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Challenges in Debugging and Testing of Big Data Analytics
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Develop locally Hope it works Run in cloud Bug!

* Debugging big data processing jobs is time consuming and error-prone.

» Developers are notified of runtime failures or incorrect outputs after many hours of wasted computing cycles on
the cloud.

\ qm ? / » Finding the root cause of a test failure among billions of input records is almost impossible.
nle » Testing big data applications is expensive and random sampling for test data results in in-adequate code
Guesswork coverage.

BigDebug: Debugging Primitives for Interactive Big Data Processing, ICSE ’16
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BigDebug: Debugging Primitives for Interactive Big Data Processing in Spark. M Gulzar, M Interlandi, S Yoo, S Tetali, T Condie, T Millstein, M Kim. Proceedings of 38th IEEE/ACM International Conference on Software
Engineering, pages 784-795

BigSift: Automated Debugging for Big Data Analytics, SoCC ‘17
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Automated Debugging in Data Intensive Scalable Computing. M Gulzar, M Interlandi, X Han, M Li, T Condie, M Kim. Proceedings of Symposium of Cloud Computing 2017. 15 Pages.

BigTest: White-box Testing of Data Intensive Scalable Computing Applications, Ongoing

Challenges in Testing DISC Applications Joint Data Flow and UDF Path Coverage
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 How can we select the minimal sample of an input dataset to perform efficient testing of DISC applications?
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 How can we generate test cases that exercise all program paths of a DISC application to maximize code coverage?

% of JDU Paths
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* Due to dataflow operators and complex user defined functions in DISC application, it is extremely hard to answer the
two questions.
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Test Data Generated to achieve 100% JDU Path Coverage
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