
1. A DISC application is
decomposed into UDFs
and dataflow operators.

2. Each complex UDF is
symbolically executed in
isolation with bounded path
exploration.

3. Path constraints and effects from the
UDFs are integrated w.r.t the logical
specifications of data flow operators to
produce SMT2 queries.

4. Test data is generated
using off-the-shelf theorem

solvers such as CVC4 or Z3.

Approach

Challenges in Testing DISC Applications

• How can we select the minimal sample of an input dataset to perform efficient testing of DISC applications?

• How can we generate test cases that exercise all program paths of a DISC application to maximize code coverage?

• Due to dataflow operators and complex user defined functions in DISC application, it is extremely hard to answer the
two questions.

BigTest: White-box Testing of Data Intensive Scalable Computing Applications, Ongoing

Java PathFinder

Interactive and Automated Debugging for Big Data Analytics
Muhammad Ali Gulzar

Advised by Miryung Kim
University of California, Los Angeles

• BigSift provides 7X to
66X speed up in the
debugging time
compared to the
baseline Delta
Debugging.

• BigSift achieves 103
to 107X better
precision than state of
the art data
provenance i.e Titian

Challenges in Debugging and Testing of Big Data Analytics

• Debugging big data processing jobs is time consuming and error-prone.

• Developers are notified of runtime failures or incorrect outputs after many hours of wasted computing cycles on
the cloud.

• Finding the root cause of a test failure among billions of input records is almost impossible.

• Testing big data applications is expensive and random sampling for test data results in in-adequate code
coverage.

BigDebug: Debugging Primitives for Interactive Big Data Processing in Spark. M Gulzar, M Interlandi, S Yoo, S Tetali, T Condie, T Millstein, M Kim. Proceedings of 38th IEEE/ACM International Conference on Software
Engineering, pages 784-795

BigDebug Interactive User Interface Performance Evaluation

• With maximum instrumentation BigDebug, on
average, takes 2.5X longer than the baseline
Spark.

• When latency profiling is disabled, the overhead
reduces to just 34%, on average.

• BigDebug provides upto 100% time saving over
Spark through runtime crash remediation.Performance	Impact	[ICSE	‘16]

1

10

100

1000

10000

0.5 0.9 4 8 30 70 200 1000

Ti
m
e	
(s
)

Dataset	Size	(GB)

BigDebug	Scale	Up

BigDebug Spark

With	maximum	instrumentation,	BigDebug takes	2.4X	the	
time	of	baseline	Spark	while	the	average	case	is	at	1.34X	

Time	Saving	[ICSE	’16]	

BigDebug finds	a	crash	inducing	record	with	100%	accuracy	and
saves	upto 100%	time	saving	through	runtime	crash	remediation

0

50

100

150

200

250

S1 S2 S3 S4

Ti
m
e	
(s
)

Location	of	crash	(Stage)

BigDebug
Arthur

Debugging Primitives

• Simulated Breakpoint : A user can inspect a
program state in a remote node without
pausing the computation.

• On Demand Guarded Watchpoint :
BigDebug delivers filtered program states in a
streaming fashion to the user, on demand.

• Crash Culprit Remediation: It reports crash-
inducing records without terminating the job
and allows user to take actions on the fly.

• Backwards and Forward Tracing: A user can
trace crashing record back to the input data in
order to isolate the root cause of a problem.

• Fine-Grained Latency Monitoring: It notifies
the user with the records that are taking longer
than usual to process.

BigDebug: Debugging Primitives for Interactive Big Data Processing, ICSE ’16

• Given a test function, BigSift automatically finds a
minimum set of fault-inducing input records
responsible for a faulty output.

• Optimization 1: BigSift pushes down the test
function to test the output of combiners in order to
isolate the faulty partitions.

• Optimization 2: BigSift overlaps two backward
traces to minimize the scope of fault-inducing input
records.

• Optimization 3: It uses bitmap based test
memoization technique to avoid redundant testing of
the same input dataset.
Automated Debugging in Data Intensive Scalable Computing. M Gulzar, M Interlandi, X Han, M Li, T Condie, M Kim. Proceedings of Symposium of Cloud Computing 2017. 15 Pages.

143796

6487290

520904

23411
5800

15003060

2554788

350

2

1350

15 13

1 1 1 1 1 1
2

1

10

100

1000

10000

100000

1000000

10000000

100000000

Movie
Historgram

Inverted
Index

Rating
Histogram

Sequence
Count

Rating
Frequency

College
Students

Weather
Analysis

of

 fa
ul

t-i
nd

uc
in

g
in

pu
t r

ec
or

ds

Data Provenance Test Driven Data Provenance BigSift & DD

Preliminary Results

• BigTest provides 100% Joint Dataflow and UDF (JDU) path coverage by generating testing data which is several
orders of magnitude (106 to 1010) smaller than the original input dataset.

Performance Evaluation
• On average, BigSift takes 62% less time than the original job to

debug a single fault.

Output: Minimum fault -
inducing input records

Input: A spark
program and a
test function

BigSift User Interface

1
10

100
1000

10000
100000

1000000
10000000

100000000
1E+09

0 2000 4000 6000 8000 10000 12000 14000

of

 fa
ul

t-i
nd

uc
in

g
in

pu
t r

ec
or

ds

Fault Localization Time (s)

Sequence Count

Delta Debugging
BigSift
Test Driven Data Provenance
Data Provenance

BigSift: Automated Debugging for Big Data Analytics, SoCC ‘17

