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Performance Computing

High-performance computing could significantly benefit from publish–subscribe

communication, but current systems don’t deliver the kind of performance

required by applications in that domain. In response, the authors developed Echo,

a high-performance event-delivery middleware designed to scale to the data rates

typically found in grid environments. This article provides an overview of Echo,

the infrastructure on which it’s built, and the techniques used to implement it.

Event-based communication is an
important component of many
distributed applications and services.

The publish–subscribe paradigm it
supports is well-suited to the reactive
nature of many novel applications
(including collaborative-environment,
mobile, and pervasive computing), allow-
ing subscribers to state their interests and
receive notification of any publisher-
issued event that meets that interest. This
decoupled approach to communication
aids system adaptability, scalability, and
fault tolerance1 because it enables the
rapid and dynamic integration of legacy
software into distributed systems, sup-
ports software reuse, facilitates software
evolution, and fits with the component-
based approaches that have become
increasingly popular in wide-area high-
performance computing.

Unfortunately, most existing publish–
subscribe systems also impose substantial
overhead, delivering significantly less

than the bandwidth and latency available
from the raw network. This situation has
limited the application of such systems in
high-performance computing, in which
computational progress often depends
directly on delivered network throughput. 

In response to these challenges, we
developed Echo at Georgia Tech as a
high-performance event-delivery middle-
ware designed to scale to the data rates
found in grid-style computing envi-
ronments (www.cc.gatech.edu/systems/
projects/ECho). Echo lets applications
reap the maximum benefit from available
bandwidth by allowing receivers to cus-
tomize delivery through derived event
channels, mechanisms that can operate at
network transmission speeds.

Echo Functionality
Echo supports semantics common to both
channel- and type-based publish–subscribe
systems.1 With channel-based subscrip-
tion, an event channel is the mechanism
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through which event sinks and sources are matched:
source clients publish events to a specific channel,
and the sink clients subscribed to that channel
receive notification of the event. In addition, Echo
supports typed channels, which transmit and han-
dle fully typed events.

Efficient Event Notification
Many event service implementations are central-
ized in some way, either with an overall event
server or with specific objects representing each
channel. To avoid the potential reliability and per-
formance problems associated with centralized
approaches, Echo event channels are lightweight,
fully distributed, virtual entities. 

Figure 1a depicts a set of processes communi-
cating via event channels. In the figure, the chan-
nels exist in the space between processes, but in
practice, they’re distributed, with bookkeeping data
residing in each process in which they’re refer-
enced (see Figure 1b). The process that creates the
event channel is distinguished because it’s the con-
tact point for other processes wishing to use the
channel. The distribution of event notifications,
however, is completely decentralized and makes no
distinctions among processes. A source sends event
messages directly to all sinks, and network traffic
for individual channels is multiplexed over shared
communication links. Sharing the communication
links helps ensure that Echo event channels are
lightweight entities, thus allowing many to coexist
in a single process. (Some high-performance sys-
tems with multi-endpoint delivery needs can ben-
efit from overlay networks that use intermediate
nodes to help multiplex and relay events. We
describe Echo’s support for those systems later.)

Event Notification Types and Typed Channels
One of Echo’s differentiating characteristics is its
support for efficient transmission and handling of
fully typed events. Some event delivery systems
leave event data marshalling to the application; oth-
ers support only generalized name–value pairs to
represent all or part of the event data. In contrast,
Echo allows structured types to be associated with
event channels, sinks, and sources, and automati-
cally handles heterogeneous data transfer issues.

Echo is implemented on top of Portable Bina-
ry I/O (PBIO),2 a package developed at Georgia
Tech to simplify heterogeneous binary data trans-
fer. Building marshalling functionality into Echo
using PBIO allows for layering that nearly elimi-
nates data copies during marshalling and unmar-

shalling. As other researchers have noted,3 mini-
mizing these data copies is critical to delivering
full network bandwidth to higher levels of software
abstraction. Layering with PBIO makes Echo suit-
able for applications that demand high-perfor-
mance communication of large amounts of data.
In particular, because PBIO and Echo can directly
transport structured types, memory-resident data
in a source program can be published, sent to sub-
scribers, and recreated as memory-resident data at
the destination with minimal transformation.

Base type handling and optimization. In the context
of high-performance messaging, Echo event types
are most functionally similar to the user-defined
types found in the message-passing interface (MPI),
a widely used standard in high-performance sys-
tems. The main differences are in expressive power
and implementation. Like MPI’s user-defined types,
Echo event types describe C-style structures made
up of atomic data types. Both systems support nest-
ed structures and statically sized arrays, but Echo’s
type system extends this to support null-terminated
strings and dynamically sized arrays. (Dynamic array
sizes are given by an integer-typed field in the
record. Full information about the types Echo and
PBIO support appears elsewhere.2)

The full declaration of message types to the
underlying communication systems, as supported
by Echo and MPI, makes several performance opti-
mizations possible: it lets the underlying communi-
cation system optimize buffer usage, minimize
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Figure 1. Using event channels for communication. In an (a) abstract
view of event channels and (b) an Echo realization of event
channels, we see the decentralized structure of Echo’s realization.

Process boundary

Source/publisher

Sink/subscriber

Event channel(a) (b)



copying, and exploit the sending and receiving sys-
tems’ characteristics. Unlike many MPI implemen-
tations, Echo and PBIO exploit this by combining
native data representation (NDR) with the dynamic
generation of unmarshalling routines. The reliance
on NDR lets Echo and PBIO avoid the overhead
associated with intermediate wire formats by using
the sender’s NDR as the wire format. A wire format
is the representation of data during transmission,
such as the external data representation (XDR) or
the Internet Inter-Orb Protocol (IIOP); it is typical-
ly fixed and agreed upon in advance. On the receiv-
ing side, we must convert from the wire format (that
is, the sender’s NDR) to the receiver’s native format
— a process commonly referred to as unmarshalling.
If necessary, PBIO converts the receiver’s native rep-
resentation upon receipt by dynamically generat-
ing conversion routines. As we’ve previously
shown,4 PBIO encode times don’t vary with data
size, and its decode times are much faster than
MPI’s. Given that as much as two-thirds of the
latency in a heterogeneous message exchange is
software conversion overhead,4 PBIO’s NDR
approach yields round-trip message latencies as low
as 40 percent compared to that of MPI.

In PBIO and Echo, each marshalled data pack-
age contains a format cookie (similar to the
markup in an XML document) that identifies the
meta-information associated with the data. The
interested party can then retrieve the meta-
information required to decode and process an
event, thus allowing intervening hosts to filter or
transform events without a priori knowledge of the
event’s contents. Once retrieved, PBIO caches the
meta-information for reuse. Because data streams
in high-performance computing typically consist
of data that can be described with only a few
structured types, meta-information retrieval has a
minimal impact on steady-state performance.

Type extension. Echo supports the robust evolu-
tion of sets of programs communicating with
events by allowing variation in the data types
associated with a single channel. In particular, a
source can submit an event whose type is a super-
set of the type associated with its channel. Con-
versely, an event sink can have a type that is a
subset of the event type associated with its chan-
nel. This enables the independent and unsynchro-
nized evolution of event types at either end
without disrupting previously set communications.
Echo even allows type variation in intraprocess
communication, imposing no conversions when

source and sink use identical types, but perform-
ing the necessary transformations when source
and sink types differ in content or layout.

In terms of flexibility, Echo’s features most
closely resemble those systems that support the
marshalling of objects as messages. In such sys-
tems, the support that subclassing and type exten-
sion provide for robust system evolution is
substantively similar to that provided by Echo’s
type variation, but object-based marshalling often
suffers from prohibitively poor performance. XML-
based messaging systems naturally offer a type-
flexible coupling between event sources and sinks
because of XML parser characteristics. However,
the performance overhead of XML-based messag-
ing (due to the required binary-encoded/text/
binary-encoded conversions and the transport of
significantly larger messages) makes it unsuitable
for the needs of high-performance computing
applications. Echo’s strength is that it maintains the
application integration advantages of object- and
XML-based systems while offering communication
performance that, in many cases, outperforms more
traditional (and rigid) message-passing systems.

Basic Data Exchange Performance
Echo’s delivered bandwidth and latency are near
what the raw network offers when it transports a
similar number of bytes between user-level appli-
cation endpoints. Its performance advantage is due
mostly to its adoption of NDR4 as a wire format
with out-of-band access to the message’s meta-
information. This, together with careful software
layering, allows event data to be written directly
to the wire from memory without any copies or
transformation. At the destination, the receiving
process can often use the data directly from the
receive buffer without further transformation.
When transformation is necessary due to different
native data formats, Echo relies on dynamically
generated subroutines. Figure 2 provides relative
performance measures; a detailed discussion of
Echo’s performance characteristics and the sources
of its performance advantages appear elsewhere.4–6

Event Filtering 
and Transformation
Event subscription schemes differ in the ways in
which users specify their events of interest. Beyond
subscription schemes, a few event systems provide
some form of filtering mechanisms to allow for
more specific customization of the event stream.
Echo’s principal contribution to specializing data
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flows is the concept and realization of derived
event channels.

Echo’s derived event channel bears some simi-
larity to prior work on content-based filtering and
pattern-based filtering and transformation.7 How-
ever, Echo allows general computations over event
data and ensures their efficient execution through
the use of dynamic code generation (DCG) and the
reliance on decentralized event distribution. The
Java-based approach of Distributed Asynchronous
Collections8 offers broad generality in content-
based subscriptions, but it lacks the transforma-
tion capacity of derived event channels and offers
significantly lower throughput and higher latency
than Echo.

Derived Event Channels
Echo’s approach to event channel customization is
to extend the channels via derivation. Applications
that want to customize their event data can create
a new channel whose contents are derived from
those of a preexisting channel through an appli-
cation-provided derivation function, F. The event
channel implementation moves this function to all
event sources in the original channel, executes it
locally whenever events are submitted, and trans-
mits any resulting event via the derived channel.
If the derived event channel’s sinks are local to any
of the sources in the original setup, network traffic
between them is avoided entirely. This has the
advantage of eliminating unwanted event traffic
and the associated waste of computational and
network resources.

Mobile Functions and the E-Code Language
A critical issue when implementing derived event
channels is the nature of the function F and its
specification. Because the client specifies F to be
evaluated at the (possibly remote) source, a simple
function pointer is obviously insufficient. Corba
and Siena use a relatively restricted filter language
(for example, a combination of Boolean operators),9

an approach that enables efficient interpretation,
but can limit the system’s applicability. Ideally, we
could express F through a more general program-
ming language. Although this is relatively easy to
support in a homogeneous system using dynamic
linked libraries (DLLs), it becomes particularly dif-
ficult in heterogeneous settings, especially if type
safety is to be maintained. Opting for an interpret-
ed language (such as TCL or Java) avoids problems
with heterogeneity, but at the cost of performance.

Given Echo’s target domain of high-perfor-
mance computing, and based on the observation
that most commonly used or required filters are
relatively simple, we made Echo’s derived event
channel rely on a small language, E-Code,10 as well
as DCG. We express the function F in E-Code and
use dynamic code generation to create a native
version of F on the source host. E-code is current-
ly a subset of C, supporting C operators, for loops,
if statements, and return statements.

E-Code’s dynamic code generation capabilities
are based on a Georgia Tech DCG package that
provides virtual reduced instruction set computing
(RISC). E-Code consists primarily of a lexer, parser,
semanticizer, and code generator and is the equiv-
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Figure 2. Relative performance. Echo’s performance with respect to (a) round-trip latency and (b) delivered bandwidth
shows that Echo delivers more bandwidth at a lower latency across a range of data structure sizes.
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alent of a just-in-time compiler. As such, the E-
Code/RISC system generates native machine code
directly into the application’s memory without ref-
erence to an external compiler. Because E-Code is
designed to operate on the fully described and
array-bounded structured data types that PBIO
supports, E-Code can ensure that the generated
code doesn’t reference memory other than what
the event provided to it. Thus, Echo doesn’t have
to rely on a virtual machine or other sandboxing
techniques, and its generated filters and transfor-
mations can run at roughly the speed of unopti-
mized native code. Generating native code for an
E-Code subroutine is considerably faster than fork-
ing an external compiler — for example, for a 66-
line-integer gray-scaling code, ECL requires only
4 ms to generate native code, whereas forking the
GNU C compiler (GCC) requires 700 ms.

Echo currently supports two uses of derived
event channels. In its simplest mode, the derived
channel’s event type is the same as that of the
original channel. In this case, the E-Code required
is a Boolean filter function that accepts a single
parameter, which is the input event. If the function

operating on an event returns a nonzero value,
Echo submits the event to the derived event chan-
nel; otherwise, it’s filtered out. Event filters can be
quite simple, such as the stock-trading example in
Figure 3a, which passes trade information into the
derived event channel only when the stock is trad-
ing outside of a specified range. When used to
derive a channel, Echo transports this code in
string form to the event sources associated with
the parent channel, which is where Echo parses it
and generates its native code. Echo evaluates the
code string in the context of a function declara-
tion of the form

input f(�input event type� input)

where �input event type� is the type associated
with the parent channel. Once derived, the creat-
ed channel behaves as a normal channel with
respect to sinks. It has all the parent channel’s
sources as implicit sources, but any new sources
providing unfiltered events could also be associ-
ated with it. Because the derived event channel is
a full-fledged channel, its content is also subject
to chained derivations that further customize the
data stream.

Beyond this basic mode, Echo also supports
derived event channels in which the event type
associated with the derived channel is different
from that of the parent channel. In this case, Echo
adds an output parameter to the function declara-
tion described earlier: the generated code is respon-
sible for initializing all the output data structure’s
elements, as in the example in Figure 3b, which is
taken from a global climate simulation. The rela-
tive performance gains from event filtering depend
directly on the proportion of filtered-out events or
the size reduction achieved by event transforma-
tion, and are thus very application-specific.

Underlying System
The facilities described so far give a simple view
of Echo’s external interfaces, but Echo typically
targets complex, large-scale environments and set-
tings in which massive data streams must be deliv-
ered to multiple clients with some degree of
application-level, quality-of-service requirements. 

We built early versions of Echo on a PBIO-
based point-to-point messaging system that
always performed direct source-to-sink event
delivery. This approach delivers the targeted results
in cluster-based high-performance computing
environments, but in enterprise or wide-area envi-
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Figure 3. Example ECL event filter/transformation functions. A
specialization filter (a) passes only those stock trades outside a
predefined range and (b) computes the average of an input array
and passes the average to its output.

{
if ((input.trade_price < 75.5) || 

(input.trade_price > 78.5)) {
return 1; /* submit to derived */

} 
return 0; /* do not submit to derived */

}
(a)

{
int i; 
int j; 
double sum = 0.0; 
for(i = 0; i<37; i= i+1) {
for(j = 0; j<253; j=j+1) {
sum = sum + input.wind_velocity[j][i];

}
} 
output.av_velocity = sum / (37 * 253); 
return 1;

}
(b)



ronments, point-to-point messaging can limit
application scalability with respect to the number
of sinks or subscribers per notification. 

To address this issue, as well as to provide an
infrastructure for continuing research in adaptive
delivery, our recent work builds on EVPath, a pack-
age for facilitating the construction of event noti-
fication overlay networks. Work on EVPath began
in late 2004, and although it isn’t available for dis-
tribution yet, you can find preliminary information
at www.cc.gatech.edu/systems/projects/EVPath.

Overlays: EVPath
EVPath is a middleware package designed to facil-
itate the dynamic composition of overlay networks
for message passing. Instead of imposing a partic-
ular overlay, EVPath focuses on a link’s character-
istic monitoring (such as available link bandwidth,
processing load, and event rates), overlay control,
and actual data handling. For global decisions on
the suitability of overlay paths, service placement,
and so on, EVPath relies on higher-level controls.

Although EVPath is designed to implement the
paths over which data can travel, it doesn’t imple-
ment a path abstraction itself. Instead, the princi-
pal abstractions in EVPath are stones (similar to
stepping stones), which, when linked together,
compose a data path. Message flows between
stones can be both intra- and interprocess, with
interprocess flows managed by special output
stones. Other types of stones include terminal
stones, which implement data sinks; filter stones,
which transform data; and split stones, which
implement data-based routing decisions and can

redirect incoming data to one or more other stones
for further processing.

All stones have associated queues that hold
incoming data before it’s processed. For output
stones, data can accumulate in the queue if an out-
going network link is congested. Output stones
have congestion handlers that can discard events
or perform other application-specified data reduc-
tions. For other types of stones, the queue serves
only as a temporary stopping point during normal
operation because immediate processing and
transfer to the next stone is almost always possi-
ble. However, the ability to freeze portions of the
message flow for a period of time is essential for
dynamically reconfiguring the path without dis-
rupting the current data-processing activity. Fig-
ure 4a shows an overlay experiencing difficulty
caused by either a compute overload on one of the
processing nodes or undue congestion in one of
the associated network links. Figure 4b shows the
same logical overlay, but the problems have been
relieved by adding an extra stone, to which some
of the data from the problematic stone is offloaded.
In this case, an upstream stone responsible for
splitting the data between the two processing
nodes and a downstream node that reassembles the
stream have also been added.

To support the enactment of this kind of
dynamic overlay change, EVPath lets higher soft-
ware layers suspend processing in stones, relocate
queued events, create and destroy stones, and
modify those stones’ linkages. It also has built-in
mechanisms for monitoring and collecting suitable
information relating to system performance and
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Figure 4. Changes in an overlay network. (a) An overlay with localized congestion or computational overload, and (b) the
same overlay with additional processing stones.
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capabilities, making such information available as
attributes to higher-level decision-making layers
(which manage the overlays to ensure desired end-
to-end quality characteristics). Echo’s current use
of EVPath is in its infancy, but it’s developing into
a system that constructs optimized overlay net-
works on the fly and includes the ability to migrate
processing (such as derived event channel filters)
into interior network nodes.

Advanced Topics
We designed EVPath and Echo to be extensible
research tools. As such, they must be flexible enough
to perform and support investigation in a variety of
situations — EVPath, for example, is designed as an
enactment layer that supports message passing on
overlay networks. Because the construction, opti-
mization, and management of overlay networks is
an active research area,11 EVPath isn’t customized
for a particular overlay mechanism, but relies instead
on an external overlay management layer.

Support for congestion handlers and network
monitoring in EVPath is designed to support the
creation of applications that can adapt and
respond appropriately to changes in network-level
conditions, customizing their own behavior and
bandwidth demands as well as potentially adapt-
ing the network protocols themselves.12 Network
monitoring also informs overlay creation and
management. Our Active Streams13 project demon-
strates early work in these directions. With Active
Streams, we explored a novel approach that, by
leveraging much of this infrastructure, aims to
facilitate the task of building large-scale distrib-
uted systems for heterogeneous, highly dynamic
environments through the online composition,
mapping, and steering of filters on data streams.

Most component-based systems rely on publish–
subscribe infrastructures for integration. To

take full advantage of the component-based
approach, our work on Echo extends the applica-
bility of publish–subscribe to encompass applica-
tions' main, performance-intensive, data flows.

Echo has been in continuous use for more than
five years, in applications ranging from corporate
information flow models to high-performance sci-
entific computations. In our ongoing work, we’re
investigating application-level event filters that can
customize information flow based on dynamic net-
work resource availability such as bandwidth and
end-to-end latency. We envision Echo extensions

that allow the messaging system to play a more
active role in resolving the versioning differences
resulting from application evolution, including
techniques such as message morphing.14 Because
Echo filters are simple and transportable, we might
be able to migrate them to the most appropriate
location in both a single node’s network stack and
over the multiple nodes in the data path. We’re cur-
rently integrating new overlay management
schemes to enable filter migration over the net-
work. We’re working toward moving such func-
tionality into “smart” network routers. In a local
node, we’ve been able to place them at different
levels in the network stack, into the kernel, and
even attached into network interface cards.
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