3/3/2012

Operating Systems

Computer System Overview

Chapter 1

© Dr. Ayman Abdel-Hamid, OS 1

3/3/2012

Outline

*Basic Elements

*Processor registers

*Instruction Execution
*Interrupts

*Memory Hierarchy

*Cache Memory

°]/O Communication Techniques

© Dr. Ayman Abdel-Hamid, OS

3/3/2012

. » Exploits the hardware resources of one
Or MOre Processors

-« Provides a set of services to system users

* Manages secondary memory and I/O
devices

© Dr. Ayman Abdel-Hamid, OS 3

3/3/2012

Processor
Main Memory
— referred to as real memory or primary memory
— volatile
I/O modules
— secondary memory devices
— communications equipment
— terminals
System bus

— communication among processors, memory, and
I/O modules

© Dr. Ayman Abdel-Hamid, OS

3/3/2012

CPU

| PC | | MAR |

| IR | | MBR |

\"=/ o |

1/0O Module

BufTers

Figure 1.1 Computer

System

Bus

PC
IR
MAR
MBR =
O AR =
O BR =

© Dr. Ayman Abdel-Hamid, OS
Components: Top-Level View

Instruction
Instruction
Instruction

L

Data
Data
Data
Data

= =

Program counter

Instruction reglster

Memory address register
Memory buffer reglster
Inputfoutput address register
Input/output bulTer reglster

3/3/2012

* User-visible registers

— Enable programmer to minimize main-
memory references by optimizing register
use

* Control and status registers

— Used by processor to control operating of
the processor

— Used by operating-system routines to
control the execution of programs

© Dr. Ayman Abdel-Hamid, OS

3/3/2012

. » May be referenced by machine language

- » Available to all programs - application
programs and system programs

* Types of registers

— Data

— Address

* Index
* Segment pointer
* Stack pointer

© Dr. Ayman Abdel-Hamid, OS 7

3/3/2012

* Address Registers

— Index

* involves adding an index to a base value to get
an address

— Segment pointer

* when memory is divided into segments,
memory is referenced by a segment and an
offset

— Stack pointer

* points to top of stack

© Dr. Ayman Abdel-Hamid, OS 8

3/3/2012

-« Program Counter (PC)

— Contains the address of an instruction to be fetched
' * Instruction Register (IR)

— Contains the instruction most recently fetched

* Program Status Word (PSW)

— condition codes
— Interrupt enable/disable

— Supervisor/user mode

© Dr. Ayman Abdel-Hamid, OS 9

3/3/2012

* Condition Codes or Flags

— Bits set by the processor hardware as a
result of operations

— Can be accessed by a program but not
altered

— Examples
* positive result

* negative result
° Zero

* Overflow

© Dr. Ayman Abdel-Hamid, OS 10

10

3/3/2012

Fetch Cycle Execute Cycle

<+ | Fetch Next Execute —
a2 Instruction Instruction

Figure 1.2 Basic Instruction Cycle

© Dr. Ayman Abdel-Hamid, OS 11

11

3/3/2012

* The processor fetches the instruction
from memory

l Program counter (PC) holds address of
the instruction to be fetched next

* Program counter 1s incremented after
each fetch

© Dr. Ayman Abdel-Hamid, OS 12

12

3/3/2012

* Fetched instruction is placed in the instruction
register

* Types of instructions
— Processor—memory
* transfer data between processor and memory
— Processor-1/0
* data transferred to or from a peripheral device
— Data processing
* arithmetic or logic operation on data

— Control
* alter sequence of execution

© Dr. Ayman Abdel-Hamid, OS 13

13

3/3/2012

I/O exchanges occur directly with
memory (in contrast to between
processor and I/0O device)

* Processor grants I/O module authority to
read from or write to memory

* Relieves the processor responsibility for
the exchange

Processor 1s free to do other things

© Dr. Ayman Abdel-Hamid, OS 14

14

3/3/2012

* An interruption of the normal sequence of
execution

* Improves processing efficiency

* Allows the processor to execute other
instructions while an I/O operation is in
progress

* A suspension of a process caused by an event
external to that process and performed in such
a way that the process can be resumed

© Dr. Ayman Abdel-Hamid, OS 15

15

3/3/2012

Program

— arithmetic overflow
— division by zero
— execute 1llegal instruction

— reference outside user’s memory space
Timer

I/0
Hardware failure

© Dr. Ayman Abdel-Hamid, OS

16

16

3/3/2012

|+ A program that determines nature of the
| 1nterrupt and performs whatever actions
are needed

* Control 1s transferred to this program
* Generally part of the operating system

© Dr. Ayman Abdel-Hamid, OS 17

17

3/3/2012

Interrupt —»

occurs here

User Program Interrupt Handler
1
2
L] L
L] L]
. .
i
i+l «
L]
L]
L]
M

Figure 1.6 Transfer of Control via Interrupts
© Dr. Ayman Abdel-Hamid, OS

18

18

3/3/2012

Fetch Cycle Execute Cycle Interrupt Cycle

F 9

¥ Fetch Next
Instruction

Y

Y

HALT

Figure 1.7 Instruction Cycle with Interrupts

© Dr. Ayman Abdel-Hamid, OS 19

19

3/3/2012

* Processor checks for interrupts

-« If no interrupts, fetch the next instruction
for the current program

 If an interrupt 1s pending, suspend
execution of the current program, and
execute the interrupt handler

© Dr. Ayman Abdel-Hamid, OS 20

20

3/3/2012

User
Program

@

WRITE

€

WRITE

..______
I' %
LY

-
LY

e
",

P R L e L

LA
Program

Llser 10
Program Prosram
i i "'1

i
| |+
@ | o |®
i _,": I J_' o
1L e = LA
WRITE "= -~ 7 IF Command
] ' i
] i I
@ .
1 Iy
als ox
o b ffi -
S - P Interrupl
@' i o~ ~ . Handler
I”. \"\;‘I -: LTV T
— h)
WRITE S |©
— 1 i | N .
. ENI
@ e B
by »#
L
J F
.
1
@
1 ¥
WRITE

User 10
Proeram Progrram
i [4
I :Ir_.-"'l

|
® @ 4 |®
i 0 P B
S I L= LD
e -t7 Command
WRITE ~=" 1 ¢)
R | [
1 fr
i It
] i
i P
1 '
@ i/
1 Fr
i f 1 -
Interrupt
i
L Handler
e
[L r 1
WRITE 44, 7| | ®
=1 1 ;Tl‘l"'--..l -
I ’ Ir-" EMI
i
i
] i ".Ir
e /s
1 &7
1 fr
(LS
L
Sl e

.

WRITE

{a) Mo inlemupts

(b0 Interrupts; short LA wail

() Interrupts; long A0 wait

Figure 1.5 Program Koy gf.LonirehYYithoyt and With Interrupts

21

3/3/2012

Device controller or

amnd PC onto control
stack

Processor loads new
PC value based on
interrupt

Process interrupt

Restore process state
information

Fi 1,10
B Dr. Ayman

Restore old PSWW
andd PC

E%gglmaem{d?ffg'rupt Processing

22

22

3/3/2012

 Disable interrupts
while an interrupt is
being processed

— Processor ignores
any new interrupt
request signals

(a) Sequentlal Interrupt processing

Interrupt
User Program Handler X
I -4
H I
H '
1 e
1 (o
e i
e |
0| T -l
1
1
1
1
1
1
1
1
1
1
1
1
¥

© Dr. Ayman Abdel-Hamid, (O Nested interrupt processing

i Interrupt
~~ Handler Y

I’
e |

Figure 1.12 Transfer of Control with Multiple Interrupts

23

3/3/2012

 Disable interrupts so processor can
complete task

. Interrupts remain pending until the
processor enables interrupts

 After interrupt handler routine
completes, the processor checks for
additional interrupts

© Dr. Ayman Abdel-Hamid, OS 24

24

3/3/2012

* Higher priority interrupts cause lower-
priority interrupts to wait

. » Causes a lower-priority interrupt handler
to be interrupted

* Example when input arrives from
communication line, it needs to be
absorbed quickly to make room for more

input

© Dr. Ayman Abdel-Hamid, OS 25

25

3/3/2012

| ° Processor has more than one program to
execute

* The sequence the programs are executed
depend on their relative priority and
whether they are waiting for I/O

 After an interrupt handler completes,
control may not return to the program
that was executing at the time of the
interrupt

© Dr. Ayman Abdel-Hamid, OS 26

26

3/3/2012

Figure 1.14 The Memory Hierarchy
© Dr. Ayman Abdel-Hamid, OS 27

27

3/3/2012

~» Decreasing cost per bit

~+ Increasing capacity
|» Increasing access time

* Decreasing frequency of access of the
memory by the processor
— Operation of two-level memory as an example

— locality of reference

© Dr. Ayman Abdel-Hamid, OS 28

28

3/3/2012

| ¢ Invisible to operating system
* Increase the speed of memory

* Processor speed 1s faster than memory
speed

© Dr. Ayman Abdel-Hamid, OS 29

29

3/3/2012

Word Transfer

~A~

‘ CPU l E Cache

Block Transfer

~A

Main Memory

© Dr. Ayman Abdel-Hamid, OS

Figure 1.16 Cache and Main Memory

30

30

3/3/2012

| » Contains a portion of main memory

|« Processor first checks cache

* If not found in cache, the block of
memory containing the needed
information 1s moved to the cache

© Dr. Ayman Abdel-Hamid, OS 31

31

3/3/2012

Line
Number Tag Block
0
1
2
-
L]
-
-1
Block Length
(K Words)
{a) Cache

Memory
address

Lid [l

281

Word
Length

(b} Main memory

Figure 1.17 Cache/Main-Memory Structure

© Dr. Ayman Abdel-Hamid, OS

Block
(K words)

Block

32

32

3/3/2012

Perform in parallel

Deliver RA word
to CPLT

© Dr. Ayman Abdel-Hamid, OS 33

33

3/3/2012

* Cache size
— small caches have a significant impact on
performance
* Block size

— the unit of data exchanged between cache and
main memory

— hit means the information was found in the
cache

— larger block size more hits until probability of

using newly fetched data becomes less than the
probability of reusing data that has been moved
out of c(@a])crl%ye

man Abdel-Hamid, OS 34

34

3/3/2012

* Mapping function

— determines which cache location the block
will occupy

* Replacement algorithm

— determines which block to replace
— Least-Recently-Used (LRU) algorithm

© Dr. Ayman Abdel-Hamid, OS 35

35

3/3/2012

* Write policy

— When the memory write operation takes
place

— Can occur every time block 1s updated

— Can occur only when block is replaced
* Minimizes memory operations

* Leaves memory in an obsolete state

© Dr. Ayman Abdel-Hamid, OS 36

36

3/3/2012

* Programmed I/O

* Interrupt-driven I/O
* Direct Memory Access (DMA)

© Dr. Ayman Abdel-Hamid, OS 37

37

3/3/2012

I/O module performs the
action, not the processor

Sets appropriate bits in the I/O
status register

No interrupts occur

Processor checks status until
operation is complete

© Dr. Ayman Abdel-Hamid, OS

Error

Next instruction

(a} Programmed 1O

38

3/3/2012

Processor is interrupted when
I/O module ready to exchange
data

* Processor is free to do other
work

* No needless waiting

* Consumes a lot of processor
time because every word read or
written passes through the
processor

© Dr. Ayman Abdel-Hamid, OS

Read status

Next instruction
(b} Interrupt-driven /O

Issue Read PU — /O
—» command to -
10 module -

=== Interrupt

Do something
else

Error

39

3/3/2012

* Transfers a block of data
directly to or from
Yicua TR P — DMA

memOI‘y block command Do something

ol modue @77 ™ alse

* An interrupt is sent when
1 Eead status SBRR b e
the task is complete tDMA Interrup

module DMA — CPU

* The processor 1s only
involved at the beginning
and end of the transfer

MNext instruction

ic) Direct memory access

© Dr. Ayman Abdel-Hamid, OS 40

40

