Section 2.2
Complexity of Algorithms

Time Complexity: Determine the approximate number of operations required to solve a problem of size n.

Space Complexity: Determine the approximate memory required to solve a problem of size n.

Time Complexity

- Use the Big-O notation
- Ignore house keeping
- Count the **expensive** operations only

Basic operations:

- searching algorithms - key comparisons
- sorting algorithms - list component comparisons
- numerical algorithms - floating point ops. (flops) - multiplications/divisions and/or additions/subtractions

Worst Case: maximum number of operations

Average Case: mean number of operations assuming an input probability distribution
Examples:

• Multiply an $n \times n$ matrix A by a scalar c to produce the matrix B:

 \[
 \text{procedure } (n, c, A, B) \\
 \quad \text{for } i \text{ from } 1 \text{ to } n \text{ do} \\
 \quad \quad \text{for } j \text{ from } 1 \text{ to } n \text{ do} \\
 \quad \quad \quad B(i, j) = cA(i, j) \\
 \quad \end{do}
 \end{do}

Analysis (worst case):

Count the number of floating point multiplications.

n^2 elements requires n^2 multiplications.

time complexity is

$O(n^2)$

or

quadratic complexity.

• Multiply an $n \times n$ upper triangular matrix A

 \[A(i, j) = 0 \text{ if } i > j\]
by a scalar c to produce the (upper triangular) matrix B.

\begin{verbatim}
procedure (n, c, A, B)
 /* A (and B) are upper triangular */
 for i from 1 to n do
 for j from i to n do
 $B(i, j) = cA(i, j)$
 end do
 end do
end do
\end{verbatim}

Analysis (worst case):

Count the number of floating point multiplications.

The maximum number of non-zero elements in an $n \times n$ upper triangular matrix

\[= 1 + 2 + 3 + 4 + \ldots + n \]

or

- remove the diagonal elements (n) from the total (n^2)
- divide by 2
- add back the diagonal elements to get

\[(n^2 - n)/2 + n = n^2/2 + n/2 \]

which is

\[n^2/2 + O(n). \]

Quadratic complexity but the leading coefficient is $1/2$
• Bubble sort: L is a list of elements to be sorted.
- We assume nothing about the initial order
- The list is in ascending order upon completion.

Analysis (worst case):

Count the number of list comparisons required.

Method: If the jth element of L is larger than the (j + 1)st, swap them.

Note: this is not an efficient implementation of the algorithm

procedure bubble (n, L)
 /*
 - L is a list of n elements
 - swap is an intermediate swap location
 */

 for i from n - 1 to 1 by -1 do
 for j from 1 to i do
 if L(j) > L(j + 1) do
 swap = L(j + 1)
 L(j + 1) = L(j)
 L(j) = swap
 end do
 end do
 end do
• Bubble the largest element to the 'top' by starting at the bottom - swap elements until the largest in the top position.

• Bubble the second largest to the position below the top.

• Continue until the list is sorted.

 n-1 comparison on the first pass

 n-2 comparisons on the second pass

 .

 .

 .

 1 comparison on the last pass

Total:

\[(n - 1) + (n - 2) + \ldots + 1 = O(n^2)\]

or

quadratic complexity

(what is the leading coefficient?)
• An algorithm to determine if a function \(f \) from \(A \) to \(B \) is an injection:

Input: a table with two columns:

- Left column contains the elements of \(A \).
- Right column contains the images of the elements in the left column.

Analysis (worst case):

Count comparisons of elements of \(B \).

Recall that two elements of column 1 cannot have the same images in column 2.

One solution:

• Sort the right column

 Worst case complexity (using Bubble sort)

 \(O(n^2) \)

• Compare adjacent elements to see if they agree

 Worst case complexity

 \(O(n) \)

Total:

\[O(n^2) + O(n) = O(n^2) \]

Can it be done in linear time?