

1

Solution to Homework #1

CS5214 Modeling and Evaluation Fall 2023

1. (1) The customer turned away probability is 0.279878.

(2) The average number of customers waiting in the system is 4.786998.

(3) The response time per client for those served by the fast server is 0.642219 s.

(4) The response time per client for those served by the two slow servers is 0.7777516 s.

(5) The throughput is 10.798395

(6) The report confidence accuracy is H/Y = 0.003165/0.642219 = 4.9%.

Source Code:

#include"smpl.h"

#define TOKENS 1000

#define TRUE 1

#define FALSE 0

main()

{

 real Ta=1.0/15,Ts_fast=0.2,Ts_slow=1.0/3,mean,hw,nq;

 int tk_id=0,customer=0,event,mm310,nb;

 int n_fastServed=0,n_slowServed=0; /*number of customers severed by fast server or slow

servers*/

 real R_sum_fast=0.0,R_sum_slow=0.0;/*sum of response times served by fast server or slow

servers*/

 real n_arrived=0; /* number of customers arrived at the system*/

 int n_rejected=0; /*number of customers turned away by the system*/

 int n_waiting; /*number of tokens waiting in queue*/

 int fastBusy=FALSE,slow1Busy=FALSE,slow2Busy=FALSE; /*server busy or not */

 real ts[TOKENS];

 int cont=TRUE;

 smpl(0, "M/M/3/10 Quene with BMA");

 init_bm(200,20000);

 mm310=facility("mm310",3);

 schedule(1,0.0,tk_id);

 while (cont)

 {

 cause(&event,&customer);

 switch(event)

 {

 case 1:/*arrival*/

 n_arrived++;

 if(++tk_id>=TOKENS) tk_id=0;

 schedule(1,expntl(Ta),tk_id);

 n_waiting=inq(mm310);

 if (n_waiting>=7) n_rejected++;

2

 else{

 schedule(2,0.0,customer);

 ts[customer]=time();

 }

 break;

 case 2:/*request server*/

 if (request(mm310,customer,0)==0){

 if (!fastBusy){

 schedule(3,expntl(Ts_fast),customer);

 fastBusy=TRUE;

 }else if (!slow1Busy){

 schedule(4,expntl(Ts_slow),customer);

 slow1Busy=TRUE;

 }else{

 schedule(5,expntl(Ts_slow),customer);

 slow2Busy=TRUE;

 }

 }

 break;

 case 3:/*departure from the fast server*/

 release(mm310,customer);

 fastBusy=FALSE;

 n_fastServed++;

 R_sum_fast+=time()-ts[customer];

 if(obs(time()-ts[customer])==1)

 cont=FALSE;

 break;

 case 4:/*departure from the first slow server*/

 release(mm310,customer);

 slow1Busy=FALSE;

 n_slowServed++;

 R_sum_slow+=time()-ts[customer];

 break;

 case 5:/*departure from the second slow server*/

 release(mm310,customer);

 slow2Busy=FALSE;

 n_slowServed++;

 R_sum_slow+=time()-ts[customer];

 break;

 }

 } /*end while*/

 civals(&mean,&hw,&nb);

 /*answer for Q1*/

 printf("Customer turned away probability: %f\n", n_rejected/n_arrived);

 /*answer for Q2*/

 printf("Average number of customers waiting in the system: %f\n", Lq(mm310));

3

 /*answer for Q3*/

 printf("Response time per client served by fast server: %f\n", mean);

 /*answer for Q4*/

 printf("Response time per client served by slow servers: %f\n", R_sum_slow/n_slowServed);

 /*answer for Q5*/

 printf("Throughput: %f\n", (n_fastServed + n_slowServed)/time());

 /*answer for Q6*/

 printf("Y=%f,H=%f after %d batches\n",mean,hw,nb);

}

Output:

batch 1 mean = 0.646

batch 2 mean = 0.641

batch 3 mean = 0.647

batch 4 mean = 0.638

batch 5 mean = 0.646

batch 6 mean = 0.643

batch 7 mean = 0.633

batch 8 mean = 0.639

batch 9 mean = 0.644

batch 10 mean = 0.644, rel. HW = 0.005

Customer turned away probability: 0.279878

Average number of customers waiting in the system: 4.786998

Response time per client served by fast server: 0.642219

Response time per client served by slow servers: 0.777516

Throughput: 10.798395

Y=0.642219,H=0.003165 after 10 batches

4

2. The system structure is shown as follows:

 𝑅(𝑡) = 𝑅𝑤(𝑡)[1 − 𝐹𝑓1(𝑡)𝐹𝑓2(𝑡)𝐹𝑓3(𝑡)] = 𝑅𝑤(𝑡)[1 − (1 − 𝑅𝑓(𝑡))3]

 = 𝑒− 𝜆𝜔𝑡 [1 − (1 − 𝑒− 𝜆𝑓𝑡)
3

] = 3𝑒− 𝜆𝜔𝑡 − 𝜆𝑓𝑡 − 3𝑒−𝜆𝜔𝑡−2𝜆𝑓𝑡 + 𝑒−𝜆𝜔𝑡−3𝜆𝑓𝑡

 MTTF = ∫ 𝑅(𝑡)𝑑𝑡
∞

0
=

3

𝜆𝜔 + 𝜆𝑓
−

3

𝜆𝜔 + 2𝜆𝑓
+

1

𝜆𝜔 + 3𝜆𝑓

5

3.

(a) The vertices of the reliability graph model are marked with a, b, c, d, and e as follows:

Source Code: Output:

The system reliability after 12 weeks of operation is 0.98279.

(b) There are 7 minimal path sets:

 {1,2,5,6}, {1,2,7}, {1,4,5,7}, {1,4,6}, {2,3,4,6}, {3,5,6}, {3,7}

 There are 6 minimal cut sets:

 {1,3}, {6,7}, {2,3,4}, {4,5,7}, {1,2,5,7}, {2,3,5,6}

 The structure using a parallel connection of the minimal path sets is shown as follows:

6

The structure using a series connection of the minimal cut sets is shown as follows:

(c) The fault tree model built based on the minimal path sets is shown as follows:

7

Source Code: Output:

The system reliability after 12 weeks of operation is 0.98279.

