Interactive and Automated Debugging for Big Data Analytics

Muhammad Ali Gulzar
UCLA Advised by Miryung Kim UCLA encINEERING

Computer Science

University of California, Los Angeles

Challenges in Debugging and Testing of Big Data Analytics

W . m W

Develop locally Hope it works Run in cloud Bug!

* Debugging big data processing jobs is time consuming and error-prone.

» Developers are notified of runtime failures or incorrect outputs after many hours of wasted computing cycles on
the cloud.

\ qm ? / » Finding the root cause of a test failure among billions of input records is almost impossible.
nle » Testing big data applications is expensive and random sampling for test data results in in-adequate code
Guesswork coverage.

BigDebug: Debugging Primitives for Interactive Big Data Processing, ICSE ’16

Debugging Primitives BigDebug Interactive User Interface Performance Evaluation
s:(r)nl:;?;e;a?ge;sl;pg;td?nusg Sv?t?](')ns,;ped a AliceStudentAnalysis.scala 3qu,23 * With maximum instrumentation BigDebug, on
Breakpoint Controls i .
progr . . e average, takes 2.5X longer than the baseline
pausing the computation. o e et i « o ot Spark
imultedBroakpoint at AllceStudentAnalysis.scala:147 e ot bark.
* On Demand Guarded Watchpoint : SmeETEpeIT S AT E e Ao Il o ieicon = new fparicont() . sstaater(“aparks//Looaluont. looaldomntns
- - - - . - * When laten rofiling is disabl he overh
BigDebug delivers filtered program states in a B ot eateiieretn S o1 L ook tem/ gt frwge_clustes/ s Liewp TestBs/s en late oy p Oo g is disabled, the overhead
streaming fashion to the user, on demand - 1L | 7/aet up spark contert) reduces to just 34%, on average.
’ - [7| I iy e
- e i —— Al | e e st 3 . Bi i o ti -
¢ CraSh CUIprlt Remedlat|0n: It reports CraSh_ ® groupByKey 146 .watchpoint(s;> !COLLEGEYEAR.cont.:ainSZS.split(" ")(2))) glgDE?ﬁg prOI‘]VIde? upto 10g A) tlmde. St.aVIng over
i i i ingti i , | o ark through runtime crash remediation.
inducing records without terminating the job L e It —— P J
and allows user to take actions on the fly. | |y ey ey S
S i:i val ei\;:?zzzigi;by{r_grade = grade_age_pair.groupByKey 10000 / 750
 Backwards and Forward Tracing: A user can 3 . vor moring avere o Lo00 /_// 200 -
trace crashing record back to the input data in =R [E] ST e Eoo o
order to isolate the root cause of a problem. ‘B 10 ., l Arthur
])]] - iz; . (pair. 1, moving average/num) . | | | | | | | _
* Fine-Grained Latency Monitoring: It notifies T e e e 163 | val out - average.age by grade.collect() II llllll T s g o e ow
the user with the records that are taking longer = i Crrrn —bigDebug —Spark Location of crash (Stage)

than usual to process.

BigDebug: Debugging Primitives for Interactive Big Data Processing in Spark. M Gulzar, M Interlandi, S Yoo, S Tetali, T Condie, T Millstein, M Kim. Proceedings of 38th IEEE/ACM International Conference on Software
Engineering, pages 784-795

BigSift: Automated Debugging for Big Data Analytics, SoCC ‘17

- Given a test function, BigSift automatically finds a BigSift User Interface Performance Evaluation
minimum set of fault-inducing input records o | | * On average, BigSift takes 62% less time than the original job to
responS|b|e for a faulty OUtpUt. Initial Size of Fault-Inducing Inputs : 2106001 records _
debug a single fault.
InpUt: A Spark Output' Mlnlmum fault - - Oriai . 100000000 ® Data Provenance = Test Driven Data Provenance ® BigSift & DD
i ginal Job Time : 34 seconds : : : 15003060
frotg]fam t‘j‘”d a inducing input records % * BigSift prOVIde§ IXto g oo e487290 S
estIunction Total Debugging Time : 32 seconds 66X Spe_ed Up in the *q;i 1?32222 143796 -
Phase I: Phase Il : sl : debugglng tlme Lé: 10000 5800
Test Function Driven Prioritizing Pfr:tg Dipuggltpg com pa red to the é 1000 - 350
Data Provenance Backward Traces o ontiguration . =
Aware Scheduling 1S chart by amCharts basellne Delta £ 100 5 i
1,000,000] 3 o
Y . I Debugging. kil N
¢ Optlmlzatlon 1: BIgSIft pLISheS dOW” the teSt l‘\ SﬁACQHE"K 1 .Movie Inverted Rating Squuence Rating SCollege Weather
. . . 10,000 - N ™ . . - Historgram Index Histogram ount Frequency tudents Analysis
function to test the output of combiners in order to - . BigSift achieves 103

isolate the faulty partitions. e ——

—BigSift
—Test Driven Data Provenance
—Data Provenance

N e t0 107X better i
x precision than state of

* Optimization 2: BigSift overlaps two backward 1000000
1 | | | | | the art data

traces to minimize the scope of fault-inducing input

100000

Number of Fault-Inducing Records

- N - - B 10000
records. rime (6 provenance i.e Titian e
10 A
imi i . i Fault-Inducing Input Record 1 - | | | ' '
* Optimization 3: It uses bitmap based test ault-Inducing Input Records o0 4000 6000 8000 10000 12000 14000

memoization technique to avoid redundant testing of =~ 1697.1/1/2016.4.0744624ft
the same input dataset 32817,30/12/2016,79in

Fault Localization Time (s)

of fault-inducing input records

Automated Debugging in Data Intensive Scalable Computing. M Gulzar, M Interlandi, X Han, M Li, T Condie, M Kim. Proceedings of Symposium of Cloud Computing 2017. 15 Pages.

BigTest: White-box Testing of Data Intensive Scalable Computing Applications, Ongoing

Challenges in Testing DISC Applications Joint Data Flow and UDF Path Coverage

Income Movie Airport Commute PigMix Grade Word

120

 How can we select the minimal sample of an input dataset to perform efficient testing of DISC applications?

(=
o
o

=
Q

 How can we generate test cases that exercise all program paths of a DISC application to maximize code coverage?

% of JDU Paths
s 8

* Due to dataflow operators and complex user defined functions in DISC application, it is extremely hard to answer the
two questions.

N
o

L]

. M BigTest M Sedge M Orginial Dataset
Preliminary Results

Test Data Generated to achieve 100% JDU Path Coverage

» BigTest provides 100% Joint Dataflow and UDF (JDU) path coverage by generating testing data which is several ooengg 4000000000

o . . . n 448000000 320000100 4 a 111359852
orders of magnitude (106 to 1010) smaller than the original input dataset. T tooeos e A000e
§ 1.00E+06 221344
Approach ctace 1 oo
(Stage : ~ 2 Each comblex UDF is - 3. Path constraints and effects fromthe 5 1occ 6 5 14 11 4 ﬁ 4
e mapP gumen ' . P . (map =) UDFs are integrated w.r.t the logical tooesc0 I - - -
1. ADISC appllcatlon is [u] SymbOllca”y executed In ot g eI SpeCificationS of data flow OperatOrS to Income Movie Airport Commute PigMix Grade Word
decomposed into UDFs filterl Isolation with bounded path filter produce SMT?2 querieS W BigTest M Input Dataset
and dataflow operators. udf2 exploration. [Udf2em |
_ o _ \ Path Effects cv
Stage 2 Stage 2 Constraint 4. Test data is generated
- f \ - — ¥ .
DISC a N Q reduce | X>5 & y=.. [2=X"... ‘T t Dat \ using off-the-shelf theorem
reduce @ est Data
[AppncationJ » dJ-'F 5 » JJ N ‘ [#ﬁ'ﬁ'ﬁ.’!&] » X<3 & y>... |2=X/.. » » solvers such as CVC4 or Z3.
== Java PathFinder L —

