Section 1.2 Propositional Equivalences

A tautology is a proposition which is always true.							
Classic Example: P ¬ P							
A contradiction is a proposition which is always false.							
Classic Example: P ¬ P							
A <i>contingency</i> is a proposition which neither a tautology nor a contradiction.							
Example: $(P \ Q) \ \neg R$							
Two propositions P and Q are <i>logically equivalent</i> if P Q is a tautology. We write							
P Q							
Example: $(P Q) (Q P) (P Q)$							

Proof:

The left side and the right side must have the same truth values <u>independent</u> of the truth value of the component propositions.

To show a proposition is not a tautology: use an *abbreviated* truth table

- try to find a *counter example* or to *disprove* the assertion.
 - search for a case where the proposition is false

Case 1: Try left side false, right side true

Left side false: only one of P Q or Q P need be false.

1a. Assume P = Q = F. Then P = T, Q = F. But then right side P = Q = F. Oops, wrong guess.

1b. Try Q = P = F. Then Q = T, P = F. Then P = Q = F. Another wrong guess.

Case 2. Try left side true, right side false

If right side is false, P and Q cannot have the same truth value.

2a. Assume
$$P = T$$
, $Q = F$.

Then P = Q = F and the conjunction must be false so the left side cannot be true in this case. Another wrong guess.

2b. Assume
$$Q = T$$
, $P = F$. Again the left side cannot be true.

We have exhausted all possibilities and not found a counterexample. The two propositions must be logically equivalent.

Note: Because of this equivalence, if and only if or iff is also stated as is a necessary and sufficient condition for.

Some famous logical equivalences:

]	Logi	cal E	quivalences
P	T	P		O		Identity
P P	F	$\frac{P}{T}$				Domination
P P	F P	F P				Idempotency
P	<i>P</i> ¬ <i>P</i>)) <i>Q</i>	P	, D			Double negation
P	Q	Q	P			Commutativity
<i>P</i> (<i>P</i>	Q Q	$\frac{Q}{R}$	P P	(Q	R)	Associativity
(P	Q)	R	P	(Q	R)	

Note: equivalent expressions can always be substituted for each other in a more complex expression - useful for simplification.

Normal or Canonical Forms

Unique representations of a proposition

Examples:

Construct a <u>simple</u> proposition of two variables which is true only when

• P is true and Q is false:

$$P \neg Q$$

• P is true and Q is true:

• P is true and Q is false or P is true and Q is true:

$$(P \neg Q) (P Q)$$

A disjunction of conjunctions where

- every variable or its negation is represented once in each conjunction (a *minterm*)
 - each minterms appears only once

Disjunctive Normal Form (DNF)

Important in switching theory, simplification in the design of circuits.

Method: To find the minterms of the DNF.

- Use the rows of the truth table where the proposition is 1 or True
- If a zero appears under a variable, use the negation of the propositional variable in the minterm
 - If a one appears, use the propositional variable.

Example:

Find the DNF of $(P \ Q) \ \neg R$

P	Q	R	(P Q)	$\neg R$
0	0	0	1	
0	0	1	1	
0	1	0	1	
0	1	1	0	
1	0	0	1	
1	0	1	0	
1	1	0	1	
1	1	1	0	

There are 5 cases where the proposition is true, hence 5 minterms. Rows 1,2,3, 5 and 7 produce the following disjunction of minterms:

$$(P \quad Q) \quad \neg R$$

$$(\neg P \quad \neg Q \quad \neg R) \quad (\neg P \quad \neg Q \quad R) \quad (\neg P \quad Q \quad \neg R)$$

$$(P \quad \neg Q \quad \neg R) \quad (P \quad Q \quad \neg R)$$

Note that you get a *Conjunctive Normal Form* (CNF) if you negate a DNF and use DeMorgan's Laws.