CS5984
Mobile Computing

Dr. Ayman Abdel-Hamid
Computer Science Department
Virginia Tech

Mobile IPv4 Micro-mobility
Outline

• MIPv4 Micro-mobility solutions
Local-area Mobility Solutions

• Within the Mobile IP framework
 ➢ Regional Registration Framework (MIP_RR)
 ➢ Local and Indirect Registration

• Host-based forwarding schemes
 ➢ Cellular IP (Columbia University)
 ➢ HAWAII (Bell Labs)

• Multicast-based schemes

 Assign MH a scoped multicast address within the foreign domain
Regional Registration Framework (MIP_RR) 1/3

{1, 2, 3, and 4}: Home registration when the MH first enters the foreign domain.

{5, 6}: Regional registration with a local handoff from FA_{7} to FA_{6}.

{7, 8, 9, and 10}: Home registration involving a local handoff from FA_{6} to FA_{5}.
Regional Registration Framework (MIP_RR) 2/3

• The old FA relays the BU message, received from the new FA, upwards in the hierarchy (to its father FA) specifying itself as the care-of address of the MH.

• The father FA performs the following steps
 ➢ delete its MH’s visitor entry,
 ➢ create a binding cache entry for the MH with care-of address the child FA that sent the BU message,
 ➢ relay the BU message upwards in the hierarchy, and
 ➢ send back a binding acknowledge message to its child FA
Regional Registration Framework (MIP_RR)

Tunneling consistency mechanism to clear visitor entries in old path
Local and Indirect Registration

HA: Home Agent
FA: Foreign Agent

Local Registration

Indirect Registration

HA - Home Agent
FA - Foreign Agent
MH - Mobile Host
Anchor - Anchor Agent
Cellular IP

Global mobility

Wireless access network

Local handoffs

Cellular IP and Mobile IP

Global Internet with Mobile IP

HA

Gateway Router

FA

tunnel

BS

BS

BS

BS

MH

Gateway

Router

Wireless access network model

Wireless access network

Local handoffs

Mobile IP

Cellular IP
Cellular IP 2/2

Paging update packets

Gateway
Router

FA

MH: from B

MH: from F

A, D have paging caches

Paging update packet (routed hop-by-hop towards the GW)

Paging packet routed to MH using paging caches

Gateway
Router

FA

MH: from B

MH: from F

MH responds with a route-update packet which configures routing caches along the way to the GW

Data packets for MH
HAWAII

- Handoff-Aware Wireless Access Internet Infrastructure
- Uses specialized path setup schemes which install host-based forwarding entries in specific routers to handle intra-domain micro-mobility
- Defaults to using mobile IP for inter-domain macro-mobility
- Requires that MH obtains a co-located care of address within a domain, nevertheless MH is required to register with a BS within the domain to be able to better handle handoffs
- MH sends path setup update messages during power up and after handoffs

HR: Home Domain Root Router
FR: Foreign Domain Root Router

domain model within HAWAII

HA notified of co-located care of address
Forwarding path setup scheme
(MH can listen/transmit to only one BS)

Non-Forwarding path setup scheme
(MH can listen/transmit to multiple BS)
Multicast and Mobility 1/3

• The Deadalus Approach (Berkeley, 1995)
 – maintains the HA concept of Mobile IP
 – MH pre-assigned a multicast address by HA
 – HA encapsulates any packets destined to MH and forwards them over the pre-assigned multicast group
 – MH informs nearby Base Stations about multicast group and controls forwarding/buffering of packets at BSs through a control protocol
Multicast and Mobility 2/3

• A Multicasting-based Mobility Solution (1997)
 – multicast sole mechanism to provide addressing and routing services to MHs
 – each MH is assigned a unique multicast IP address (globally unique)
 – approach affects a number of existing protocols such as TCP, ICMP, ARP, IGMP
Multicast and Mobility 3/3

• Fast Handoffs for Wireless Networks (1999)
 – foreign domain arranged as a two level hierarchy with a domain FA at the root and base stations as leafs.
 – MH assigned a multicast address within the foreign domain by the domain FA (centralized server)
 – domain FA becomes forwarding agent for all MHs (single point of failure, bottleneck)
 – does not discuss details of multicast address allocation or effects on multicast routing
Outline

• A cooperating FA hierarchies local-area mobility support framework
Cooperating Foreign Agents Hierarchies 1/2

A local-area mobility support framework

- Efficiently handle local-area movement scenarios within a foreign domain through cooperation between FA hierarchies
- Provide authentication and replay protection for all protocol messages
- Not specific to any access technology
- Explore the hierarchy structure to enhance registration processing
Cooperating Foreign Agents Hierarchies 2/2

- FA hierarchy model
- Intra-hierarchy handoffs
- Inter-hierarchy handoffs
FA Hierarchy Model

- Advertise the FA IP address (if not private) for legacy MHs
- Hide the hierarchy structure
Critique of MIP_RR’s tunneling consistency

• Requires smooth handoff mechanism
• Potential race condition if BU from old path reaches crossover FA before the registration request from new path
Regional Registrations Framework 1/2

MH | Old FA | RFA^j | New FA | RFA^i in route to crossover FA | Crossover FA (can be GFA)

- Rreg. Req.
- Rreg. Reply
- Dereg. (BU)
- Binding ack.
- Rreg.: Regional Registration Request
- Req.: Request
- Ack.: Acknowledgement
- Dereg.: Deregistration

Regional Registration messages (Request/Reply)
Route Optimization messages (BU/Binding ack.)
Replay Protection

• Crossover FA propagates upwards in the hierarchy towards the GFA a *replay protection update message* to ensure future successful processing of registrations by upper RFAs in the path

• This message propagates the new identification value assigned to the MH by the crossover FA

• Used for nonce replay protection and timestamp replay protection

<table>
<thead>
<tr>
<th>Type</th>
<th>Reserved</th>
</tr>
</thead>
<tbody>
<tr>
<td>MH Home Address</td>
<td></td>
</tr>
<tr>
<td>New MH Identification</td>
<td></td>
</tr>
<tr>
<td>Identification</td>
<td></td>
</tr>
<tr>
<td>Extensions …</td>
<td></td>
</tr>
</tbody>
</table>
Home Registrations Framework

Home Registrations involving local handoffs

• A home registration is forwarded to the HA to renew the MH’s mobility binding

• How about the old path?

 ➢ A deregistration mechanism similar to the regional registration framework would clear the old path, but increases packet loss while waiting for the reply from the HA

 ➢ The need to clear the visitor entries on the old path

Our solutions

➢ KOPA approach (Keep Old Path Alive)

➢ SINP approach (Switch Immediately to New Path)
Intra-Hierarchy Handoffs: The KOPA Approach 1/3

BU with estimated lifetime, along with new FA IP address information.

Old FA can tunnel buffered or future packets to new FA.

Registration Request along with new FA IP address information.
Intra-Hierarchy Handoffs: The KOPA Approach 2/3

What lifetime is used for the BU?

\[BU \text{ lifetime} = \text{Max} \{ \text{home reg. latency, } \alpha \times \text{remaining reg. lifetime} \} \]
\[\text{Where } 0 < \alpha \leq 1 \quad (we \ use \ \alpha = 0.5) \]

Maintain observed home registration latency at each RFA

How the new FA information is propagated without the smooth handoff mechanism?

• Benefit from the existence of a hierarchy, an old and new path

• Propagate new FA information along new path to crossover FA, then along old path to old FA through a local care-of address extension
Authentication and replay protection

• A home registration request would only include home authentication and identification information

• How can the crossover FA authenticate the request to initiate KOPA?

 ➢ MH includes a local replay protection extension, such that the crossover FA is capable of ensuring the freshness of its request

 ➢ MH authenticates its request using a MH-GFA authentication extension

 ➢ Crossover FA authenticates the request before initiating the tunneling consistency mechanism on the new path
Intra-Hierarchy Handoffs: The SINP Approach

Deregistration mechanism (BU message with zero lifetime)

Regional Registration Reply
The crossover FA switches the MH tunneling path to the new path before receiving a home registration reply.

• View such registrations as a truly combined home and regional registrations
• The local handoff completion does not have to wait for a reply from the HA
Performance Evaluation 1/4

Simulated Network Topology

CH — HA: 1.5 Mbps, 20 ms
GFA — FA: 1.5 Mbps, 20 ms
FA — MH: 100 Mbps, LD
Foreign domain

LD: Link delay
Performance Evaluation 2/4

UDP Traffic

Using the KOPA approach
Performance Evaluation 3/4

UDP Traffic

![Graph 1: Average lost packets per HR-LH vs. GFA to HA delay](image1)

![Graph 2: Average dropped packets per handoff vs. Playout delay](image2)
Performance Evaluation 4/4

TCP Traffic

![TCP Traffic Graph](image)

- **TCP Throughput**: The graphs show the throughput of TCP traffic over different GFA to HA delays for various protocols (KOPA, SINP, Base MIP, DOP).
- **Retransmission Ratio**: The graphs also depict the retransmission ratio under similar conditions, indicating how often packets are retransmitted due to errors or losses.

These graphs illustrate the performance characteristics of different mobile IP protocols under varying network conditions, highlighting their effectiveness in maintaining high throughput and minimizing retransmissions.
Inter-Hierarchy Handoffs 1/8

• One FA hierarchy in foreign domain is a burden on the GFA. (single point of failure, maintain routing entries for all MHs)

• If multiple FA hierarchies are deployed, no configurable scalable cooperation is envisioned between hierarchies

• Reduce the number of required security associations between FAs in different hierarchies

• Shield the HA from the MH’s movement within the foreign domain
Inter-Hierarchy Handoffs 2/8

- Partition foreign domain into routing zones
- Each routing zone is an independent FA hierarchy
- FAs advertise their own IP address and the GFA address

MH registers GFA₁ as its care-of address.
GFA₁ is termed the MH’s HRGFA (Home-registered GFA).
Inter-Hierarchy Handoffs 3/8

Configurable Cooperation

- Cooperation is only allowed between the roots of the FA hierarchies (2 security associations between each pair of GFAs)

- The FAs advertise two new options in their mobility agent advertisements
 - will this GFA accept cooperation requests from other GFAs?
 - will this GFA send cooperation requests on behalf of the MH?
Inter-Hierarchy Handoffs 4/8

The MH movement between FA hierarchies
Inter-Hierarchy Handoffs 5/8

Home registration lifetime expiration

Home reg.

Regional reg.

Home-regional reg.

Ads from the current or HRGFA hierarchy

AD_HFA or HRE_HANDOFF_HFA

Enter foreign domain

Event transition

Automatic transition

reg.: registration
Ads: FA advertisements
AD_HFA: Ads from another FA hierarchy
HRE_HANDOFF_HFA: Home registration lifetime expiration while moving to another hierarchy

Registration State Diagram
Home-regional Registration

- A home registration with a regional data extension
- The current GFA attempts to contact the HRGFA using the information in the regional extension
- If success, the current GFA receives tunneled packets for the MH from the HRGFA
- If the HRGFA does not respond, use the MH’s home credentials to perform a home registration on behalf of the MH
Inter-Hierarchy Handoffs 7/8

If the RZFA accepted the regional registration request, the ZFA_j hierarchy is now able to authenticate any future registration requests by the MH.

The home-regional registration process, in case the RZFA is reachable.
Upon successful registration, the MH's HRGFA is changed within the foreign domain.

The home-regional registration process, in case the HRGFA is not reachable.
Performance Evaluation 1/3

Simulated Network Topology

LD: Link Delay

Local-area Network
10 Mbps
1 ms

GFA_i

FA_{2,1} FA_{2,2}

FA_{3,1} FA_{3,4}

FA_{4,1} FA_{4,2} FA_{4,7} FA_{4,8}
Performance Evaluation 2/3

UDP Traffic

HA-GFA link delay (msec)

- NC-GFAs/A
- C-GFAs/A
- NC-GFAs/V
- C-GFAs/V

Average lost packets per handoff

- C-GFAs
- NC-GFAs

GFA-HRGFA link delay (msec)
Performance Evaluation 3/3

TCP Traffic

![Graph 1: TCP Throughput vs. GFA-HA link delay](image1)

![Graph 2: Retransmission Ratio vs. GFA-HA link delay](image2)