
1. A DISC application is 
decomposed into UDFs 
and dataflow operators.

2. Each complex UDF is 
symbolically executed in 
isolation with bounded path 
exploration.

3. Path constraints and effects from the 
UDFs are integrated w.r.t the logical 
specifications of data flow operators to 
produce SMT2 queries.

4. Test data is generated 
using off-the-shelf theorem 

solvers such as CVC4 or Z3.

Approach 

Challenges in Testing DISC Applications

• How can we select the minimal sample of an input dataset to perform efficient testing of DISC applications?

• How can we generate test cases that exercise all program paths of a DISC application to maximize code coverage?

• Due to dataflow operators and complex user defined functions in DISC application, it is extremely hard to answer the 
two questions.

BigTest: White-box Testing of Data Intensive Scalable Computing Applications, Ongoing
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• BigSift provides 7X to 
66X speed up in the  
debugging time 
compared to the 
baseline Delta 
Debugging.

• BigSift achieves 103 
to 107X better 
precision than state of 
the art data 
provenance i.e Titian

Challenges in Debugging and Testing of Big Data Analytics

• Debugging big data processing jobs is time consuming and error-prone.

• Developers are notified of runtime failures or incorrect outputs after many hours of wasted computing cycles on 
the cloud.

• Finding the root cause of a test failure among billions of input records is almost impossible.

• Testing big data applications is expensive and random sampling for test data results in in-adequate code 
coverage.

BigDebug: Debugging Primitives for Interactive Big Data Processing in Spark. M Gulzar, M Interlandi, S Yoo, S Tetali, T Condie, T Millstein, M Kim. Proceedings of 38th IEEE/ACM International Conference on Software 
Engineering, pages 784-795

BigDebug Interactive User Interface Performance Evaluation

• With maximum instrumentation BigDebug, on 
average, takes 2.5X longer than the baseline 
Spark.

• When latency profiling is disabled, the overhead 
reduces to just 34%, on average.

• BigDebug provides upto 100% time saving over 
Spark through runtime crash remediation.Performance	Impact	[ICSE	‘16]
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With	maximum	instrumentation,	BigDebug takes	2.4X	the	
time	of	baseline	Spark	while	the	average	case	is	at	1.34X	

Time	Saving	[ICSE	’16]	

BigDebug finds	a	crash	inducing	record	with	100%	accuracy	and
saves	upto 100%	time	saving	through	runtime	crash	remediation
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Debugging Primitives

• Simulated Breakpoint : A user can inspect a 
program state in a remote node without 
pausing the computation.

• On Demand Guarded Watchpoint : 
BigDebug delivers filtered program states in a 
streaming fashion to the user, on demand.

• Crash Culprit Remediation: It reports crash-
inducing records without terminating the job 
and allows user to take actions on the fly. 

• Backwards and Forward Tracing: A user can 
trace crashing record back to the input data in 
order to isolate the root cause of a problem.

• Fine-Grained Latency Monitoring: It notifies 
the user with the records that are taking longer 
than usual to process.

BigDebug: Debugging Primitives for Interactive Big Data Processing, ICSE ’16

• Given a test function, BigSift automatically finds a 
minimum set of fault-inducing input records 
responsible for a faulty output.

• Optimization 1: BigSift pushes down the test 
function to test the output of combiners in order to 
isolate the faulty partitions.

• Optimization 2: BigSift overlaps two backward 
traces to minimize the scope of fault-inducing input 
records. 

• Optimization 3: It uses bitmap based test 
memoization technique to avoid redundant testing of 
the same input dataset.
Automated Debugging in Data Intensive Scalable Computing. M Gulzar, M Interlandi, X Han, M Li, T Condie, M Kim.  Proceedings of Symposium of Cloud Computing 2017. 15 Pages.
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Preliminary Results

• BigTest provides 100% Joint Dataflow and UDF (JDU) path coverage by generating testing data which is several 
orders of magnitude (106 to 1010) smaller than the original input dataset. 

Performance Evaluation
• On average, BigSift takes 62% less time than the original job to 

debug a single fault.
                         

Output: Minimum fault -
inducing input records

Input: A spark 
program and a 
test function

BigSift User Interface
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BigSift: Automated Debugging for Big Data Analytics, SoCC ‘17


