
Peer-to-Peer Architecture and Protocol for a 
Massively Multiplayer Online Game 

Madjid Merabti and Abdennour El Rhalibi  
School of Computing and Mathematical sciences 

Liverpool John Moores Unversity 
Liverpool, UK 

a.elrhalibi@livjm.ac.uk ; m.merabti@livjm.ac.uk  
 
 

Abstract— Massively Multiplayer Online Games (MMOGs) are 
becoming a very important part of computer entertainment 
business. With recent development of broadband technologies, 
the increase of the number of players is putting a strong 
pressure on this type of applications. Commonly used 
clients/server systems do not cope well with scalability, limiting 
the number of players who interact with each other, are not 
robust enough and might be subject to bottleneck due to their 
centralized infrastructure. These systems also force the 
developers to invest enormous amount of money on hardware 
and time to design complex software systems. To solve these 
problems we propose a fully distributed, peer-to-peer 
architecture for MMOGs. 

In this paper we discuss the issues surrounding MMOGs, the 
limitations in term of network infrastructure, and the lack of 
simulation environment to study and evaluate network 
architecture and protocol. We use a peer-to-peer (P2P) based 
architecture and protocol to provide a more scalable, flexible 
and robust technology solution than currently used 
infrastructures. We have conducted the design and 
implementation of a modular MMOG: ‘Time-Prisoners’, using 
a P2P protocol developed in Java and JXTA. The 
characteristics of P2P overlays enable to organize dynamically, 
and in transparent way for the users, the group of players 
according to their locations in the virtual world, and allow to 
design scalable mechanism to distribute the game state to the 
players and to maintain the world consistent in case of node 
failures.  

Keywords- Peer-to-Peer Architecture; MMOG; Online 
Gaming; JXTA; protocol; Agent Design. 

I.  INTRODUCTION  
Massively Multiplayer Online Games (MMOGs) [1] are 

one of the most interesting genres of modern computer 
games. Born out of the internet boom in the mid to late 90’s, 
they have rapidly gained in popularity. The most popular 
MMOG, Lineage [2] claims to have over four million active 
subscribers. MMOGs, as the name suggests, are online 
games played simultaneously with tens of thousands of 
players at one time. The games require an internet 
connection to play. Each player has a copy of the software 
installed on their machine, which uses the internet 
connection to connect to a central game server, which in 
turns keeps all the players up to date with what is occurring 
in the world. Traditionally, most MMOGs have been 

Tolkien-esque fantasy role-playing games. While games of 
this type are still extremely popular, only recently has the 
full potential of this medium been realized, with games such 
as Planetside [3], Star Wars Galaxies [4], The Sims Online 
[5] and EVE [6] appealing to a broad range of player types. 

MMOGs nearly always charge a subscription fee to each 
player in addition to the initial cost of purchasing the game 
client. This subscription payment is used to cover the costs 
generated by the game: Customer Service, Patches, Content 
Updates, Data Storage, Server Maintenance and Bandwidth 
[7]. 

The last three make up the largest proportion of the cost. 
These costs are not directly spent on improving the gameplay 
for the players, but are a necessity to support the client/server 
model that forms the backbone of the game. By changing the 
network topology used to support MMOGs, these costs could 
be reduced. These savings could be then passed on to the 
player, greatly reducing the costs, or alternatively spent on 
developing the game further. The paper discusses the 
feasibility of using peer-to-peer (P2P) overlays [8] to support 
a typical MMOG, as a replacement for the client/server 
model. The technical details of these two topologies will be 
discussed, along with the issues. P2P infrastructure provides 
a better, cheaper, more flexible, robust and scalable 
technology solution for MMOGs.  

The rest of the paper is organized as follows: section 2 
provides background information about current MMOG 
network architectures and P2P overlays, section 3 briefly 
presents the application we have developed to deploy in a 
P2P overlays, section 4 introduces the P2P architecture we 
propose, introduce the software architecture meta-model and 
a protocol, and discusses the issues and possible solutions in 
the P2P architecture proposed, section 5 introduce some 
aspects of our communication system implementation, and 
finally in section 6 we review the concepts presented in this 
paper, conclude on the viability of the approach and present 
the future work. 

II. CURRENT MMOG ARCHITECTURE AND 
TECHNOLOGIES  

In this section we discuss some currently available 
topologies, which are or could be used for MMOGs. We also 
discuss some of the P2P overlays available. 

Globecom 2004 Workshops 519 0-7803-8798-8/04/$20.00 ©2004 IEEE
IEEE Communications Society



A. Client/Server Topology for MMOG) 
The client/server network topology is very common in 

MMOGs [1][9]. Typically there is a group of “client” 
machines who want to share information, be they financial 
reports or game data. Each client connects directly to a 
server, which deals out information individually to each 
client as it is requested. This kind of topology commonly 
used in small-scale multiplayer games such as Half-Life 
[10]. One player chooses to be the server and host the game, 
then all the other players connect directly to his machine. 
Whenever a client shoots a gun, moves or performs another 
action, the data is sent to the server, which calculates the 
results of that action and forwards the result to all client 
machines connected. 

A single server is fine for small-scale multiplayer games, 
where the number of players is up to around 64, but a single 
machine is usually not sufficient to deal with thousands of 
players synchronously, so typically a MMOG “server” is a 
group of machines with dedicated responsibilities, as is seen 
in figure 1. This diagram is only one possible configuration 
of machines that could make up the server component of a 
MMOG. Each different machine has a different 
responsibility to the game. The whole “cluster” of machines 
operates using grid computing [11] methods to dynamically 
share resources and ensure consistency across the cluster. 
When a client first attempts to connect to the game, they 
connect to the login server, which checks the user exists, has 
a password, and has a paid up account. They may then be 
forwarded to the patch server, which checks the client 
version, and can send any game updates. When the patch 
server has confirmed the client version is up to date, they are 
connected to a game server and, perhaps, a separate chat 
server. In this example the chat server handles all player to 
player communication, regardless of where they are in the 
virtual gameworld and the game server handles everything 
else (e.g. physics, trading, combat). In this example, the 
“game server” is again split into several smaller sub-servers. 
These sub-servers could, for example, each handle a certain 
geographical area of the gameworld. 

Login Server

ClientClientClient

Patch Serv er

SubserverSubserv er

Chat Server

Subserver

Game Server Group

Client

MMOG Server Group

 

Figure 1.  Possible MMOG Server Model 

This server model is only one of many possibilities [1]. 
Some games split the responsibilities of the servers in 
different ways, for example having dedicated servers for 

databases, physics or even Artificial Intelligence. One thing 
common to nearly all modern MMOGs is that the server 
group acts as the single server in the basic server/client 
topology, so they all suffer from the cost overhead of 
running and supporting so many machines. With many 
modern games there are even many clusters of servers, 
sometime referred to as “shards”, that allow many distinct 
copies of the game to coexist. Usually these server clusters 
are located at different places in the real world, allowing 
players to use the clusters located near to them 
geographically, thus reducing the effect of network latency 
or “lag” [1][13]. 

In client/server infrastructure for MMOGs there are many 
known issues and solutions related to scalability [14], 
robustness [8], security and proof-cheating [1][16], 
bandwidth savings[8], network and transport protocol [15], 
and delay compensation techniques [13]. However the 
solutions usually employed are costly and lack of flexibility. 
For example in the case of the scalability the architecture 
usually uses server clusters, connected by LANs, or forming 
a computer grid. Although this architecture scale with the 
number of players, the server might need to be over-
provisioned to handle peaks loads [14]. 

B. Peer-to-Peer Topology and Overlays  
Peer-to-peer [8][17], or “P2P”, networking has become a 

bit of a technological buzzword in the past few years. It has 
been popularized by file sharing applications like Kazaa 
[18], Gnutella[19] and Morpheus[20], who use the 
technology to build ad-hoc networks to allow sharing of 
files. 

 

Node Node

NodeNode

Node  

Figure 2.  Basic P2P Topology 

Figure 2 shows a very basic illustration of how a peer-to-
peer network is organized. In essence, each “Node” on the 
network has exactly the same responsibilities as every other 
node. It has no requirement for a particular machine to be in 
the network, and no other node has a requirement for it. This 
example is simplified, as modern P2P networks do not 
usually work with this basic a structure. While each node is 
still capable of the same functions as each other, modern P2P 

Globecom 2004 Workshops 520 0-7803-8798-8/04/$20.00 ©2004 IEEE
IEEE Communications Society



networks are able to organize themselves into more efficient 
structures.  

Peer-to-peer networks have a lot of advantages over 
networks using the traditional server/client model used by 
MMOGs. Firstly there is the issue of cost. The network is 
distributed among the clients, and does not require a central 
server in order to work. The computation usually done by the 
server machine is shared instead by the clients. The peer-to-
peer network of client machines can be treated as a giant grid 
computer, where calculations are performed in different parts 
of the conceptual “whole”. This is similar to grid computing 
projects such as the SETI@Home[21] projects. If the entire 
server infrastructure (or even just a fraction) of a MMOG can 
be replaced by a grid-like system, a massive saving can be 
made. The amount of bandwidth used is reduced 
dramatically. Where before two clients wanting to 
communicate would be required to do so through the server, 
effectively doubling the amount of bandwidth required in a 
P2P network where they can communicate directly.  

Latency on the network is also reduced thanks to the 
elimination of the bottleneck caused by a server handling all 
information between all clients, regardless of who each client 
is trying to communicate with. 

In the next section we discuss available P2P overlays and 
their suitability for building multi-platform support for 
MMOGs. 

A number of P2P protocols have been recently devised, 
including JXTA [27], Pastry [17], Tapestry [17], Chord[17] 
and Can[17]. They are self-organizing, decentralized systems 
and provide the functionality of scalable distributed hash 
table (DHT) [17]. The systems balance object hosting and 
query load, transparently reconfigure after node failures, and 
provide efficient routing queries [15][24]. 

We are particularly interested in JXTA [17] which 
provides a far more abstract language for peer 
communication than previous P2P protocols, enabling a 
wider variety of services, devices, and network transports to 
be used in P2P networks. 

JXTA is meant to provide a basic set of services and 
APIs required for the development of any peer-to-peer 
application. The architecture of JXTA divides the software 
into three layers: the JXTA core, JXTA services and JXTA 
applications [27]. The core implements all the basic concepts 
involved in P2P communication. In particular, it provides the 
necessary functions for the management of peers and inter-
peer message exchange. Furthermore, the core handles peer 
discovery and monitoring. The JXTA services layer is 
responsible for generic services that may be required in 
common P2P situations, such as file sharing and indexing. 
The JXTA applications layer is reserved for applications 
developed by the applications developers. It is in this layer 
that our application will reside. 

Peers are organized into centers of interest called peer 
groups, which segregate the different communities 
participating in the JXTA network, and provide a way to 
control the propagation of broadcast traffic, for example. 

Peers communicate by sending messages over JXTA 
pipes. These provide a transport-agnostic abstraction of the 
message exchange to client applications. Because pipes 
make use of the underlying transport protocol, whatever it 
may be, nothing can be assumed about the reliability of 
messages sent over JXTA pipes. It is, however, possible for 
developers to design their application so as to ensure 
reliability by implementing their own scheme, for example 
using TCP, UDP or even more specialized recent solutions 
such as GTP [15] and event synchronization protocol [28]. 

We can see that because of its rich set of P2P 
functionality, JXTA is eminently suited to our application. 
Augmented with a judicious reliability design, it provides an 
excellent starting point for a P2P based MMOG. 

Before presenting the P2P architecture and protocol, we 
discuss the specification of the Game ‘Time Prisoners’ we 
have designed and implemented as a MMOG. 

III. ‘TIME PRISONERS’ MMOG SPECIFICATION 
In this section we briefly present the specification of the 

game we have developed as a test-bed to deploy and test our 
P2P MMOG network over the internet.  

The first step in the development of an MMOG is to 
design the gameplay itself, in both its technical and 
functional [22]. The game we have developed is ‘Time 
Prisoners’. In figure 3, we can see screen shots depicting 
some of the regions and levels of the game. 

The game-world is composed of ‘parallel’ worlds 
representing different donjons/regions and time (medieval, 
modern-war, etc…) in which the player must complete 
missions which consist in freeing prisoners, and fighting 
monsters/guards which wander in the world. Each 
region/time is composed of several levels, with puzzles to 
solve (maze to access the prisoners, finding trigger or keys to 
open levels, etc…) and items to collect (potion, ammunition, 
keys, etc…). 

Players can navigate from region/time to region/time and 
see their character changes appearance and weapons to 
match the region/time style. There are two types of NPCs the 
prisoners and the monsters/guards. The AI controlling the 
NPCs (prisoners and monsters) is implemented using fuzzy 
finite-states machines [23], path-finding [23], influence 
mapping [23] and support Dead Reckoning [13]. 

The interactions (implemented as collision events) are 
numerous between players, players and NPCs, players and 
items, prisoners and guards, and all the characters with wall 
and objects. The world is relatively complex in terms of the 
events generated and the number of world updates which 
will be required. 

The players can start to play in whatever region they 
want, and when they first join the game their machine will be 
either attached as client to an existing peer-group playing in 
the same region/level, or will be assigned the role of the 
main node (the server) of a new peer-group of future clients 
which will be playing in the same region/level. 

Globecom 2004 Workshops 521 0-7803-8798-8/04/$20.00 ©2004 IEEE
IEEE Communications Society



 
 

 

 

 

 

 

 

 

 
 

 

 

Figure 3.  Screen shots of different world and levels in ‘Time Prisoners’ 

Having briefly described our game application, we 
present in the next section the P2P architecture and protocol. 

IV. A PEER-TO-PEER ARCHITECTURE AND PROTOCOL 
FOR MMOGS 

In section 2, we have mainly been concerned with 
examining the two extreme topologies available to MMOGs. 
However there are many hybrid techniques [1] that can 
overcome some of the issues outlined with the ‘pure’ 
topologies. 

A. A P2P Topology  
The topology we propose is a hybrid solution starting 

with an initial architecture based on a main server, and 
building-up a P2P topology as the number of players 
increases (see Figure 4). 

 As the players connect to the game, the server delegates 
more and more of its role as game and 
network/communication manager to the connected player 
machines, which self-organize in a P2P fashion. The peers 
still rely on the initial server to join and leave the game, and 
to help them discover their peer-group if already created and 
to receive the game data when a new region is required. 
However all the in-game communications once the players is 
connected to his peer-group are done in P2P fashion. 

  

 

 

 

 

 

 

 

 

Figure 4.  Proposed Architecture 

The architecture still allows the developers to maintain 
direct control and authority over the players account 
information, which are more secure when subscriptions and 
personal details are involved. A simple example is that of the 
‘Login’ and account management server are kept away from 
the peer-to-peer network. They are managed into a separate 
client/server network style that acts as a gateway into the 
game. This separate network doesn’t involve the client/server 
issues mentioned as it is only a one-off connection for the 
players. Once a joining player has been checked, he will 
granted connection to his peer-group and will be managed in 
a P2P game session until he leaves the game. 

The architecture is flexible, robust and dynamic. Several 
spatial data structures are used to control peers group and 
their relations in a dynamic way, and to map the peer-groups.  

In the following sections we discuss the meta-model 
architecture and the P2P protocol for joining and leaving the 
game. This protocol is the more important as regards to the 
P2P architecture. 

 

World Map Partitioning

Peers Control Hierarchy

Instance of a P2P Architecture

Main Server

A

C

B

S

D

E

F S

A

D E F

BC

World Map Partitioning

Peers Control Hierarchy

Instance of a P2P Architecture

World Map Partitioning

Peers Control Hierarchy

Instance of a P2P Architecture

Main Server

A

C

B

S

D

E

F S

A

D E F

BC

  

Globecom 2004 Workshops 522 0-7803-8798-8/04/$20.00 ©2004 IEEE
IEEE Communications Society



B. Meta-Model Architecture  
The first step in our P2P architecture and protocol 

development is the design of an agent based meta-model 
architecture. We have defined a high level design based on 
mobile agent model and suitable for the development of the 
MMOG and a simulation environment. Our meta-model 
architecture provides the rules to develop a simulation 
environment for MMOGs, and to implement an instance of 
P2P protocol for MMOGs. Using a mobile agent model we 
can represent all the dynamic and static aspects of our 
MMOG.  

Our agent behavior model consists of three levels of 
design: the system-level, the host-level, and the agent-level. 
The system-level design describes an overview of the system 
and the relationships among hosts in the system. Host-level 
design uses State-chart to describe the behavior between 
agents within a host and between hosts, for example 
communication. Agent-level design uses finite state 
machines to describe the behavior of a single agent.  

We have also incorporated the concepts of agent cloning, 
host replication, and agent groups within our framework.  

To support multi-agent organization, communication and 
coordination as a P2P infrastructure, we also incorporate the 
concept of agent groups. Any agent within the agent group 
may perform multicast or subcast. A multicast 
communication allows an agent in the group to send a 
message to all other agents in the group, no matter where the 
agents are in the system. A subcast allows an agent to send a 
message to a subset of the group. Agent groups are identified 
by name, thus an agent may join a group by merely 
specifying its name. 

Figure 5.  Agent communication level 

The overall system behavior can be seen as an emergent 
property of the concurrent execution of all agents in the 
system. Our framework enables the understanding of P2P 
based MMOG design using mobile agents by specifying and 
simulating behavior on various levels. 

V. HIGH LEVEL DESIGN OF AGENTS ARCHITECTURE 
In this section we will concentrate on the user 

management aspects of the MMOG system. The 
requirements for the MMOG system are as follows: There 
exists only one central database server where all usernames 
and passwords are stored. The Central Database Server is 
connected to Region Servers (which are the first 
players/clients logging to region in the virtual world where 
there are no other players). Each Region Server handles a 
different region in the virtual world. Once the Region Server 
is initiated, to join the virtual world, each user uses a client to 
connect to the Region Server which represents the particular 
region. Region Servers notify the Central Database regarding 
to the user’s login information. If a new user logs in, the 
Central Database will register a new account for the user, 
otherwise, the user will be checked for authorization. After 
login, users within close proximity in the shared virtual space 
need to receive state updates about each other in real-time. 
The state information of each user should be stored on the 
Region Server, where the user first created his account. 

A. System-Level Design 
 

 

 

 

 

 

 

 

 

 
                           a)   b) 

Figure 6.  System High level Design of MMOG 

To start we need to consider the system as a whole. Thus, 
we will start by working on the system-level design. In Fig 
6.a, we have one central database (unique) along with 
regional servers (replicable) and clients (replicable). Both 
regional servers and clients are replicable hosts. A replicable 
host can have multiple instances of itself. The connections 
between the hosts are bi-directional system links, which 
means that the hosts can communicate in both directions. 
The number and two variables (n, m) describe the 
relationship between the hosts. In the example, the 
relationship between the central database to regional server is 
1 to n. This signifies that one Central Database Server is 
connected to multiple Region Servers. Note also that the 
Central Database Server is unique in the system. Similarly 
with the regional server and client, one regional server is 
connected to multiple clients. Fig 7.b is an expanded view of 
the system-level design which may be more helpful in 
visualizing the physical configuration of the system. 

Region Server

Clients

Central Database1

n

n

1

1

m

Central Database

Clients Clients Clients Clients

Clients Clients

Region Server Region Server

Region Server

Region Server

Clients

Central Database1

n

n

1

1

m

Central Database

Clients Clients Clients Clients

Clients Clients

Region Server Region Server

Region Server
  Start

Validate

Connect Initialise

Join

Set-Up

PlayerAction

Move Attack JoinFight Quit

Win Die

Check Inputs for
Start of Game

If
Region Inactive

If
Region Active

List IP Address 
on Server and Initialise New Game

Exchange IP
Address with other players

Connect to Region 
Server

Communication

Update Setting Locally 
and in Region Server

Exit Game if Quit Msg
Received

Send Message to 
Region Server and 
Game Client and

Return to PlayerAction

MoveAction

Send Update Location
Message

AttackAction

Send Update 
PlayerStatus

Message

Send Update 
PlayerStatus

Message

JoinFightAction

Send Update 
PlayerStatus

Message

QuitAction

Send Update 
PlayerStatus

Message

Start

Validate

Connect Initialise

Join

Set-Up

PlayerAction

Move Attack JoinFight Quit

Win Die

Check Inputs for
Start of Game

If
Region Inactive

If
Region Active

List IP Address 
on Server and Initialise New Game

Exchange IP
Address with other players

Connect to Region 
Server

Communication

Update Setting Locally 
and in Region Server

Exit Game if Quit Msg
Received

Send Message to 
Region Server and 
Game Client and

Return to PlayerAction

MoveAction

Send Update Location
Message

AttackAction

Send Update 
PlayerStatus

Message

Send Update 
PlayerStatus

Message

JoinFightAction

Send Update 
PlayerStatus

Message

QuitAction

Send Update 
PlayerStatus

Message

Globecom 2004 Workshops 523 0-7803-8798-8/04/$20.00 ©2004 IEEE
IEEE Communications Society



B. Host-Level Design 
 
 

 

 

 

 

 

 

 

 

 
a) Client 

 

 

 

 

 

 

 

 

 

 

 
 

b) Region Server 

 

 

 

 

 

 

 

 

 

 

 

 
c) Central Database Server 

Figure 7.  Host-Level Design of MMOG 

With the system-level view complete, we can now start 
designing the hosts that were introduced in the system-level 
design. Host-level design is based on process/event 
modeling. The order of design of the hosts will not affect the 
outcome. We will start with the host-level design of the 
client host. 

1) Client 
The first step is to determine the agents that may reside 

on or traverse through this host. We introduce a User Agent 
to represent each user’s account information. In MMOG a 
user is typically able to create multiple characters (players). 
Thus, the User Agent should be able to create new Player 
Agents or wake up existing Player Agents already created by 
the user. The User Agent should also send out a message to 
the Region Server upon logoff. We can immediately identify 
that the User Agent will be static, because it will only 
process jobs that is related to users on that Region Server. 

The next step is determining the transitions and places on 
the Client Host. There are three events: creating the Player 
Agent, waking up the Player Agent, and logoff. Fig 7.a 
shows the relationship among the User agent, the active 
Player Agents and the sleeping Player Agents. The diagrams 
show two types of arcs, the arcs going from the place to the 
transition state and then going from the transition state to a 
place, these are the process arcs; and the arcs incoming or 
outgoing from a place, which are the migration arcs. Each 
migration arc will specify where the agent is going to or 
coming from. If we follow the path for creating or waking up 
the Player Agents, there is a migration path to a Region 
Server with id x. The waked up Player Agent migrates to the 
appropriate Region Server according to the host ID. 

Let us migrate with the Player Agent to the Region 
Server. A Region Agent is already waiting for the incoming 
Player Agent. Once a Player Agent has arrived, the Region 
Agent generates a check up message and the Player Agent 
waits for the login confirmation from the Central Database 
Server. 

2) Central Database Server 
Let us move our point of view to the Central Database 

Server. In Fig 7.c, as we can see, there are lot migrations 
coming in from the regional server. The central agent is 
already waiting on the host to check for the login 
identification or create a new account. If the identification is 
correct, the request-checking message will be sent back to 
the Region Server identifying that the information is correct. 
Otherwise, if the user tries to create a new account, the 
Central Database Disk Space Agent will allocate space to 
record the information for the new user. If the requesting-
information is valid and there is enough disk space, the 
account will be created, otherwise an error message will be 
created to notify the user that the information is not valid or 
there is not enough disk space. The messages will be sent 
back to the Region Server, as shown in Fig 7.b, near the right 
hand top where the return messages are received. If the 
incoming message is an error message the error message is 
forwarded back to client and eventually the user will have to 
re-enter the information. If the incoming message is a 
successful message, the waiting Player Agent can now get 

User Agent
Player Agent 
from Region Server

Cloned Player Agent

Awake Player agentCreate Player agent

Logoff
from Region Server

to Server of parent 
Player Agent 

Error Messages Logoff Message

to Region Server x

Sleeping Agents

Player Agent

Player Agent 
from Region Server

User Agent
Player Agent 
from Region Server

Cloned Player Agent

Awake Player agentCreate Player agent

Logoff
from Region Server

to Server of parent 
Player Agent 

Error Messages Logoff Message

to Region Server x

Sleeping Agents

Player Agent

Player Agent 
from Region Server

From Region Server x

Back to Region Server

Back to Region Server Back to Region Server

Central Agent

CDB Agent
Disk Space…

Request Info message

Request checking message

Passed Request 
checking message

Error messageSuccess message

Pass Create new

Resource available Bad Resource or Info.

From Region Server x

Back to Region Server

Back to Region Server Back to Region Server

Central Agent

CDB Agent
Disk Space…

Request Info message

Request checking message

Passed Request 
checking message

Error messageSuccess message

Pass Create new

Resource available Bad Resource or Info.

 F rom th e  c lie nt
ID…

P lay e r A ge nt

R e gion  A gent Fr om C DB
F ro m CD B

Fr om C lie nt

From Se rver  x

P lay er Age nt

P laye r  Agent

to Clie nt
to S e rve r  xto Client

R eque st  che ck ing
Me s sage s P laye r Age nt

Playe r  A gent

Clone d P lay er Age nt

Err or Mes sage

E rr or M ess ag eL ogin  Check ing
Me ss age

Ge n erate  m es sage
for login  c hec king

Er ror  D etec t

Bac k to cl ient

Logoff  M es sage

Lo goff
Clon e

Fin ish c hec king

C lone d P la ye r A ge nt

F rom th e  c lie nt
ID…

P lay e r A ge nt

R e gion  A gent Fr om C DB
F ro m CD B

Fr om C lie nt

From Se rver  x

P lay er Age nt

P laye r  Agent

to Clie nt
to S e rve r  xto Client

R eque st  che ck ing
Me s sage s P laye r Age nt

Playe r  A gent

Clone d P lay er Age nt

Err or Mes sage

E rr or M ess ag eL ogin  Check ing
Me ss age

Ge n erate  m es sage
for login  c hec king

Er ror  D etec t

Bac k to cl ient

Logoff  M es sage

Lo goff
Clon e

Fin ish c hec king

C lone d P la ye r A ge nt

Globecom 2004 Workshops 524 0-7803-8798-8/04/$20.00 ©2004 IEEE
IEEE Communications Society



ready to clone. Each player agent then migrates to different 
Region Servers and also to the client where the player agent 
came from.  

The original agent stays at the Region Server for 
increased security and improved recovery from client 
crashes. 

At this point the Player Agent stays at the regional server 
until the client decides to logoff. Let us look back to Fig 7.a, 
we can see the User Agent decides when to logoff. 

Once the user decides to quit, the User Agent will 
generate a logoff message and then the message will be sent 
to the home Region Server. Follow with the message to Fig 
7.b, where the logoff message comes in. The Player Agent 
now migrates back to the client. In Fig 7.a, the Player Agent 
comes back from the Region Server and is put to sleep. The 
player agent may be awakened later when the user decides to 
login again and reuse the player. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.  User agent 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.  Player Agent 

 

 

 

 

 

 

Figure 10.  Region Agent 

 

 

 

 

 

 

 

 

 

 

 

Figure 11.  Central Agent 

 

 

 

 

 

 

 

 

 

Figure 12.  CDB Disk Space Agent 

Agent-level design allows us to understand the behavior 
of individual agents. Let us look into Figures 8 to 12. Fig 8 
describes the states of the User Agent. To start, we look at 
the initial state. If the user decides to create a new Player 
Agent, the User Agent will then go to the “asking info” state 
where the user agent will prompt the user for create 
information. When get the correct response, a Player Agent 
will be created and the User Agent will go back to the initial 

B irth a t C lien t

C rea te d

M igra te  t o ID

M ove  to  RS

Id entifyC reat e N e w  
A c cou n t

A sk ing  R A
T o  id en tify

P assed  th e  
che ck ing

P ass
P a ss

C lon e

N o t F inish C lo ne

F ini sh  C lon e
Sta rt C lon in g

Sen d ing c lo n es

log off

M ig ra tin g  ba ck

sl ee p

S lee pin g  a t c lient
N o w a ke  ca ll

W a ke up
(m i gra te  ID … )

Ask in g RA
To  id en tify  (n ew )

B irth a t C lien t

C rea te d

M igra te  t o ID

M ove  to  RS

Id entifyC reat e N e w  
A c cou n t

A sk ing  R A
T o  id en tify

P assed  th e  
che ck ing

P ass
P a ss

C lon e

N o t F inish C lo ne

F ini sh  C lon e
Sta rt C lon in g

Sen d ing c lo n es

log off

M ig ra tin g  ba ck

sl ee p

S lee pin g  a t c lient
N o w a ke  ca ll

W a ke up
(m i gra te  ID … )

Ask in g RA
To  id en tify  (n ew ) G e n e r a t i n g  

s u c c e s s
M e s s a g e

W r i t i n g  I n f o r m a t i o n  
t o  D i s k

G e n e r a t i n g  
e r r o r

M e s s a g e

A n a l y s i n g
M e s s a g e

W a i t i n g  f o r  
n e w  R e q u e s t

R e q u e s t

I n c o r r e c t  
M e s s a g e

M e s s a g e  
P a s s e d

F i n i s h  w r i t i n g

M e s s a g e  s e n t

N o  R e q u e s t

G e n e r a t i n g  
s u c c e s s

M e s s a g e

W r i t i n g  I n f o r m a t i o n  
t o  D i s k

G e n e r a t i n g  
e r r o r

M e s s a g e

A n a l y s i n g
M e s s a g e

W a i t i n g  f o r  
n e w  R e q u e s t

R e q u e s t

I n c o r r e c t  
M e s s a g e

M e s s a g e  
P a s s e d

F i n i s h  w r i t i n g

M e s s a g e  s e n t

N o  R e q u e s t

 Initial State C reate 
player Agent

Incorrect  
response

Asking Info

Agent Created

Agent Awakened

Sending awake info
To the corresponding agent

Waiting
(resend)

Asking 
Agent ID

Generates logoff
Msg & sending

Correct  
responseWakeup

player A gent

Time out
response

Got r espo nse

Time o ut
Response

Second chance

log off

Correct 
response

Incorrect 
response

Initial State C reate 
player Agent

Incorrect  
response

Asking Info

Agent Created

Agent Awakened

Sending awake info
To the corresponding agent

Waiting
(resend)

Asking 
Agent ID

Generates logoff
Msg & sending

Correct  
responseWakeup

player A gent

Time out
response

Got r espo nse

Time o ut
Response

Second chance

log off

Correct 
response

Incorrect 
response

W ait in g fo r R equ es ted  M ess a ge

G en er ate  
P as si n g M e ss ag e

A na lys in g  m es sa ge

G en er ate  R e qu es t
n ew  In fo r m a tio n

Ch e ck fo r Id en t ifica ti on

G en er ate  A cces s
d en ia l m es sa g e

Re quest

Pass

N ot P ass

R equ est 
Id en tific ation

Re que st 
New  ac coun t

No reque st 
me ssage

W ait in g fo r R equ es ted  M ess a ge

G en er ate  
P as si n g M e ss ag e

A na lys in g  m es sa ge

G en er ate  R e qu es t
n ew  In fo r m a tio n

Ch e ck fo r Id en t ifica ti on

G en er ate  A cces s
d en ia l m es sa g e

Re quest

Pass

N ot P ass

R equ est 
Id en tific ation

Re que st 
New  ac coun t

No reque st 
me ssage

W a it in g  fo r
R e q u e s t

G e t t in g  In fo
F r o m  P l a y e r  A g e n t

G e n e r a t i n g  R e q u e s t
M e s s a g e  t o  D B

R e q u e s t

G e t I n f o r m a t io n

S e n d  t h e  m e s s a g e

W a i ti n g  R e s p o n s eN o  R e q u e s t

W a it in g  fo r
R e q u e s t

G e t t in g  In fo
F r o m  P l a y e r  A g e n t

G e n e r a t i n g  R e q u e s t
M e s s a g e  t o  D B

R e q u e s t

G e t I n f o r m a t io n

S e n d  t h e  m e s s a g e

W a i ti n g  R e s p o n s eN o  R e q u e s t

Globecom 2004 Workshops 525 0-7803-8798-8/04/$20.00 ©2004 IEEE
IEEE Communications Society



state. If the User Agent decides to use the created Player 
Agent, it will go to the “sending awake info to the 
corresponding agent” state and follow the path. This 
comprises the familiar finite state machine (FSM) of the 
User Agent. 

The individual behaviors of the other agents are shown in 
Figures 9 to 12. Detailed descriptions are not given here; the 
diagrams are self-explanatory. 

With the combination of these finite state machines at the 
agent-level (individual behavior), the Process/event model at 
the host-level (group behavior), and the overall view at the 
system-level, the complete system design can be seen as a 
large Process/Event model describing interacting 
autonomous agents residing in places among a set of hosts. 

The meta-model and the high level design of the agents’ 
architecture provide a very suitable framework for MMOGs 
as dynamic distributed applications, and will be completely 
described in a future publication. 

C. P2P Protocol for Joining/Leaving  
In term of architecture build-up the protocol for joining 

and leaving are the most important. Below we present briefly 
the main scenarios in the P2P protocol for joining and 
leaving the game: 

• In the initial state there are no players, no peers, only 
the main game server (world server) maintaining the 
full game, the players database, the current game 
data for existing players, etc… 

• If a new player joins the game, he will be connected 
to the world server and assigned the role of new 
region server for the region he will play on. He will 
be sent all the data required to maintain the region, 
and the identity of any other currently running region 
server. Any new player joining in the same region 
will be connected in P2P fashion to the peer-group 
managed by the region server. The region server will 
be sent the data of the game, the data of the players 
joining, and the data of the others existing regions 
server controlling the others regions. 

• If a player moves to another region we have two 
situations which might occur. Firstly if the region is 
already controlled by another server region, the new 
player will join the peer-group associated to this 
server-region. Secondly if no peer-group for the 
region exists, the client machine will be assigned the 
role of server region. 

•  If a player leaves the game. We have again two 
cases. If the player is a client in his region peer-
group, it will be simply disconnected and the peer-
group will be informed. If the leaving player is a 
region server, the protocol will elect a current peer 
(client) to become the new region server. The 
connection with the world server will be re-
established. If there are others regions server they 
will be informed of the disconnection of the leaving 
region server, and will be given the identity of the 

new region server. Only the region servers are 
connected to the world region (i.e. the main server). 

Figure 5 shows an example for the agent communication 
level, part of the communication protocol associated to a 
peer. Note in particular the states Join and Quit which 
implement the protocol described in this section. 

VI. DISCUSSION 
In this section we discuss the issues which might occurs 

in a P2P network and the solutions we have devised. The 
issues are related to scalability, network efficiency, data 
storage, and policing. 

A. Scalability  
One of the usual issues with peer-to-peer networks is 

their scalability. We have designed our topology to have the 
ability to organize itself efficiently, to reduce the inherent 
scalability issues. The most basic of this organization is the 
creation of “Supernodes”. The network can identify which 
nodes could make good supernodes based on how much 
bandwidth a node has, and how often and for how long it is 
usually a part of the network. Supernodes connect to one 
another, and have a collection of normal nodes connected to 
them. In larger networks, a collection of supernodes could 
even set up a super-supernode, connected to other super-
supernodes and so on. These scaling techniques have been 
applied to our MMOG to improve efficiency. For example as 
in figure 6, each supernode includes a subnet of peers based 
on their locations in the game world. 

 

Group

GroupAlice

Bob

Charles

Town of TurmoilDungeon of Doom

Forest of Fear

Group

 

Figure 13.   Supernode Hierarchy in P2P MMOG  

The diagram does not clearly point out that the “group” 
and location supernodes would actually be controlled by the 
nodes within those groups, actually maintained by the player 
node software itself, but it is how it works. 

B. Network Efficiency 
As with the server/client architecture, several methods 

can be used to make a MMOG more efficiently use its 
network resources. Most of these techniques can be equally 
applied to a MMOG running on a peer-to-peer topology. 
Dead Reckoning [13] algorithms greatly reduce the amount 
of object position data required to be sent over the network. 
Multicasting packets [14] is also used instead of traditional 
unicasting, thereby reducing the load of network traffic.  

Globecom 2004 Workshops 526 0-7803-8798-8/04/$20.00 ©2004 IEEE
IEEE Communications Society



C. Data Storage 
MMOGs with client/server architecture have a single 

huge “game state” [22], which is the data of the game world 
held usually exclusively by the server. This data is extremely 
important to the game and access and changes to it are 
strictly monitored by the server software.  

In a game running on a P2P network, the storage of the 
game data must be distributed among the nodes, and it must 
store a large amount of redundant (replicated) data, so that 
the game can still function with a minimum number of 
players.  

A way of storing this much data among a collection of 
nodes hierarchically organized, where information could be 
required by any node, requires careful designing [24]. 

We believe there is a solution that can be adapted to be 
used to store data this way based on the Freenet project [25]. 
In our system each node “donates” an amount of hard disk 
space to the software when it is installed. When a node 
wishes to add data to the network, the network finds nodes 
with available disk space to store the data. When someone 
wants to access that data, they request it to be sent. 
Whenever data is requested by a node, that data, or a portion 
of that data, is replicated to data stores in nodes closer to the 
node that made the request, thus increasing the availability, 
redundancy and bandwidth available for that data and 
anyone who wants it.  

D. Policing 
In a peer-to-peer game of any sort, it is important for 

each node not to trust any other node. Yet in order for the 
game to function, calculations must be carried out at some 
point. 

Most game events can be reduced to simple transactions 
between two players, or between a player and the game. In a 
peer-to-peer MMOG, this transaction requires that neither 
player has any control whatsoever. This means that no player 
data (except a reference to that data) may be held on the node 
owned by that player, and no transactions pertaining to that 
player may be calculated on that node. Instead, a group of 
nodes must all perform that transaction, by finding and 
checking the data on each player, then each node in the 
group double checks their result with the rest of the group 
before storing the data. Given that none of the nodes in the 
transaction can control which nodes are involved in it, this 
emulates the existence of a “trusted” server as in current 
MMOGs. 

VII. COMMUNICATION SYSTEM IMPLEMENTATION  
We have developed our MMOG in Java and use a peer-

to-peer architecture, incorporating JXTA as part of the 
underlying framework.   

Figure 7 shows part of the game logic and 
communication system class hierarchies. 

Figure 8 shows the layered structure of the full 
application, involving JXTA services and core, JXTA 

communication interface, the communication system and the 
game engine. 

 

Figure 14.  Class Architecture 

 

 

 

 

 

Figure 15.  Software Architecture   

We are particularly interested in explaining the 
communication system. The purpose of the communication 
system is to provide the game with a way to communicate 
with other peers over the network.  This allows for the 
passing of information between game peers, such as 
requesting information about games and updating player 
information. 

The communication subsystem provides the following 
services: 

• start a multi-player session game, given the 
map/region/donjon which will be used 

•  get a game list 

•  join a game, given the player to join and an item 
from the game list 

•  broadcast a character position update message, 
given the new position 

•  broadcast a quit game message 

•  broadcast a win game message 

•  broadcast a player died message 

•  shutdown  

The messages that are going to be passed between 
communication systems are JXTA messages which are XML 
documents, or binary or both (binary embedded into XML).  

 

JXTA Services and Core

JXTA Communication Interface

Communication System

‘Time Prisoners’
Game Logic and Data

JXTA Services and Core

JXTA Communication Interface

Communication System

‘Time Prisoners’
Game Logic and Data

Globecom 2004 Workshops 527 0-7803-8798-8/04/$20.00 ©2004 IEEE
IEEE Communications Society



They will be constructed by using the player state context 
and, then sent out by the communication system. 

VIII. CONCLUSION AND FUTURE WORK 
Massively Multiplayer Online Games have been rapidly 

gaining popularity and have proven that there is a big future 
in online gaming. The subscription price model used by most 
MMOGs is greatly slowing the uptake in new subscribers, 
and ways need to be developed in order to reduce the 
overhead of the server upkeep costs and to pass on a saving 
to the customer, either in monetary terms or in gameplay 
enhancement. 

We have discussed an extreme way that the technology 
MMOGs used can be altered to vastly reduce the cost of 
upkeep. 

MMOGs by their distributed and incremental structure 
are natural applications for P2P overlays. Games are 
different from previous P2P applications that focus on the 
efficient use of idle storage and network bandwidth, 
including storage systems, content distribution and instant 
messaging. Games can use the memory and CPU cycles of 
peers to maintain and share the game state.  

Our protocol offers a fully distributed, fault tolerant and 
scalable solution to MMOG. It is more efficient than usual 
infrastructure which relies on a set of dedicated servers that 
agree to share the workload. This protocol may also be 
extended for mobile networks [29] where a peer-group 
manager is a routing agent responsible for clients in its 
group. The joining and leaving protocol would remain 
mostly the same for such an application.  

Using a peer-to-peer topology to eliminate the server 
entirely would be a novel way to “float” a MMOG on the 
internet. However, further research needs to be done into 
making a viable distributed game over a pure P2P overlay 

Ultimately, P2P approach is the only viable means for 
smaller independent game companies to create massively 
multiplayer online games (MMOGs) that scale to millions of 
users. 

Our future work will involve the development of an 
agent-based MMOG simulator to test 100 thousands of 
simulated players using different transport protocols, larger 
deployment of ‘Time Prisoners’ to test the P2P infrastructure 
based on JXTA, and an extensive evaluation of the simulator 
and the real system for scalability and robustness. 

ACKNOWLEDGMENT 
The authors would like to thank the anonymous 

reviewers for the insightful and very useful comments. 

REFERENCES 
[1] Smed, Kaukoranta, and Hakonen, "Aspects of Networking in 

Multiplayer Computer Games", The Electronic Library, 20(2):87-97, 
2002. 

[2] Lineage, © NCsoft (http://www.lineage.com/nci) 

[3] PlanetSide, © Sony Online Entertainment 
(http://planetside.station.sony.com/ ) 

[4] Star Wars Galaxies, © Sony Online Entertainment 
(http://starwarsgalaxies.station.sony.com/) 

[5] The Sims Online, © Electronic Arts (http://www.eagames.com) 
[6] [EVE: The Second Genesis, © CCP (http://www.ccpgames.com/) 
[7] Bauer D., Rooney S. and Scatton P. 2002. “Network Infrastructure for 

massively Distributed Games”. In Proceedings of NetGames 2002, 
(Braunschweig, Germany, April), pp3-9. 

[8] Bjorn Knutsson, Honghui Lu, Wei Xu and Bryan Hopkins “Peer-to-
Peer Support for Massively Multiplayer Games”, INFOCOM 2004, 
March 2004, Hong Kong, China. 

[9] Smed, Kaukoranta, and Hakonen, "Networking and Multiplayer 
Computer Games--The Story So Far", International Journal of 
Intelligent Games & Simulation, 2(2):101-110, 2003. 

[10] HalfLife, © Sierra (http://games.sierra.com/games/half-life/) 
[11]  Tianqi Wang, Cho-Li Wang, Francis Lau, “Grid-enabled Multi-

server Network Game Architecture,” the 3rd International Conference 
on Application and Development of Computer Games (ADCOG 
2004), April 26-27 2004, City University of Hong Kong, HKSAR. 

[12] EverQuest, © Sony Online Entertainment (http://soe.sony.com/) 
[13] Y.W. Bernier. “Latency compensation techniques methods in 

client/server in-game protocol design and optimization”. In 
Proceeding of the Game Developers Conferences, March 2000. 

[14] P. Francis, M. Handley, R. Karp, S. Ratnasamy, and S. Shenker. “A 
Scalable Content-Addressable Network.” In SIGCOMM ’01, August 
27-31, 2001, San Diego, California. 

[15] Eunsil Hong, Sangheon Pack, Yanghee Choi, Ilkyu Park, Jong-Sung 
Kim, and Dongil Ko, "Game Transport Protocol: Transport Protocol 
for Efficient Transmission of Game Event Data," in Proc. JCCI 2002, 
Jeju, Korea, April 2002. 

[16] Golle, P., and Mironov, I. “Uncheatable Distributed Computations”. 
Lecture Notes in Computer Science 2020 (2001). 

[17] K. Kant, R. Iyer and V. Tewari, “A framework for classifying peer-
to-peer Technologies”, 2nd IEEE/ACM Intl. Symposium on Cluster 
Computing and the Grid, May 21-26, 2002, Berlin, Germany. 

[18] KazaA -  http://www.kazaa.com/us/index.htm 
[19] Gnutella Protocol Development - http://rfc-gnutella.sourceforge.net/ 
[20] Morpheus - www.morpheus.com/  
[21] Seti@Home - http://setiathome.ssl.berkeley.edu/  
[22] Anne-Gwenn Bosser, “Massively Multi-player Games: Matching 

Game Design with Technical Design”, ACM SIGCH Advanced 
Computer Entertainment Conference, ACE 2004. NUS, Singapore. 

[23] Mat Buckland,  “AI Techniques for Game Programming” Premier 
Press, Inc. - ISBN (1-931841-08-X) (October, 2002)  

[24] K.L. Morse. “Interest Management in Large Scale Distributed 
Simulations”. Technical Report ICS-TR-96-27, Universiy of 
California, Irvine, 1996. 

[25] Freenet Project – http://www.freenetproject.org  
[26] Maniatis, P., Roussopoulos, M., Giuli, T., Rosenthal, D. S. H., Baker, 

M., and Muliadi, Y. “Preserving Peer Replicas By Rate-Limited 
Sampled Voting”. In SOSP (2003) 

[27] JXTA -  www.jxta.org/project/www/background.html  
[28] Stefano Ferretti, and Marco Roccetti, “A Novel Obsolescence-Based 

Approach to Event Delivery Synchronisation in Multplayer Games”. 
International Journal of Intelligent Games and Simulation, Vol 3 No 
1, 2004, pp7-19. 

[29] A. Joseph, J. Kubiatowicz, and B. Zhao. “Supporting Rapid Mobility 
via Locality in an Overlay Network”. University of California, 
Berkeley. 

[30] K.L. Morse. “Interest Management in Large Scale Distributed 
Simulations”. Technical Report ICS-TR-96-27, Universiy of 
California, Irvine, 1996. 

 

Globecom 2004 Workshops 528 0-7803-8798-8/04/$20.00 ©2004 IEEE
IEEE Communications Society


	footer1: 
	01: v
	02: vi
	03: vii
	04: viii
	05: ix
	06: x
	footerL1: 0-7803-8408-3/04/$20.00 © 2004 IEEE
	headLEa1: ISSSTA2004, Sydney, Australia, 30 Aug. - 2 Sep. 2004       


