
Threads, SMP, and Microkernels

Chapter 4

Operating Systems

1© Dr. Ayman Abdel-Hamid, OS

Outline

•Section 4.1 � Processes and Threads

2© Dr. Ayman Abdel-Hamid, OS

3

Process so Far

• Resource ownership - process is

allocated a virtual address space to hold

the process image

• Scheduling/execution- follows an

execution path that may be interleaved

with other processes

• These two characteristics are treated

independently by the operating system

© Dr. Ayman Abdel-Hamid, OS

4

Process so Far

• Unit of dispatching is referred to as a

thread or lightweight process

• Unit of resource of ownership is referred

to as a process or task

© Dr. Ayman Abdel-Hamid, OS

5

Multithreading

• Operating system supports multiple

threads of execution within a single

process

– MS-DOS supports a single thread

– Many flavors of UNIX support multiple user

processes but only support one thread per

process

– Windows 2000, Solaris, Linux, Mach, and

OS/2 support multiple threads

© Dr. Ayman Abdel-Hamid, OS

6© Dr. Ayman Abdel-Hamid, OS

7

Process

• In a multithreaded environment, a process is

defined as the unit of resource allocation and a

unit of protection

• Associated with processes

– A virtual address space which holds the process

image

– Protected access to processors, other processes,

files, and I/O resources

• Within a process, there may be one or more

threads

© Dr. Ayman Abdel-Hamid, OS

8

Thread

• An execution state (running, ready, etc.)

• Saved thread context when not running

• Has an execution stack

• Some per-thread static storage for local
variables

• Access to the memory and resources of its
process

– all threads of a process share this

– When one thread alters an item of data in memory,
other threads can see the result and access this item

© Dr. Ayman Abdel-Hamid, OS

9© Dr. Ayman Abdel-Hamid, OS

10

Benefits of Threads

• Takes less time to create a new thread than a
process

• Less time to terminate a thread than a process

• Less time to switch between two threads
within the same process

• Since threads within the same process share
memory and files, they can communicate with
each other without invoking the kernel

• Threads and sharing versus Processes and
message passing

© Dr. Ayman Abdel-Hamid, OS

11

Uses of Threads in a Single-

User Multiprocessing System
• Foreground to background work

– One thread displays menus and reads user input,

while another thread executes user commands and

updates spreadsheet

• Asynchronous processing

– Periodic backup

• Speed execution

– Compute one batch of data while reading next

batch from a device

• Modular program structure

© Dr. Ayman Abdel-Hamid, OS

12

Threads

Scheduling and dispatching

• Suspending a process involves

suspending all threads of the process

since all threads share the same address

space

• Termination of a process, terminates all

threads within the process

© Dr. Ayman Abdel-Hamid, OS

13

Thread States

• Key states: Running, Ready, and Blocked

• 4 basic operations associated with a change in
thread state

– Spawn
• Spawn another thread

– Block

– Unblock

– Finish
• Deallocate register context and stacks

• Does the blocking of a thread result in the
blocking of the entire process?

© Dr. Ayman Abdel-Hamid, OS

14

Remote Procedure Call Using

Threads

© Dr. Ayman Abdel-Hamid, OS

15

Remote Procedure Call Using

Threads

© Dr. Ayman Abdel-Hamid, OS

16

User-Level Threads (ULT)

• All thread management is done by the

application through a threads library

• The kernel is not aware of the existence

of threads

• Threads library creates a data structure

for the new thread and passes control to

one of the threads within the process

using some scheduling algorithm

© Dr. Ayman Abdel-Hamid, OS

17

User-Level Threads (ULT)

• Advantages

– Thread switching does not require kernel
mode privileges

– Can run on any OS (no changes to
underlying kernel)

– Scheduling can be application specific

• Disadvantages

– When a thread is blocked, all threads within
the process are blocked

– Cannot take advantage of multiprocessing

© Dr. Ayman Abdel-Hamid, OS

18

Kernel-Level Threads (KLT)

• W2K, Linux, and OS/2 are examples of this
approach

• Kernel maintains context information for the
process and the threads

• Scheduling is done on a thread basis

• Overcomes drawbacks of ULT

• Disadvantage: transfer of control from one
thread to another within the same process
requires a mode switch to the kernel (see Table
4.1)

© Dr. Ayman Abdel-Hamid, OS

19

Combined Approaches

• Example is Solaris

• Thread creation done in the user space

• Bulk of scheduling and synchronization

of threads done in the user space

• Multiple ULTs from a single application

are mapped onto some (smaller or equal)

number of KLTs

© Dr. Ayman Abdel-Hamid, OS

20© Dr. Ayman Abdel-Hamid, OS

21

Relationship Between Threads

and Processes

Threads:Process Description Example Systems

1:1 Each thread of execution is a

unique process with its own

address space and resources.

Traditional UNIX implementations

M:1 A process defines an address

space and dynamic resource

ownership. Multiple threads

may be created and executed

within that process.

Windows NT, Solaris, OS/2,

OS/390, MACH

© Dr. Ayman Abdel-Hamid, OS

22

Relationship Between Threads

and Processes

Threads:Process Description Example Systems

1:M A thread may migrate from one

process environment to

another. This allows a thread

to be easily moved among

distinct systems.

Ra (Clouds), Emerald

M:M Combines attributes of M:1

and 1:M cases

TRIX (experimental)

© Dr. Ayman Abdel-Hamid, OS

