25

13
25

67
60

29

55

75 77

100

0

20

40

60

80

100

Income	
Aggregate	

Movie	Ratings	 Airport	
Layover	

CommuteType	 PigMix	L2 Grade	Analysis Word	Count	

JDU	Path	Coverage	on	Subject	Programs

BigTest Sedge Entire	Dataset

19

RQ2:	Fault	Detection	Capability

RQ1 RQ2 RQ3

BigTest detects	2X	more	faults	than	Sedge	because	it	models	the	internal	
semantics	of	UDFs	with	the	specifications	of	dataflow	operators.

Applications Total
Seeded	Faults

Detected	by	
BigTest

Detected	
by	Sedge 1 2 3 4 5 6 7

Income	Aggregate 3 3 1 ✓ NA NA ✓ NA NA ✓

Movie	Rating 6 6 6 ✓ ✓ ✓ ✓ NA ✓ ✓

Airport	Layover 6 6 4 ✓ ✓ ✓ ✓ NA ✓ ✓

Commute	Type 6 6 4 NA ✓ ✓ ✓ ✓ ✓ ✓

PigMix-L2 4 4 2 NA ✓ ✓ NA ✓ ✓ NA

Grade	Analysis 4 4 3 NA ✓ ✓ ✓ NA NA ✓

Word	Count 2 2 0 NA ✓ NA NA NA NA ✓

Injected	Fault	Type

20

RQ3:	Test	Size	Reduction
RQ1 RQ2 RQ3

6 5 14 11 4
30

6

4.00E+09

5.21E+05

4.48E+08 3.20E+08 2.40E+08
4.00E+07 1.11E+08

1E+00

1E+02

1E+04

1E+06

1E+08

1E+10

Income	
Aggregate	

Movie	Ratings	 Airport	
Layover	

CommuteType	 PigMix	L2 Grade	Analysis Word	Count	

Test	Dataset	Size	

BigTest Entire	Dataset

#	
of
	R
ow

s

Compared	to	the	entire	dataset,	BigTest achieves	more	JDU	path	coverage	
with	105X	to	108X	smaller	test	data,	translating	in	to	194X	testing	speed	up.

21

Summary	

• Need	SE	tools	for	big	data	analytics	applications

• BigTest provides	exhaustive,	automatic,	and	fast testing	

• Contributions:

1. Demonstrated	the	need	to	interpret	UDFs

2. Model	strings,	collections,	and	tuples

3. Logical	specifications	for	dataflow	operators	handling	terminating	and	
nonterminating	cases

4. Provide	the	first	symbolic	execution	engine	for	Apache	Spark/Scala

5. Present	a	study	of	big	data	analytics	bugs	and	the	first	bug	benchmark

Publically	available	at:	
https://github.com/maligulzar/BigTest

22

RQ3:	Breakdown	of	BigTest’s Testing	Time
RQ1 RQ2 RQ3

4.7 0.6

66.5

12.7 0.3 8.5 0.3
3.7 3.8

3.5

3.9 3.8 3.8
2.6

2.2 2.9

4.2

6.4

3.9
5.3

1.8

0

20

40

60

80

Income	
Aggregate	

Movie	Ratings	 Airport	Layover	CommuteType	 PigMix	L2 Grade	Analysis Word	Count	

Breakdown	of	Testing	Time

Theorem	Solver	 Constraints	Generation	 Testing	

Ti
m
e	
in
	se

co
nd

s

By	running	tests	locally,	BigTest improves	the	testing	time	(CPU	seconds)	by	194X,	
on	average,	compared	to	testing	the	entire	dataset	on	16-node	cluster.

23

Inadequate	Test	Generation	Tools	for	Big	Data	
Analytics
Traditional	Software	Test	Generation Big	Data	Analytics	Test	Generation	

def concat(append: boolean, a:
String, b: String) {

result: String = null;
If (append)result = a + b;
return

result.toLowerCase();
}

sc.textFile("hdfs")
.flatMap(s=> s.split(","))
.map(w =>(w,1))
.reducebyKey(_+_)

• Standalone	application	
• Symbolic	Execution	Compatible
• Well	defined	semantics
• Logical	execution	is	similar	to	

physical	execution

• Heavily	depends	on	framework
• Non-existence	Symbolic	Execution	for	

dataflow	operators
• New	operators	with	changing	semantics
• Logical	execution	is	different	to	physical	

execution

24

Program	Decomposition

• Challenge:	Due	to	the	complexity	of	DISC	frameworks’	code,	symbolic	execution	is	
infeasible	on	DISC	applications.

• Insight:	The	individual	UDFs	of	DISC	application	are	relatively	smaller	(<100	LOC)	
making	symbolic	execution	feasible.	

• Solution:	We	decompose	a	DISC	application	using	AST	analysis	into	a	set	of	
individual	UDFs	and	dataflow	operators.

. . .

.map { s => val c= s.split(",")
(c(0), c(1))

}
.filter {

s => s._2.equals("Palms")
}
. . .

class UDF_MAP{
static void main(String args[]){

apply(null);
}
static Tuple2 apply(String s){

String[] arr = s.split(",");
return Tuple2(arr[0], arr[1]);

} }

map

class UDF_FILTER{
static void main(String args[]){

apply(null);
}
static Boolean apply(String s){

return s.equals(”Palms");
}}

filter

Decomposition UDF	SE Logical	
Specs	

Test	
generation

25

Symbolic	Execution	of	UDFs

• Challenges:	Strings,	Collections,	and	Object	are	eminent	in	DISC	applications	but	
not	fully	support	by	symbolic	execution	tool	i.e Java	PathFinder.

• Insight:	In	DISC	applications,	most	unbounded	types	are	eventually	bounded.	We	
perform	lazy	SE	on	such	types	e.g Split(“,”) is	unbounded	Array	but	
Split(“,”)[1] is	bounded.	

• Solution:	Using	JPF,	we	symbolically	execute	UDFs	in	isolation	to	generated	path	
constraints	and	effects.	Loops	and	Arrays	are	bounded	by	K=2.

class UDF{
static void main(String args[]){

apply(null);
}
static Tuple2 apply(Tuple3 s){

if (s._2()._1() > 40)
return Tuple2("car", 1);

else if (s._2()._1() > 15)
return Tuple2("public", 1);

else
return Tuple2("onfoot", 1);

}
}

From	
Step	1

sym>40

sym>15Car,	1

public,	1 onfoot,	1

Path	Constraints Effect

sym >	40 Car	,	1

40	≥	sym>15 Public	,	1

sym ≤ 15 onfoot ,	1

map

Decomposition UDF	SE Logical	
Specs	

Test	
generation

26

Logical	Specifications	of	Dataflow	Operators

• Challenges: Dataflow	operators	in	DISC	applications	are	accompanied	with	100Ks	
lines	of	framework	code	making	symbolic	execution	infeasible.		

• Insight: Dataflow	operators	have	standard	semantics	but	implemented	differently	
for	optimization	purposes.	

• Solution: Using	these	semantics,	we	abstract	their	implementation	in	logical	
specifications	and	used	the	specifications	to	tie	together	UDFs’	symbolic	trees.

From	
Step	2

map

map

filter

Join

Logical	Specs
of	Operator

Symbolic	Tree
UDF map

map

filter

Join

map

Decomposition UDF	SE Logical	
Specs	

Test	
generation

map

