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Operating Systems

Computer System Overview

Chapter 1
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Outline

*Basic Elements

*Processor registers

*Instruction Execution
*Interrupts

*Memory Hierarchy

*Cache Memory

°]/O Communication Techniques
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. » Exploits the hardware resources of one
Or MOre Processors

-« Provides a set of services to system users

* Manages secondary memory and I/O
devices
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Processor
Main Memory
— referred to as real memory or primary memory
— volatile
I/O modules
— secondary memory devices
— communications equipment
— terminals
System bus

— communication among processors, memory, and
I/O modules
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* User-visible registers

— Enable programmer to minimize main-
memory references by optimizing register
use

* Control and status registers

— Used by processor to control operating of
the processor

— Used by operating-system routines to
control the execution of programs
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. » May be referenced by machine language

- » Available to all programs - application
programs and system programs

* Types of registers

— Data

— Address

* Index
* Segment pointer
* Stack pointer
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* Address Registers

— Index

* involves adding an index to a base value to get
an address

— Segment pointer

* when memory is divided into segments,
memory is referenced by a segment and an
offset

— Stack pointer

* points to top of stack
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-« Program Counter (PC)

— Contains the address of an instruction to be fetched
' * Instruction Register (IR)

— Contains the instruction most recently fetched

* Program Status Word (PSW)

— condition codes
— Interrupt enable/disable

— Supervisor/user mode

© Dr. Ayman Abdel-Hamid, OS 9




3/3/2012

* Condition Codes or Flags

— Bits set by the processor hardware as a
result of operations

— Can be accessed by a program but not
altered

— Examples
* positive result

* negative result
° Zero

* Overflow
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Fetch Cycle Execute Cycle

<+ | Fetch Next Execute —
a2 Instruction Instruction

Figure 1.2 Basic Instruction Cycle
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* The processor fetches the instruction
from memory

l Program counter (PC) holds address of
the instruction to be fetched next

* Program counter 1s incremented after
each fetch
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* Fetched instruction is placed in the instruction
register

* Types of instructions
— Processor—memory
* transfer data between processor and memory
— Processor-1/0
* data transferred to or from a peripheral device
— Data processing
* arithmetic or logic operation on data

— Control
* alter sequence of execution
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I/O exchanges occur directly with
memory (in contrast to between
processor and I/0O device)

* Processor grants I/O module authority to
read from or write to memory

* Relieves the processor responsibility for
the exchange

Processor 1s free to do other things
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* An interruption of the normal sequence of
execution

* Improves processing efficiency

* Allows the processor to execute other
instructions while an I/O operation is in
progress

* A suspension of a process caused by an event
external to that process and performed in such
a way that the process can be resumed
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Program

— arithmetic overflow
— division by zero
— execute 1llegal instruction

— reference outside user’s memory space
Timer

I/0
Hardware failure

© Dr. Ayman Abdel-Hamid, OS

16

16



3/3/2012

|+ A program that determines nature of the
| 1nterrupt and performs whatever actions
are needed

* Control 1s transferred to this program
* Generally part of the operating system
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Figure 1.6 Transfer of Control via Interrupts
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Figure 1.7 Instruction Cycle with Interrupts
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* Processor checks for interrupts

-« If no interrupts, fetch the next instruction
for the current program

 If an interrupt 1s pending, suspend
execution of the current program, and
execute the interrupt handler
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Device controller or

amnd PC onto control
stack

Processor loads new
PC value based on
interrupt

Process interrupt

Restore process state
information
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 Disable interrupts
while an interrupt is
being processed

— Processor ignores
any new interrupt
request signals

__________

(a) Sequentlal Interrupt processing
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Figure 1.12 Transfer of Control with Multiple Interrupts
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 Disable interrupts so processor can
complete task

. Interrupts remain pending until the
processor enables interrupts

 After interrupt handler routine
completes, the processor checks for
additional interrupts
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* Higher priority interrupts cause lower-
priority interrupts to wait

. » Causes a lower-priority interrupt handler
to be interrupted

* Example when input arrives from
communication line, it needs to be
absorbed quickly to make room for more

input
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| ° Processor has more than one program to
execute

* The sequence the programs are executed
depend on their relative priority and
whether they are waiting for I/O

 After an interrupt handler completes,
control may not return to the program
that was executing at the time of the
interrupt
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Figure 1.14 The Memory Hierarchy
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~» Decreasing cost per bit

~+ Increasing capacity
|» Increasing access time

* Decreasing frequency of access of the
memory by the processor
— Operation of two-level memory as an example

— locality of reference
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| ¢ Invisible to operating system
* Increase the speed of memory

* Processor speed 1s faster than memory
speed
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Figure 1.16 Cache and Main Memory

30

30



3/3/2012

| » Contains a portion of main memory

|« Processor first checks cache

* If not found in cache, the block of
memory containing the needed
information 1s moved to the cache
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Figure 1.17 Cache/Main-Memory Structure
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Perform in parallel

Deliver RA word
to CPLT

© Dr. Ayman Abdel-Hamid, OS 33

33



3/3/2012

* Cache size
— small caches have a significant impact on
performance
* Block size

— the unit of data exchanged between cache and
main memory

— hit means the information was found in the
cache

— larger block size more hits until probability of

using newly fetched data becomes less than the
probability of reusing data that has been moved
out of c(@a])crl%ye
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* Mapping function

— determines which cache location the block
will occupy

* Replacement algorithm

— determines which block to replace
— Least-Recently-Used (LRU) algorithm
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* Write policy

— When the memory write operation takes
place

— Can occur every time block 1s updated

— Can occur only when block is replaced
* Minimizes memory operations

* Leaves memory in an obsolete state
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* Programmed I/O

* Interrupt-driven I/O
* Direct Memory Access (DMA)
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I/O module performs the
action, not the processor

Sets appropriate bits in the I/O
status register

No interrupts occur

Processor checks status until
operation is complete
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Processor is interrupted when
I/O module ready to exchange
data

* Processor is free to do other
work

* No needless waiting

* Consumes a lot of processor
time because every word read or
written passes through the
processor
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* Transfers a block of data
directly to or from
Yicua TR P — DMA

memOI‘y block command Do something

ol modue @77 ™ alse

* An interrupt is sent when
1 Eead status SBRR b e
the task is complete tDMA Interrup

module DMA — CPU

* The processor 1s only
involved at the beginning
and end of the transfer

MNext instruction

ic) Direct memory access
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