“On Survivability of Mobile Cyber Physical Systems with Intrusion Detection”

Alex Campbell, 2016-11-17
Presentation Contents

1. Introduction and Concepts
2. Problem Statement and Challenges
3. Literature Overview
4. Proposed Solution
5. Designing the System Model
6. Running the Simulation
7. Conclusion / Future Work
Introduction and Concepts

General Concept:

- Advancing technology leads to increased presence of **Cyber Physical Systems (CPS)**
- **Survivability** becomes more important.
- **Mobile CPSs** complicate the issue of **survivability**
Introduction and Concepts

Cyber Physical System

- “Systems that are built from, and depend upon, the seamless integration of computational algorithms and physical components” [1].

- Defining Characteristics [3]:
 - Cyber Capability in every component
 - Automated
 - Capable of Large-Scale Networking
 - Capable of optimization through dynamic reconfiguration

Introduction and Concepts

CPS Examples

- Process Control Systems
- Medical monitors
- Autonomous (self-driving) Vehicles
Introduction and Concepts

Mobile Cyber Physical System

- Subcategory of a **CPS**
- Inherently mobile
- Examples [4]:
 - Smartphone network
 - Environmental monitoring systems
- Applications [5]:
 - Traffic Measuring System
 - IoT

Problem Statement and Challenges

Problem:

“[Maximize the survivability of] a mobile cyber physical system (MCPS) comprising sensor-carried human actors, vehicles, or robots assembled together for executing a specific mission in battlefield or emergency response situations.”

- Maximize uptime of MCPS
- Mission critical scenarios
- Protect against malicious attacks, unauthorized intrusions
Problem Statement and Challenges

Challenges:

- Distributed architecture
- Large Scale
- Rough / Dangerous environmental Conditions
- Resource Constraints

Main point: scenarios include possibilities of:

- Compromised / captured nodes
- Inability to replenish nodes
Literature Overview

Literature: For survivability, design MCP systems that promote:

- Intrusion Prevention
- Intrusion Detection
 - Application-specific Intrusion detection
 - Anomaly-based detection
- Intrusion Tolerance
 - Static / Structural
 - Redundancy: component, path, data
 - Threshold Cryptography (cooperative decryption).
 - Decentralization
 - Dynamic / Responsive:
 - Self-Organization
 - Dynamic Routing
 - Forward / Backward Recovery
Survivability

Energy Consumption Intrusion Protection

Both Energy Depletion and Security Failures constitute failure of an MCPS!
Proposed Solution

Solution: Perform a mathematical-model-based analysis to maximize **Survivability**

- Model an MCPS with **Dynamic Voting-based Intrusion Detection**
- Optimally balance intrusion detection energy conservation
Designing the System Model

Reference System: Distributed network of 128 nodes, where each node contains

- 600 MHz Analog Devices Blackfin DSP Processor
- 8MB flash memory
- 64MB SDRAM
- GPS Receiver
- 7.5 V battery
- Sensors (inertial, barometric, physiological, radiological, environmental).

Purpose: Detect nearby phenomena, transmit information to neighbors to perform localization and remote sensing (collect data without making physical contact with the object [Wikipedia].
Designing the System Model

Attack Model: Two Types:

- **Node Capture**
 - Defeats Authentication
 - Creates Insider Threats
- **Bad Data Injection**
 - Defeats integrity of data
 - Defended against by insiders

Assumption: When the system contains $\frac{1}{3}$ compromised nodes, the system has failed (Byzantine Fault Model). Once a consensus cannot be reached (due to fear of malicious nodes), the system has failed.
Designing the System Model

Intrusion Detection Technique: Dynamic voting-based intrusion detection

- Detection informed by location/distance data anomalies between neighbors
- A “coordinator” node is chosen amongst neighbors at random to prevent specific targeting by attackers
- Coordinator selects m random nodes to participate in labeling nodes as good/bad
Designing the System Model

Intrusion Detection Technique: Dynamic voting-based intrusion detection

Main Point: Predict the number of good/bad nodes as a result of compromising events happening in the system, coupled with voting-based intrusion detection.
Designing the System Model

Modeling the system in regards to intrusions and energy consumption:

\[
\begin{align*}
N_g & \rightarrow \text{TCP} \\
N_g & \rightarrow N_b \\
N_b & \rightarrow \text{TIDS} \\
N_b & \rightarrow N_e \\
N_e & \rightarrow \text{TFP} \\
N_e & \rightarrow \text{ENERGY}
\end{align*}
\]

- **Ng**: # Good Nodes
- **Nb**: # Bad Nodes
- **Ne**: # Nodes Evicted
- **TIDS**: Intrusion Detection Interval
- **energy**: Binary, 1=full energy, 0=exhaustion
- **λ**: Compromise Rate
- **Pfn**: P(false negative)
- **Pfp**: P(false positive)
- **TIDS**: Dynamic Voting Invocation Interval
- **TCP**: Good node get compromised. Rate: \(\lambda \times N_g\)
- **TIDS**: Evict Bad Node: \(\frac{N_b \times (1 - P_{fn})}{T_{IDS}}\)
- **TFP**: Evict Good Node: \(\frac{N_e \times P_{fp}}{T_{IDS}}\)
- **ENERGY**: Energy is Exhausted: \(\frac{1}{N \times T_{IDS}}\)
Designing the System Model

Equivalent Semi-Markov Model:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Ng</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Nb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Ne</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>energy</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Designing the System Model

Modeling the system in regards to intrusions and energy consumption:

- **Important Concepts:**
 - Tokens = nodes in MCPS
 - Initialize 128 Good nodes
 - Pfn, Pfp, and λ are used as input parameters to the underlying markov chain.
 - Use to calculate expected values for each state at time t.
 - Use these expected values to solve for Pfn and Pfp at time t.
 - Adjust Transitions TIDS and TFP to model changes to Pfn and Pfp.
Designing the System Model

Solving for P_{fn} and P_{fp}:

$$P_{fn} = \sum_{i=0}^{m-N_{maj}} \left[\frac{N_b \binom{N_{maj} + i}{m}}{N_maj + i \binom{N_g + N_b}{m}} \right]$$

$$+ \sum_{j=0}^{m-N_{maj}} \sum_{k=N_{maj}-j}^{m-j} \frac{\binom{N_g}{k} \left(p_{fn} \right)^k \left(\frac{N_g - k}{m - j - k} \right) (1 - p_{fn})^{m-j-k}}{N_g + N_b \binom{m}{N_g + N_b}}$$

$$P_{fp} = \sum_{i=0}^{m-N_{maj}} \left[\frac{N_b \binom{N_{maj} + i}{m}}{N_maj + i \binom{N_g + N_b}{m}} \right]$$

$$+ \sum_{j=0}^{m-N_{maj}} \sum_{k=N_{maj}-j}^{m-j} \frac{\binom{N_g}{k} \left(p_{fp} \right)^k \left(\frac{N_g - k}{m - j - k} \right) (1 - p_{fp})^{m-j-k}}{N_g + N_b \binom{m}{N_g + N_b}}$$

Probability of a false negative due to selecting a majority of bad nodes

Probability of a false negative due to:
1. Selecting a majority of good nodes that cast incorrect votes
2. Including some bad nodes

Probability of a false positive due to selecting a majority of bad nodes

Probability of a false positive due to:
1. Selecting a majority of good nodes that cast incorrect votes
2. Including some bad nodes
Designing The System Model

Calculate MTTF via Reward Assignments:

- Recall that we want to optimize the MCPS Survivability
- Survivability is equivalent to the system’s expected lifetime, or MTTF
- Let Ri, reward assignment at state i, be:
 - Ri = 1 if the system is alive in state i
 - Ri = 0 if the system is dead in state i
 - System is dead when:
 - Place “Energy” does not have a token
 - The number of tokens when Nb > \(\frac{1}{3}(Nb + Ng) \)
 - Number of bad nodes comprises at least 1.3 of all nodes in system
- \(P_{fp}, P_{fn}, \) and \(T_{dis} \) all affect transition rates, and therefore MTTF
Designing the System Model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Meaning</th>
<th>Default value</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>Network size</td>
<td>128</td>
</tr>
<tr>
<td>\bar{n}</td>
<td>Number of neighbors within radio range</td>
<td>32</td>
</tr>
<tr>
<td>p_{fn}</td>
<td>Per-host false negative probability</td>
<td>[1–5]%</td>
</tr>
<tr>
<td>p_{fp}</td>
<td>Per-host false positive probability</td>
<td>[1–5]%</td>
</tr>
<tr>
<td>λ</td>
<td>Per-node capture rate</td>
<td>[1–24]/day</td>
</tr>
<tr>
<td>T_{IDS}</td>
<td>Intrusion detection interval</td>
<td>[0–700] s</td>
</tr>
<tr>
<td>m</td>
<td>Number of intrusion detectors per node</td>
<td>[3,11]</td>
</tr>
<tr>
<td>α</td>
<td>Number of ranging operations</td>
<td>5</td>
</tr>
<tr>
<td>E_t</td>
<td>Energy for transmission per node</td>
<td>0.000125 J</td>
</tr>
<tr>
<td>E_r</td>
<td>Energy for reception per node</td>
<td>0.000005 J</td>
</tr>
<tr>
<td>E_a</td>
<td>Energy for analyzing data per node</td>
<td>0.00174 J</td>
</tr>
<tr>
<td>E_s</td>
<td>Energy for sensing per node</td>
<td>0.0005 J</td>
</tr>
<tr>
<td>E_0</td>
<td>Initial system energy</td>
<td>16,128 kJ</td>
</tr>
<tr>
<td>P_{fn}</td>
<td>System false negative probability</td>
<td>Eq. 1</td>
</tr>
<tr>
<td>P_{fp}</td>
<td>System false positive probability</td>
<td>Eq. 2</td>
</tr>
<tr>
<td>MTTF</td>
<td>Mean time to failure</td>
<td>Eq. 3</td>
</tr>
<tr>
<td>N</td>
<td>Maximum cycles before energy exhaustion</td>
<td>Eq. 4</td>
</tr>
<tr>
<td>E_{IDS}</td>
<td>Energy consumed per T_{IDS}</td>
<td>Eq. 5</td>
</tr>
</tbody>
</table>

\[E_{\text{detection}} = m \times (E_t + \bar{n} \cdot E_r) + m \times (E_t + (m - 1) \cdot (E_r + E_a)). \] (8)
Running the simulation

Theoretical Results:

- $m = \#\text{nodes selected for voting}$
- Optimal Intrusion detection interval (T_{IDS}) is roughly 200 seconds
- Optimal T_{IDS} value decreases as m decreases: weaker intrusion detection means more invocations
- Optimally, $m = 5$. Best balance of energy exhaustion and security failure.
Running the simulation

- Use a simulation modeling library, SMPL, to:
 - Track node state (goodness, membership)
 - Schedule events
 - Monitor system failure based on events:
 - Security failure
 - Exhausted Energy
 - All nodes have been evicted

- Parameterize values:
 - λ from 1/day to 1/10 minutes
 - m from [3,11]
 - T_{IDS} from 10s to 1280s

- Apply BMA for 95% confidence level and 10% accuracy:
 - 100 MTTF Observations
Running the simulation: SMPL Results

Fig. 7 Simulation and theoretical MTTF versus T_{IDS} and m
Running the simulation

Remarks:

- Theoretical and Simulation plot shapes are very similar
- For both, MTF peaks near TIDS = 160s between 9000 and 11,000s
- $m = 5$ is the optimal value for m in both cases
- The Mean Percentage Error (MPE) between the two is between 4.60 and 7.64%

Main Point: Survivability analysis methodology is validated due to similarities between results.
Conclusions and Future Work

- This paper demonstrated the feasibility of the authors’ survivability model for Mobile Cyber Physical Systems with voting-based intrusion detection.
 - Given known values for false alarm probabilities and node compromise rates, the model can determine the best intrusion detection interval and the best number of detectors to maximize MTTF.
- Future work may include discussions concerning design principles for intrusion detection protocols in both homogenous AND heterogenous MCPSs.